1
|
Pouliquen DL. The biophysics of water in cell biology: perspectives on a keystone for both marine sciences and cancer research. Front Cell Dev Biol 2024; 12:1403037. [PMID: 38803391 PMCID: PMC11128620 DOI: 10.3389/fcell.2024.1403037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
The biophysics of water, has been debated over more than a century. Although its importance is still underestimated, significant breakthroughs occurred in recent years. The influence of protein condensation on water availability control was documented, new findings on water-transport proteins emerged, and the way water molecules rearrange to minimize free energy at interfaces was deciphered, influencing membrane thermodynamics. The state of knowledge continued to progress in the field of deep-sea marine biology, highlighting unknown effects of high hydrostatic pressure and/or temperature on interactions between proteins and ligands in extreme environments, and membrane structure adaptations. The role of osmolytes in protein stability control under stress is also discussed here in relation to fish egg hydration/buoyancy. The complexity of water movements within the cell is updated, all these findings leading to a better view of their impact on many cellular processes. The way water flow and osmotic gradients generated by ion transport work together to produce the driving force behind cell migration is also relevant to both marine biology and cancer research. Additional common points concern water dynamic changes during the neoplastic transformation of cells and tissues, or embryo development. This could improve imaging techniques, early cancer diagnosis, and understanding of the molecular and physiological basis of buoyancy for many marine species.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Inserm, CNRS, CRCINA, Nantes Université, University of Angers, Angers, France
| |
Collapse
|
2
|
Aloui M, Er-rajy M, Imtara H, Goudzal A, Zarougui S, El fadili M, Arthur DE, Mothana RA, Noman OM, Tarayrah M, Menana E. QSAR modelling, molecular docking, molecular dynamic and ADMET prediction of pyrrolopyrimidine derivatives as novel Bruton's tyrosine kinase (BTK) inhibitors. Saudi Pharm J 2024; 32:101911. [PMID: 38226346 PMCID: PMC10788635 DOI: 10.1016/j.jsps.2023.101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/07/2023] [Indexed: 01/17/2024] Open
Abstract
In recent years, there has been a focus on developing and discovering novel Bruton's tyrosine kinase (BTK) inhibitors, as they offer an effective treatment strategy for B-cell malignancies. BTK plays a crucial role in B cell receptor (BCR)-mediated activation and proliferation by regulating downstream factors such as the NF-κB and MAP kinase pathways. To address this challenge and propose potential therapeutic options for B-cell lymphomas, researchers conducted 2D-QSAR and ADMET studies on pyrrolopyrimidine derivatives that act as inhibitors of the BCR site in cytochrome b. These studies aim to improve and identify new compounds that could serve as more potent potential BTK inhibitors, which would lead to the identification of new drug candidates in this field. In our study, we used 2D-QSAR (multiple linear regression, multiple nonlinear regression, and artificial neural networks), molecular docking, molecular dynamics, and ADMET properties to investigate the potential of 35 pyrrolopyrimidine derivatives as BTK inhibitors. A molecular docking study and molecular dynamics simulations of molecule 13 over 10 ns revealed that it establishes multiple hydrogen bonds with several residues and exhibits frequent stability throughout the simulation period. Based on the results obtained by molecular modeling, we proposed six new compounds (Pred1, Pred2, Pred3, Pred4, Pred5, and Pred6) with highly significant predicted activity by MLR models. A study based on the in silico evaluation of the predicted ADMET properties of the new candidate molecules is strongly recommended to classify these molecules as promising candidates for new anticancer agents specifically designed to target Bruton's tyrosine kinase (BTK) inhibition.
Collapse
Affiliation(s)
- Mourad Aloui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Er-rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hamada Imtara
- Faculty of Sciences, Arab American University Palestine, Jenin 44862, Palestine
| | - Amina Goudzal
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Sidi Mohamed Ben Abdellah University, Faculty of Sciences, Fez, Morocco
| | - Sara Zarougui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed El fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - David E. Arthur
- Department of Pure and Applied Chemistry, University of Maiduguri, Nigeria
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahmoud Tarayrah
- Groupe Hospitalier Cochin-Port Royal, Faculty of Medicine, Institut Cochin, Paris University, CNRS, IN-SERM, 75000, Paris, France
| | - Elhalaoui Menana
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
3
|
Soltani Dehnavi S, Cembran A, Mahmoudi N, Caballero Aguilar LM, Wang Y, Cheeseman S, Malagutti N, Franks S, Long B, Lisowski L, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Molecular camouflage by a context-specific hydrogel as the key to unlock the potential of viral vector gene therapy. CHEMICAL ENGINEERING JOURNAL 2023; 477:146857. [DOI: 10.1016/j.cej.2023.146857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Ali HS, Henchman RH. Energy-entropy multiscale cell correlation method to predict toluene-water log P in the SAMPL9 challenge. Phys Chem Chem Phys 2023; 25:27524-27531. [PMID: 37800345 PMCID: PMC11411597 DOI: 10.1039/d3cp03076h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
The energy-entropy multiscale cell correlation (EE-MCC) method is used to calculate toluene-water log P values of 16 drug molecules in the SAMPL9 physical properties challenge. EE-MCC calculates the free energy, energy and entropy from molecular dynamics (MD) simulations of the water and toluene solutions. Specifically, MCC evaluates entropy by partitioning the system into cells of correlated atoms at multiple length scales and further partitioning the local coordinates into energy wells, yielding vibrational and topographical terms from the energy-well sizes and probabilities. The log P values calculated by EE-MCC using three 200 ns MD simulations have a mean average error of 0.82 and standard error of the mean of 0.97 versus experiment, which is comparable with the best methods entered in SAMPL9. The main contribution to log P is from energy. Less polar drugs have more favourable energies of transfer. The entropy of transfer consists of increased solute vibrational and conformational terms in toluene due to weaker interactions, fewer solute positions in the larger-molecule solvent, reduced water vibrational entropy, negligible change in toluene vibrational entropy, and gains in solvent orientational entropy. The solvent entropy contributions here may be slightly underestimated because software limitations and statistical fluctuations meant that only the first shell could be included while averaged over the whole solution. Nonetheless, such issues will be addressed in future software to offer a general method to calculate entropy directly from MD simulation and to provide molecular understanding or guide system design.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Chemistry Research Laboratory, Department of Chemistry and the INEOS Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| | - Richard H Henchman
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| |
Collapse
|