1
|
Huang J, Guo J, Jia R. N6-Methyladenosine Methyltransferase Component KIAA1429 Is a Potential Target of Cancer Therapy. Biomolecules 2024; 14:1319. [PMID: 39456252 PMCID: PMC11506059 DOI: 10.3390/biom14101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
N6-methyladenosine (m6A), the most abundant RNA modification in eukaryotes, has a crucial impact on tumorigenesis. KIAA1429 is the key component of the m6A methyltransferase complex, in which KIAA1429 functions as a scaffold to bridge the catalytic core proteins. KIAA1429 is often overexpressed in malignances, associated with patient prognosis, and required for tumorigenesis. KIAA1429 regulates the expression of a number of tumor-associated genes in an m6A -dependent manner, and thus, contributes to cell proliferation, migration, drug resistance, tumor formation and metastasis. This review focuses on recent progress in the understanding of roles and mechanisms of KIAA1429 in cancers, and offers ideas for potential anti-cancer therapeutic methods by targeting KIAA1429.
Collapse
Affiliation(s)
- Junjun Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.H.); (J.G.)
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.H.); (J.G.)
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.H.); (J.G.)
| |
Collapse
|
2
|
Salvatierra-Fréchou DM, Verstraeten SV. Tl(I) and Tl(III)-induce genotoxicity, reticulum stress and autophagy in PC12 Adh cells. Arch Toxicol 2024; 98:2085-2100. [PMID: 38619592 DOI: 10.1007/s00204-024-03752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
Thallium (Tl) and its two cationic species, Tl(I) and Tl(III), are toxic for most living beings. In this work, we investigated the effects of Tl (10-100 µM) on the viability and proliferation capacity of the adherent variant of PC12 cells (PC12 Adh cells). While both Tl(I) and Tl(III) halted cell proliferation from 24 h of incubation, their viability was ~ 90% even after 72 h of treatment. At 24 h, increased levels of γH2AX indicated the presence of DNA double-strand breaks. Simultaneously, increased expression of p53 and its phosphorylation at Ser15 were observed, which were associated with decreased levels of p-AKTSer473 and p-mTORSer2448. At 72 h, the presence of large cytoplasmic vacuoles together with increased autophagy predictor values suggested that Tl may induce autophagy in these cells. This hypothesis was corroborated by images obtained by transmission electron microscopy (TEM) and from the decreased expression at 72 h of incubation of SQSTM-1 and increased LC3β-II to LC3β-I ratio. TEM images also showed enlarged ER that, together with the increased expression of IRE1-α from 48 h of incubation, indicated that Tl-induced ER stress preceded autophagy. The inhibition of autophagy flux with chloroquine increased cell mortality, suggesting that autophagy played a cytoprotective role in Tl toxicity in these cells. Together, results indicate that Tl(I) or Tl(III) are genotoxic to PC12 Adh cells which respond to the cations inducing ER stress and cytoprotective autophagy.
Collapse
Affiliation(s)
- Damiana M Salvatierra-Fréchou
- Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Sandra V Verstraeten
- Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Li M, Hu J, Zhou J, Wu C, Li D, Mao H, Kong L, Hu C, Xu X. Grass carp (Ctenopharyngodon idella) deacetylase SIRT1 targets p53 to suppress apoptosis in a KAT8 dependent or independent manner. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109264. [PMID: 38043873 DOI: 10.1016/j.fsi.2023.109264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Sirtuin1 (SIRT1) is known as a deacetylase to control various physiological processes. In mammals, SIRT1 inhibits apoptotic process, but the detailed mechanism is not very clear. Here, our study revealed that grass carp (Ctenopharyngodon idella) SIRT1 (CiSIRT1, MN125614.1) inhibits apoptosis through targeting p53 in a KAT8-dependent or a KAT8-independent manner. In CIK cells, CiSIRT1 over-expression results in significant decrease of some apoptotic gene expressions, including Bax/Bcl2, caspase3 and caspase9, whereas CiKAT8 or Cip53 facilitates the induction of apoptosis. Because CiSIRT1 separately interacted with CiKAT8 and Cip53, we speculated that CiSIRT1 blocked apoptosis may be by virtue of KAT8-p53 axis or directly by p53. In a KAT8-dependent manner, CiSIRT1 interacted with CiKAT8, then reduced the acetylation of CiKAT8 and subsequently promoted its degradation. Then, CiKAT8 acetylated p53 and induced p53-mediated apoptosis. MYST domain of CiKAT8 was critical in this pathway. In a KAT8-independent manner, CiSIRT1 also inhibited p53-induced apoptosis by directly deacetylating p53 and promoting the degradation of p53. Generally, these findings uncovered two pathways in which CiSIRT1 decreases the acetylation of p53 via a KAT8-dependent or a KAT8-independent manner.
Collapse
Affiliation(s)
- Meifeng Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China; School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jihuan Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jiazhan Zhou
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chuxin Wu
- Department of Natural Sciences, Yuzhang Normal University, Nanchang, 330103, China
| | - Dongming Li
- Fuzhou Medical College, Nanchang University, Fuzhou, 344000, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
4
|
Barbhuiya TK, Fisher M, Boittier ED, Bolderson E, O'Byrne KJ, Richard DJ, Adams MN, Gandhi NS. Structural investigation of CDCA3-Cdh1 protein-protein interactions using in vitro studies and molecular dynamics simulation. Protein Sci 2023; 32:e4572. [PMID: 36691744 PMCID: PMC9926468 DOI: 10.1002/pro.4572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase and its cofactor, Cdh1, regulate the expression of several cell-cycle proteins and their functions during mitosis. Levels of the protein cell division cycle-associated protein 3 (CDCA3), which is functionally required for mitotic entry, are regulated by APC/CCdh1 . CDCA3 is an intrinsically disordered protein and contains both C-terminal KEN box and D-box recognition motifs, enabling binding to Cdh1. Our previous findings demonstrate that CDCA3 has a phosphorylation-dependent non-canonical ABBA-like motif within the linker region bridging these two recognition motifs and is required for efficient binding to Cdh1. Here, we sought to identify and further characterize additional residues that participate within this ABBA-like motif using detailed in vitro experiments and in silico modeling studies. We identified the role of H-bonds, hydrophobic and ionic interactions across the CDCA3 ABBA-like motif in the linker region between KEN and D-box motifs. This linker region adopts a well-defined structure when bound to Cdh1 in the presence of phosphorylation. Upon alanine mutation, the structure of this region is lost, leading to higher flexibility, and alteration in affinities due to binding to alternate sites on Cdh1. Our findings identify roles for the anchoring residues in the non-canonical ABBA-like motif to promote binding to the APC/CCdh1 and regulation of CDCA3 protein levels.
Collapse
Affiliation(s)
- Tabassum Khair Barbhuiya
- Centre for Genomics and Personalised Health, and School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
- Cancer and Ageing Research ProgramWoolloongabbaQueenslandAustralia
| | - Mark Fisher
- Cancer and Ageing Research ProgramWoolloongabbaQueenslandAustralia
- Centre for Genomics and Personalised Health, and School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
| | | | - Emma Bolderson
- Cancer and Ageing Research ProgramWoolloongabbaQueenslandAustralia
- Centre for Genomics and Personalised Health, and School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
| | - Kenneth J. O'Byrne
- Cancer and Ageing Research ProgramWoolloongabbaQueenslandAustralia
- Centre for Genomics and Personalised Health, and School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
| | - Derek J. Richard
- Cancer and Ageing Research ProgramWoolloongabbaQueenslandAustralia
- Centre for Genomics and Personalised Health, and School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
| | - Mark Nathaniel Adams
- Cancer and Ageing Research ProgramWoolloongabbaQueenslandAustralia
- Centre for Genomics and Personalised Health, and School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
| | - Neha S. Gandhi
- Centre for Genomics and Personalised Health, and School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
- Cancer and Ageing Research ProgramWoolloongabbaQueenslandAustralia
| |
Collapse
|