1
|
Berner F, Kovermann M. Including the Ensemble of Unstructured Conformations in the Analysis of Protein's Native State by High-Pressure NMR Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202401343. [PMID: 38656763 DOI: 10.1002/anie.202401343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
The analysis of pressure induced changes in the chemical shift of proteins allows statements on structural fluctuations proteins exhibit at ambient pressure. The inherent issue of separating general pressure effects from structural related effects on the pressure dependence of chemical shifts has so far been addressed by considering the characteristics of random coil peptides on increasing pressure. In this work, chemically and pressure denatured states of the cold shock protein B from Bacillus subtilis (BsCspB) have been assigned in 2D 1H-15N HSQC NMR spectra and their dependence on increasing hydrostatic pressure has been evaluated. The pressure denatured polypeptide chain has been used to separate general from structural related effects on 1H and 15N chemical shifts of native BsCspB and the implications on the interpretation of pressure induced changes in the chemical shift regarding the structure of BsCspB are discussed. It has been found that the ensemble of unstructured conformations of BsCspB shows different responses to increasing pressure than random coil peptides do. Thus, the approach used for considering the general effects that arise when hydrostatic pressure increases changes the structural conclusions that are drawn from high pressure NMR spectroscopic experiments that rely on the analysis of chemical shifts.
Collapse
Affiliation(s)
- Frederic Berner
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| |
Collapse
|
2
|
Heinemann U, Roske Y. Cold-Shock Domains-Abundance, Structure, Properties, and Nucleic-Acid Binding. Cancers (Basel) 2021; 13:cancers13020190. [PMID: 33430354 PMCID: PMC7825780 DOI: 10.3390/cancers13020190] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Proteins are composed of compact domains, often of known three-dimensional structure, and natively unstructured polypeptide regions. The abundant cold-shock domain is among the set of canonical nucleic acid-binding domains and conserved from bacteria to man. Proteins containing cold-shock domains serve a large variety of biological functions, which are mostly linked to DNA or RNA binding. These functions include the regulation of transcription, RNA splicing, translation, stability and sequestration. Cold-shock domains have a simple architecture with a conserved surface ideally suited to bind single-stranded nucleic acids. Because the binding is mostly by non-specific molecular interactions which do not involve the sugar-phosphate backbone, cold-shock domains are not strictly sequence-specific and do not discriminate reliably between DNA and RNA. Many, but not all functions of cold shock-domain proteins in health and disease can be understood based of the physical and structural properties of their cold-shock domains. Abstract The cold-shock domain has a deceptively simple architecture but supports a complex biology. It is conserved from bacteria to man and has representatives in all kingdoms of life. Bacterial cold-shock proteins consist of a single cold-shock domain and some, but not all are induced by cold shock. Cold-shock domains in human proteins are often associated with natively unfolded protein segments and more rarely with other folded domains. Cold-shock proteins and domains share a five-stranded all-antiparallel β-barrel structure and a conserved surface that binds single-stranded nucleic acids, predominantly by stacking interactions between nucleobases and aromatic protein sidechains. This conserved binding mode explains the cold-shock domains’ ability to associate with both DNA and RNA strands and their limited sequence selectivity. The promiscuous DNA and RNA binding provides a rationale for the ability of cold-shock domain-containing proteins to function in transcription regulation and DNA-damage repair as well as in regulating splicing, translation, mRNA stability and RNA sequestration.
Collapse
|
3
|
Welte H, Kovermann M. Insights into Protein Stability in Cell Lysate by 19 F NMR Spectroscopy. Chembiochem 2020; 21:3575-3579. [PMID: 32786103 PMCID: PMC7756264 DOI: 10.1002/cbic.202000413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Indexed: 02/03/2023]
Abstract
In living organisms, protein folding and function take place in an inhomogeneous, highly crowded environment possessing a concentration of diverse macromolecules of up to 400 g/L. It has been shown that the intracellular environment has a pronounced effect on the stability, dynamics and function of the protein under study, and has for this reason to be considered. However, most protein studies neglect the presence of these macromolecules. Consequently, we probe here the overall thermodynamic stability of cold shock protein B from Bacillus subtilis (BsCspB) in cell lysate. We found that an increase in cell lysate concentration causes a monotonic increase in the thermodynamic stability of BsCspB. This result strongly underlines the importance of considering the biological environment when inherent protein parameters are quantitatively determined. Moreover, we demonstrate that targeted application of 19 F NMR spectroscopy operates as an ideal tool for protein studies performed in complex cellular surroundings.
Collapse
Affiliation(s)
- Hannah Welte
- Department of ChemistryUniversity KonstanzResearch School Chemical Biology (KoRS-CB)Universitätsstrasse 1078457KonstanzGermany
| | - Michael Kovermann
- Department of ChemistryUniversity KonstanzResearch School Chemical Biology (KoRS-CB)Universitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
4
|
Welte H, Zhou T, Mihajlenko X, Mayans O, Kovermann M. What does fluorine do to a protein? Thermodynamic, and highly-resolved structural insights into fluorine-labelled variants of the cold shock protein. Sci Rep 2020; 10:2640. [PMID: 32060391 PMCID: PMC7021800 DOI: 10.1038/s41598-020-59446-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/29/2020] [Indexed: 11/21/2022] Open
Abstract
Fluorine labelling represents one promising approach to study proteins in their native environment due to efficient suppressing of background signals. Here, we systematically probe inherent thermodynamic and structural characteristics of the Cold shock protein B from Bacillus subtilis (BsCspB) upon fluorine labelling. A sophisticated combination of fluorescence and NMR experiments has been applied to elucidate potential perturbations due to insertion of fluorine into the protein. We show that single fluorine labelling of phenylalanine or tryptophan residues has neither significant impact on thermodynamic stability nor on folding kinetics compared to wild type BsCspB. Structure determination of fluorinated phenylalanine and tryptophan labelled BsCspB using X-ray crystallography reveals no displacements even for the orientation of fluorinated aromatic side chains in comparison to wild type BsCspB. Hence we propose that single fluorinated phenylalanine and tryptophan residues used for protein labelling may serve as ideal probes to reliably characterize inherent features of proteins that are present in a highly biological context like the cell.
Collapse
Affiliation(s)
- Hannah Welte
- Department of Chemistry, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany.,Graduate School Chemical Biology KoRS-CB, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Tiankun Zhou
- Department of Biology, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Xenia Mihajlenko
- Department of Chemistry, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Olga Mayans
- Graduate School Chemical Biology KoRS-CB, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany.,Department of Biology, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany. .,Graduate School Chemical Biology KoRS-CB, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany. .,Zukunftskolleg, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany.
| |
Collapse
|
5
|
Welte H, Kovermann M. Targeted expression and purification of fluorine labelled cold shock protein B by using an auxotrophic strategy. Protein Expr Purif 2019; 157:86-91. [DOI: 10.1016/j.pep.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/14/2023]
|
6
|
Mayr F, Heinemann U. Mechanisms of Lin28-mediated miRNA and mRNA regulation--a structural and functional perspective. Int J Mol Sci 2013; 14:16532-53. [PMID: 23939427 PMCID: PMC3759924 DOI: 10.3390/ijms140816532] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/22/2013] [Accepted: 07/25/2013] [Indexed: 12/14/2022] Open
Abstract
Lin28 is an essential RNA-binding protein that is ubiquitously expressed in embryonic stem cells. Its physiological function has been linked to the regulation of differentiation, development, and oncogenesis as well as glucose metabolism. Lin28 mediates these pleiotropic functions by inhibiting let-7 miRNA biogenesis and by modulating the translation of target mRNAs. Both activities strongly depend on Lin28’s RNA-binding domains (RBDs), an N-terminal cold-shock domain (CSD) and a C-terminal Zn-knuckle domain (ZKD). Recent biochemical and structural studies revealed the mechanisms of how Lin28 controls let-7 biogenesis. Lin28 binds to the terminal loop of pri- and pre-let-7 miRNA and represses their processing by Drosha and Dicer. Several biochemical and structural studies showed that the specificity of this interaction is mainly mediated by the ZKD with a conserved GGAGA or GGAGA-like motif. Further RNA crosslinking and immunoprecipitation coupled to high-throughput sequencing (CLIP-seq) studies confirmed this binding motif and uncovered a large number of new mRNA binding sites. Here we review exciting recent progress in our understanding of how Lin28 binds structurally diverse RNAs and fulfills its pleiotropic functions.
Collapse
Affiliation(s)
- Florian Mayr
- Crystallography, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, Berlin 13125, Germany; E-Mail:
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, Berlin 14195, Germany
| | - Udo Heinemann
- Crystallography, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, Berlin 13125, Germany; E-Mail:
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, Berlin 14195, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-30-9406-3420; Fax: +49-30-9406-2548
| |
Collapse
|
7
|
Hackel C, Zinkevich T, Belton P, Achilles A, Reichert D, Krushelnitsky A. The trehalose coating effect on the internal protein dynamics. Phys Chem Chem Phys 2012; 14:2727-34. [DOI: 10.1039/c2cp23098d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Sachs R, Max KE, Heinemann U, Balbach J. RNA single strands bind to a conserved surface of the major cold shock protein in crystals and solution. RNA (NEW YORK, N.Y.) 2012; 18:65-76. [PMID: 22128343 PMCID: PMC3261745 DOI: 10.1261/rna.02809212] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/29/2011] [Indexed: 05/26/2023]
Abstract
Bacterial cold shock proteins (CSPs) regulate the cellular response to temperature downshift. Their general principle of function involves RNA chaperoning and transcriptional antitermination. Here we present two crystal structures of cold shock protein B from Bacillus subtilis (Bs-CspB) in complex with either a hexanucleotide (5'-UUUUUU-3') or heptanucleotide (5'-GUCUUUA-3') single-stranded RNA (ssRNA). Hydrogen bonds and stacking interactions between RNA bases and aromatic sidechains characterize individual binding subsites. Additional binding subsites which are not occupied by the ligand in the crystal structure were revealed by NMR spectroscopy in solution on Bs-CspB·RNA complexes. Binding studies demonstrate that Bs-CspB associates with ssDNA as well as ssRNA with moderate sequence specificity. Varying affinities of oligonucleotides are reflected mainly in changes of the dissociation rates. The generally lower binding affinity of ssRNA compared to its ssDNA analog is attributed solely to the substitution of thymine by uracil bases in RNA.
Collapse
Affiliation(s)
- Rolf Sachs
- Fachgruppe Biophysik Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Klaas E.A. Max
- Max-Delbrück-Centrum für Molekulare Medizin Berlin-Buch, 13125 Berlin, Germany
| | - Udo Heinemann
- Max-Delbrück-Centrum für Molekulare Medizin Berlin-Buch, 13125 Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jochen Balbach
- Fachgruppe Biophysik Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
9
|
Recombinant Expression, Isotope Labeling, and Purification of Cold shock Protein from Colwellia psychrerythraea for NMR Study. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.11.2647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Beaufils S, Sauvageot N, Mazé A, Laplace JM, Auffray Y, Deutscher J, Hartke A. The Cold Shock Response of Lactobacillus casei: Relation between HPr Phosphorylation and Resistance to Freeze/Thaw Cycles. J Mol Microbiol Biotechnol 2007; 13:65-75. [PMID: 17693714 DOI: 10.1159/000103598] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
When carrying out a proteome analysis with a ptsH3 mutant of Lactobacillus casei, we found that the cold shock protein CspA was significantly overproduced compared to the wild-type strain. We also noticed that CspA and CspB of L. casei and CSPs from other organisms exhibit significant sequence similarity to the C-terminal part of EIIA(Glc), a glucose-specific component of the phosphoenolpyruvate:sugar phosphotransferase system. This similarity suggested a direct interaction of HPr with CSPs, as histidyl-phosphorylated HPr has been shown to phosphorylate EIIA(Glc) in its C-terminal part. We therefore compared the cold shock response of several carbon catabolite repression mutants to that of the wild-type strain. Following a shift from 37 degrees C to lower temperatures (20, 15 or 10 degrees C), all mutants showed significantly reduced growth rates. Moreover, glucose-grown mutants unable to form P-Ser-HPr (ptsH1, hprK) exhibited drastically increased sensitivity to freeze/thaw cycles. However, when the same mutants were grown on ribose or maltose, they were similarly resistant to freezing and thawing as the wild-type strain. Although subsequent biochemical and genetic studies did not allow to identify the form of HPr implicated in the resistance to cold and freezing conditions, they strongly suggested a direct interaction of HPr or one of its phospho-derivatives with CspA and/or another, hitherto undetected cold shock protein in L. casei.
Collapse
Affiliation(s)
- Sophie Beaufils
- Laboratoire de Microbiologie de l'Environnement (EA956 USC INRA 2017), IBFA, Université de Caen, Caen, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Morgan HP, Estibeiro P, Wear MA, Max KE, Heinemann U, Cubeddu L, Gallagher MP, Sadler PJ, Walkinshaw MD. Sequence specificity of single-stranded DNA-binding proteins: a novel DNA microarray approach. Nucleic Acids Res 2007; 35:e75. [PMID: 17488853 PMCID: PMC1904285 DOI: 10.1093/nar/gkm040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have developed a novel DNA microarray-based approach for identification of the sequence-specificity of single-stranded nucleic-acid-binding proteins (SNABPs). For verification, we have shown that the major cold shock protein (CspB) from Bacillus subtilis binds with high affinity to pyrimidine-rich sequences, with a binding preference for the consensus sequence, 5′-GTCTTTG/T-3′. The sequence was modelled onto the known structure of CspB and a cytosine-binding pocket was identified, which explains the strong preference for a cytosine base at position 3. This microarray method offers a rapid high-throughput approach for determining the specificity and strength of ss DNA–protein interactions. Further screening of this newly emerging family of transcription factors will help provide an insight into their cellular function.
Collapse
Affiliation(s)
- Hugh P. Morgan
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Peter Estibeiro
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Martin A. Wear
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Klaas E.A. Max
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Udo Heinemann
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Liza Cubeddu
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Maurice P. Gallagher
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Peter J. Sadler
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Malcolm D. Walkinshaw
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
- *To whom correspondence should be addressed. Tel:+44 (0) 131 650 7056; Fax: +44 (0) 131 650 7055;
| |
Collapse
|
12
|
Max KEA, Wunderlich M, Roske Y, Schmid FX, Heinemann U. Optimized variants of the cold shock protein from in vitro selection: structural basis of their high thermostability. J Mol Biol 2007; 369:1087-97. [PMID: 17481655 DOI: 10.1016/j.jmb.2007.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/03/2007] [Accepted: 04/04/2007] [Indexed: 11/20/2022]
Abstract
The bacterial cold shock proteins (Csp) are widely used as models for the experimental and computational analysis of protein stability. In a previous study, in vitro evolution was employed to identify strongly stabilizing mutations in Bs-CspB from Bacillus subtilis. The best variant found by this approach contained the mutations M1R, E3K and K65I, which raised the midpoint of thermal unfolding of Bs-CspB from 53.8 degrees C to 83.7 degrees C, and increased the Gibbs free energy of stabilization by 20.9 kJ mol(-1). Another selected variant with the two mutations A46K and S48R was stabilized by 11.1 kJ mol(-1). To elucidate the molecular basis of these stabilizations, we determined the crystal structures of these two Bs-CspB variants. The mutated residues are generally well ordered and provide additional stabilizing interactions, such as charge interactions, additional hydrogen bonds and improved side-chain packing. Several mutations improve the electrostatic interactions, either by the removal of unfavorable charges (E3K) or by compensating their destabilizing interactions (A46K, S48R). The stabilizing mutations are clustered at a contiguous surface area of Bs-CspB, which apparently is critically important for the stability of the beta-barrel structure but not well optimized in the wild-type protein.
Collapse
Affiliation(s)
- Klaas E A Max
- Makromolekulare Strukturen und Interaktionen, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | | | | | | | | |
Collapse
|
13
|
Garcia-Mira MM, Schmid FX. Key Role of Coulombic Interactions for the Folding Transition State of the Cold Shock Protein. J Mol Biol 2006; 364:458-68. [PMID: 17020767 DOI: 10.1016/j.jmb.2006.08.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/17/2006] [Accepted: 08/24/2006] [Indexed: 11/16/2022]
Abstract
The cold shock protein CspB shows a five-stranded beta-sheet structure, and it folds rapidly via a native-like transition state. A previous Phi value analysis showed that most of the residues with Phi values close to one reside in strand beta1, and two of them, Lys5 and Lys7 are partially exposed charged residues. To elucidate how coulombic interactions of these two residues contribute to the energetic organisation of the folding transition state we performed comparative folding experiments in the presence of an ionic denaturant (guanidinium chloride) and a non-ionic denaturant (urea) and a double-mutant analysis. Lys5 contributes 6.6 kJ mol(-1) to the stability of the transition state, and half of it originates from screenable coulombic interactions. Lys7 contributes 5.3 kJ mol(-1), and 3.4 kJ mol(-1) of it are screened by salt. In the folded protein Lys7 interacts with Asp25, and the screenable coulombic interaction between these two residues is fully formed in the transition state. This suggests that long-range coulombic interactions such as those originating from Lys5 and Lys7 of CspB can be important for organizing and stabilizing native-like structure early in protein folding.
Collapse
Affiliation(s)
- Maria M Garcia-Mira
- Laboratorium für Biochemie und Bayreuther Zentrum fürMolekulare Biowissenschaften, Universität Bayreuth, D-95440, Bayreuth, Germany.
| | | |
Collapse
|
14
|
Max KEA, Zeeb M, Bienert R, Balbach J, Heinemann U. T-rich DNA single strands bind to a preformed site on the bacterial cold shock protein Bs-CspB. J Mol Biol 2006; 360:702-14. [PMID: 16780871 DOI: 10.1016/j.jmb.2006.05.044] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/10/2006] [Accepted: 05/17/2006] [Indexed: 11/22/2022]
Abstract
Bacterial cold shock proteins (CSPs) are involved in cellular adaptation to cold stress. They bind to single-stranded nucleic acids with a KD value in the micro- to nanomolar range. Here we present the structure of the Bacillus subtilis CspB (Bs-CspB) in complex with hexathymidine (dT6) at a resolution of 1.78 A. Bs-CspB binds to dT6 with nanomolar affinity via an amphipathic interface on the protein surface. Individual binding subsites interact with single nucleobases through stacking interactions and hydrogen bonding. The sugar-phosphate backbone and the methyl groups of the thymine nucleobases remain solvent exposed and are not contacted by protein groups. Fluorescence titration experiments monitoring the binding of oligopyrimidines to Bs-CspB reveal binding preferences at individual subsites and allow the design of an optimised heptapyrimidine ligand, which is bound with sub-nanomolar affinity. This study reveals the stoichiometry and sequence determinants of the binding of single-stranded nucleic acids to a preformed site on Bs-CspB and thus provides the structural basis of the RNA chaperone and transcription antitermination activities of the CSP.
Collapse
Affiliation(s)
- Klaas E A Max
- Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany
| | | | | | | | | |
Collapse
|
15
|
Hofweber R, Horn G, Langmann T, Balbach J, Kremer W, Schmitz G, Kalbitzer HR. The influence of cold shock proteins on transcription and translation studied in cell-free model systems. FEBS J 2005; 272:4691-702. [PMID: 16156790 DOI: 10.1111/j.1742-4658.2005.04885.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cold shock proteins (CSPs) form a family of highly conserved bacterial proteins capable of single-stranded nucleic acid binding. They are suggested to act as RNA chaperones during cold shock inhibiting the formation of RNA secondary structures, which are unfavourable for transcription and translation. To test this commonly accepted theory, isolated CSPs from a mesophilic, thermophilic and a hyperthermophilic bacterium (Bacillus subtilis, Bacillus caldolyticus and Thermotoga maritima) were studied in an Escherichia coli based cell free expression system on their capability of enhancing protein expression by reduction of mRNA secondary structures. The E. coli based expression of chloramphenicol acetyltransferase and of H-Ras served as model systems. We observed a concentration-dependent suppression of transcription and translation by the different CSPs which makes the considered addition of CSPs for enhancing the protein expression in in vitro translation systems obsolete. Protein expression was completely inhibited at CSP concentrations present under cold shock conditions. The CSP concentrations necessary for 50% inhibition were lowest (140 microm) for the protein of the hyperthermophilic and increased when the thermophilic (215 microm) or even the mesophilic protein (451 microm) was used. Isolated in vitro transcription under the influence of CSPs showed that the transcriptory effect is independent from the rest of the cell. It could be shown in a control experiment that the inhibition of protein expression can be removed by addition of hepta-2'-desoxy-thymidylate (dT7); a heptanucleotide that competitively binds to CSP. The data are in line with a hypothesis that CSPs act on bulk protein expression not as RNA chaperones but inhibit their transcription and translation by rather unspecific nucleic acid binding.
Collapse
Affiliation(s)
- Roland Hofweber
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Wunderlich M, Martin A, Schmid FX. Stabilization of the Cold Shock Protein CspB from Bacillus subtilis by Evolutionary Optimization of Coulombic Interactions. J Mol Biol 2005; 347:1063-76. [PMID: 15784264 DOI: 10.1016/j.jmb.2005.02.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 02/02/2005] [Accepted: 02/04/2005] [Indexed: 11/28/2022]
Abstract
The bacterial cold shock proteins (Csp) are used by both experimentalists and theoreticians as model systems for analyzing the Coulombic contributions to protein stability. We employ Proside, a method of directed evolution, to identify stabilized variants of Bs-CspB from Bacillus subtilis. Proside links the increased protease resistance of stabilized protein variants to the infectivity of a filamentous phage. Here, three cspB libraries were used for in vitro selections to explore the stabilizing potential of charged amino acids in Bs-CspB. In the first library codons for nine selected surface residues were partially randomized, in the second one random mutations were introduced non-specifically by error-prone PCR, and in the third one the spontaneous mutation rate of the phage in Escherichia coli was used. Stabilizing mutations were found at the surface positions 1, 3, 46, 48, 65, and 66. The contributions of these mutations to stability were characterized by analyzing them individually and in combination. The best combination (M1R, E3K, K65I, and E66L) increased the midpoint of thermal unfolding of Bs-CspB from 53.8 to 85.0 degrees C. The effects of most mutations are strongly context dependent. A good example is provided by the E3R mutation. It is strongly stabilizing (DeltaDeltaGD=11.1kJ mol(-1)) in the wild-type protein, but destabilizing (DeltaDeltaGD=-4.0kJ mol(-1)) in the A46K/S48R/E66L variant. The stabilizations by charge mutations did not correlate well with the corresponding changes in the protein net charge, and they could not be ascribed to the formation of ion pairs. Previous theoretical analyses did not identify the stabilization caused by the mutations at positions 1, 46, and 48. Also, electrostatics calculations based on protein net charge or charge asymmetry did not predict well the stability changes that occur when charged residues in Bs-CspB are mutated. It remains a challenge to model the Coulombic interactions of charged residues in a protein and to determine their contributions to the Gibbs free energy of protein folding.
Collapse
Affiliation(s)
- Michael Wunderlich
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | |
Collapse
|
17
|
Garcia-Mira MM, Boehringer D, Schmid FX. The Folding Transition State of the Cold Shock Protein is Strongly Polarized. J Mol Biol 2004; 339:555-69. [PMID: 15147842 DOI: 10.1016/j.jmb.2004.04.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 04/02/2004] [Accepted: 04/02/2004] [Indexed: 10/26/2022]
Abstract
The cold shock protein CspB from Bacillus subtilis consists of a three-stranded (beta1-beta3) and a two stranded (beta4-beta5) sheet, which form a closed beta barrel structure. CspB folds and unfolds rapidly in a two-state reaction, and the unfolded and the folded molecules interconvert with a time constant of 30 ms at the midpoint of the urea-induced transition (at 25 degrees C). The transition state of folding is native-like, as judged by the Tanford betaT value of > or =0.9. By using a mutational approach and Phi value analysis, we find that the folding transition state of CspB is energetically polarized. Despite the high betaT value, most Phi values are low. Values close to 1 were found for only a few residues, particularly in strand beta1 (Lys5, Val6, Lys7, Asn10). The interactions of the Asn10 side-chain with the backbone at positions 12 and 13 define the turn that connects the strands beta1 and beta2. Lys5 and Val6 in beta1 interact with residues in beta4, and their high Phi values indicate that an energetic linkage between beta1 and beta4 and thus between the two sheets exists already in the transition state. We compared our experimental Phi values with theoretical predictions of the folding pathway of cold shock proteins. Several of them suggest that the entire first sheet is formed in the transition state, and some identify the beta1-beta4 pairing as a crucial step in folding. Alternative paths that involve formation of the second sheet and beta3-beta5 pairing reactions were, however, suggested as well. The calculations gave coarse-grained pictures that are limited in resolution to the two sheets of CspB or to the elements of secondary structure. They did not identify the key residues with the high Phi values within these structural elements.
Collapse
Affiliation(s)
- Maria M Garcia-Mira
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | |
Collapse
|
18
|
Makhatadze GI, Loladze VV, Gribenko AV, Lopez MM. Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions. J Mol Biol 2004; 336:929-42. [PMID: 15095870 DOI: 10.1016/j.jmb.2003.12.058] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 11/03/2003] [Accepted: 12/09/2003] [Indexed: 11/24/2022]
Abstract
Using computational and sequence analysis of bacterial cold shock proteins, we designed a protein (CspB-TB) that has the core residues of mesophilic protein from Bacillus subtilis(CspB-Bs) and altered distribution of surface charged residues. This designed protein was characterized by circular dichroism spectroscopy, and found to have secondary and tertiary structure similar to that of CspB-Bs. The activity of the CspB-TB protein as measured by the affinity to a single-stranded DNA (ssDNA) template at 25 degrees C is somewhat higher than that of CspB-Bs. Furthermore, the decrease in the apparent binding constant to ssDNA upon increase in temperature is much more pronounced for CspB-Bs than for CspB-TB. Temperature-induced unfolding (as monitored by differential scanning calorimetry and circular dichroism spectroscopy) and urea-induced unfolding experiments were used to compare the stabilities of CspB-Bs and CspB-TB. It was found that CspB-TB is approximately 20 degrees C more thermostable than CspB-Bs. The thermostabilization of CspB-TB relative to CspB-Bs is achieved by decrease in the enthalpy and entropy of unfolding without affecting their temperature dependencies, i.e. these proteins have similar heat capacity changes upon unfolding. These changes in the thermodynamic parameters result in the global stability function, i.e. Gibbs energy, deltaG(T), that is shifted to higher temperatures with only small changes in the maximum stability. Such a mechanism of thermostabilization, although predicted from the basic thermodynamic considerations, has never been identified experimentally.
Collapse
Affiliation(s)
- George I Makhatadze
- Department of Biochemistry and Molecular Biology, Penn State University, College of Medicine, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
The cold shock protein Bc-Csp folds very rapidly in a reaction that is well described by a kinetic two-state mechanism without intermediates. We measured the shortening of six intra-protein distances during folding by Förster resonance energy transfer (FRET) in combination with stopped-flow experiments. Single tryptophan residues were engineered into the protein as the donors, and single 5-(((acetylamino)ethyl)amino)naphthalene-1-sulfonate (AEDANS) residues were placed as the acceptors at solvent-exposed sites of Bc-Csp. Their R0 value of about 22 A was well suited for following distance changes during the folding of this protein with a high sensitivity. The mutagenesis and the labeling did not alter the refolding kinetics. The changes in energy transfer during folding were monitored by both donor and acceptor emission and reciprocal effects were found. In two cases the donor-acceptor distances were similar in the unfolded and the folded state and, as a consequence, the kinetic changes in energy transfer upon folding were very small. For four donor/acceptor pairs we found that > or =50% of the increase in energy transfer upon folding occurred prior to the rate-limiting step of folding. This reveals that about half of the shortening of the intra-molecular distances upon folding has occurred already before the rate-limiting step and suggests that the fast two-state folding reaction of Bc-Csp is preceded by a very rapid collapse.
Collapse
Affiliation(s)
- Christine Magg
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | |
Collapse
|
20
|
Zeeb M, Balbach J. Single-stranded DNA binding of the cold-shock protein CspB from Bacillus subtilis: NMR mapping and mutational characterization. Protein Sci 2003; 12:112-23. [PMID: 12493834 PMCID: PMC2312391 DOI: 10.1110/ps.0219703] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cold-shock proteins (CSPs) bind to single-stranded nucleic acids, thereby acting as a "RNA chaperone." To gain deeper insights into the rather unspecific nature of ssDNA/RNA binding, we characterized the binding interface of CspB from Bacillus subtilis to a 25-mer of ssDNA (Y-Box25) using heteronuclear 2D NMR spectroscopy. Seventeen residues, including eight out of nine aromatic amino acids, are directly involved in the Y-Box25 interaction and were identified by extreme line broadening of their cross-peaks. Eight residues belong to the earlier proposed RNP binding motifs. A second set of seven backbone amides becomes evident by major chemical shift perturbations reporting remote conformational rearrangements upon binding. These residues are located in loop beta3-beta4 and loopbeta4-beta5, and include Ile18. The individual contributions of the so-identified residues were examined by fluorescence titration experiments of 15 CspB variants. Phenylalanine substitutions in- and outside the RNP motifs significantly reduce the binding affinity. Unrestricted possible backbone conformations of loop beta3-beta4 also markedly contribute to binding. Stopped-flow fluorescence kinetics revealed that the different binding affinities of CspB variants are determined by the dissociation rate, whereas the association rate remains unchanged. This might be of importance for the "RNA chaperone" activity of CspB.
Collapse
Affiliation(s)
- Markus Zeeb
- Laboratorium für Biochemie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | |
Collapse
|
21
|
Martin A, Kather I, Schmid FX. Origins of the high stability of an in vitro-selected cold-shock protein. J Mol Biol 2002; 318:1341-9. [PMID: 12083522 DOI: 10.1016/s0022-2836(02)00243-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In previous work, we had identified stabilized forms of the cold-shock protein Bs-CspB from Bacillus subtilis in a combinatorial library by an in vitro selection procedure. In this library, the sequence positions 2, 3, 46, 64, 66, and 67 had been randomized, because Bs-CspB differs from the naturally thermostable homolog Bc-Csp from Bacillus caldolyticus, among others, at these six positions. For the most stable selected variant, the midpoint of thermal unfolding (tM) increased by 28.2 deg. C and the Gibbs free energy of unfolding (deltaG(D)) by 19 kJ/mol. Here, we analyzed by site-directed mutagenesis how the selected residues contribute individually to this strong stabilization. Val3 and Val66, which replace Glu3 and Glu66 of wild-type Bs-CspB, each contribute about 7 kJ/mol to stability, the Thr64Arg substitution contributes 4.5 kJ/mol, and 3.2 kJ/mol originate from the Ala46Leu replacement. Gly67 at the carboxy terminus is unimportant for stability, the Arg selected at position 2 is overall slightly destabilizing but improves the coulombic interactions. The best variant differs from Bc-Csp at all six positions; nevertheless, natural and in vitro selection followed similar principles. In both cases, negatively charged residues at the adjacent positions 3 and 66 are avoided, and a positively charged residue is introduced into this area of the protein surface. Its exact location is unimportant. It can be at position 3, as in the thermophilic Bc-Csp, or at positions 2 or 64, as in the most stable selected variant. These positively charged residues contribute to stability not by engaging in pairwise coulombic interactions with a specific carboxyl group, but by generally improving the charge distribution in this particular region of the protein surface. These coulombic effects contribute significantly to the thermostability of the cold-shock proteins. They are only weakly interdependent and best explained by the presence of a flexible ion network at the protein surface. Our results emphasize that surface positions are very good candidates for optimizing protein stability.
Collapse
Affiliation(s)
- Andreas Martin
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Germany
| | | | | |
Collapse
|
22
|
Jacob MH, Saudan C, Holtermann G, Martin A, Perl D, Merbach AE, Schmid FX. Water contributes actively to the rapid crossing of a protein unfolding barrier. J Mol Biol 2002; 318:837-45. [PMID: 12054827 DOI: 10.1016/s0022-2836(02)00165-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The cold-shock protein CspB folds rapidly in a N <= => U two-state reaction via a transition state that is about 90% native in its interactions with denaturants and water. This suggested that the energy barrier to unfolding is overcome by processes occurring in the protein itself, rather than in the solvent. Nevertheless, CspB unfolding depends on the solvent viscosity. We determined the activation volumes of unfolding and refolding by pressure-jump and high-pressure stopped-flow techniques in the presence of various denaturants. The results obtained by these methods agree well. The activation volume of unfolding is positive (Delta V(++)(NU)=16(+/-4) ml/mol) and virtually independent of the nature and the concentration of the denaturant. We suggest that in the transition state the protein is expanded and water molecules start to invade the hydrophobic core. They have, however, not yet established favorable interactions to compensate for the loss of intra-protein interactions. The activation volume of refolding is positive as well (Delta V(++)(NU)=53(+/-6) ml/mol) and, above 3 M urea, independent of the concentration of the denaturant. At low concentrations of urea or guanidinium thiocyanate, Delta V(++)(UN) decreases significantly, suggesting that compact unfolded forms become populated under these conditions.
Collapse
Affiliation(s)
- Maik H Jacob
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Perl D, Jacob M, Bánó M, Stupák M, Antalík M, Schmid FX. Thermodynamics of a diffusional protein folding reaction. Biophys Chem 2002; 96:173-90. [PMID: 12034439 DOI: 10.1016/s0301-4622(02)00024-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The folding reactions of several proteins are well described as diffusional barrier crossing processes, which suggests that they should be analyzed by Kramers' rate theory rather than by transition state theory. For the cold shock protein Bc-Csp from Bacillus caldolyticus, we measured stability and folding kinetics, as well as solvent viscosity as a function of temperature and denaturant concentration. Our analysis indicates that diffusional folding reactions can be treated by transition state theory, provided that the temperature and denaturant dependence of the solvent viscosity is properly accounted for, either at the level of the measured rate constants or of the calculated activation parameters. After viscosity correction the activation barriers for folding become less enthalpic and more entropic. The transition from an enthalpic to an entropic folding barrier with increasing temperature is, however, apparent in the data before and after this correction. It is a consequence of the negative activation heat capacity of refolding, which is independent of solvent viscosity. Bc-Csp and its mesophilic homolog Bs-CspB from Bacillus subtilis differ strongly in stability but show identical enthalpic and entropic barriers to refolding. The increased stability of Bc-Csp originates from additional enthalpic interactions that are established after passage through the activated state. As a consequence, the activation enthalpy of unfolding is increased relative to Bs-CspB.
Collapse
Affiliation(s)
- Dieter Perl
- Laboratorium für Biochemie and Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The cold shock protein Bc-Csp from the thermophile Bacillus caldolyticus differs from its mesophilic homolog Bs-CspB from Bacillus subtilis by 15.8 kJ mol(-1) in the Gibbs free energy of denaturation (DeltaG(D)). The two proteins vary in sequence at 12 positions but only two of them, Arg3 and Leu66 of Bc-Csp, which replace Glu3 and Glu66 of Bs-CspB, are responsible for the additional stability of Bc-Csp. These two positions are near the ends of the protein chain, but close to each other in the three-dimensional structure. The Glu3Arg exchange alone changed the stability by more than 11 kJ mol(-1). Here, we elucidated the molecular origins of the stability difference between the two proteins by a mutational analysis. Electrostatic contributions to stability were characterized by measuring the thermodynamic stabilities of many variants as a function of salt concentration. Double and triple mutant analyses indicate that the stabilization by the Glu3Arg exchange originates from three sources. Improved hydrophobic interactions of the aliphatic moiety of Arg3 contribute about 4 kJ mol(-1). Another 4 kJ mol(-1) is gained from the relief of a pairwise electrostatic repulsion between Glu3 and Glu66, as in the mesophilic protein, and 3 kJ mol(-1) originate from a general electrostatic stabilization by the positive charge of Arg3, which is not caused by a pairwise interaction. Mutations of all potential partners for an ion pair within a radius of 10 A around Arg3 had only marginal effects on stability. The Glu3-->Arg3 charge reversal thus optimizes ionic interactions at the protein surface by both local and global effects. However, it cannot convert the coulombic repulsion with another Glu residue into a corresponding attraction. Avoidance of unfavorable coulombic repulsions is probably a much simpler route to thermostability than the creation of stabilizing surface ion pairs, which can form only at the expense of conformational entropy.
Collapse
Affiliation(s)
- D Perl
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Bayreuth, D-95440, Germany
| | | |
Collapse
|
25
|
Martin A, Sieber V, Schmid FX. In-vitro selection of highly stabilized protein variants with optimized surface. J Mol Biol 2001; 309:717-26. [PMID: 11397091 DOI: 10.1006/jmbi.2001.4698] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thermostable proteins are of prime importance in protein science, but it has remained difficult to develop general strategies for stabilizing a protein. Site-directed mutagenesis based on comparisons with thermophilic homologs is rarely successful because the sequence differences are too numerous and dominated by neutral mutations. Here we used a method of directed evolution to increase the stability of a mesophilic protein, the cold shock protein Bs-CspB from Bacillus subtilis. It differs from its thermophilic counterpart Bc-Csp from Bacillus caldolyticus at 12 surface-exposed positions. To elucidate the stabilizing potential of exposed amino acid residues, six of these variant positions were randomized by saturation mutagenesis, the corresponding library of sequences was inserted into the gene-3-protein of the filamentous phage fd, and stabilized variants were selected by the Proside technique. Proside links the increased protease resistance of stabilized protein variants with the infectivity of the phage. Many strongly stabilized variants of Bs-CspB were identified in two selections, one in the presence of a denaturant and the other at elevated temperature. Several of them are significantly more stable than the naturally thermostable homolog Bc-Csp, and the best variant reaches Tm-Csp (the homolog from the hyperthermophile Thermotoga maritima) in stability. Remarkably, this variant differs from Tm-Csp at five and from Bc-Csp at all six randomized positions. This indicates that proteins can be strongly stabilized by many different sets of surface mutations, and Proside selects them efficiently from large libraries. The course of the selection could be directed by the conditions. In an ionic denaturant non-polar surface interactions were optimized, whereas at elevated temperature variants with improved electrostatics were selected, pointing to two different strategies for stabilization at protein surfaces.
Collapse
Affiliation(s)
- A Martin
- Laboratorium für Biochemie, Universität Bayreuth, Bayreuth, D-95440, Germany
| | | | | |
Collapse
|
26
|
Mueller U, Perl D, Schmid FX, Heinemann U. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein. J Mol Biol 2000; 297:975-88. [PMID: 10736231 DOI: 10.1006/jmbi.2000.3602] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacterial cold shock proteins are small compact beta-barrel proteins without disulfide bonds, cis-proline residues or tightly bound cofactors. Bc-Csp, the cold shock protein from the thermophile Bacillus caldolyticus shows a twofold increase in the free energy of stabilization relative to its homolog Bs-CspB from the mesophile Bacillus subtilis, although the two proteins differ by only 12 out of 67 amino acid residues. This pair of cold shock proteins thus represents a good system to study the atomic determinants of protein thermostability. Bs-CspB and Bc-Csp both unfold reversibly in cooperative transitions with T(M) values of 49.0 degrees C and 77.3 degrees C, respectively, at pH 7.0. Addition of 0.5 M salt stabilizes Bs-CspB but destabilizes Bc-Csp. To understand these differences at the structural level, the crystal structure of Bc-Csp was determined at 1.17 A resolution and refined to R=12.5% (R(free)=17.9%). The molecular structures of Bc-Csp and Bs-CspB are virtually identical in the central beta-sheet and in the binding region for nucleic acids. Significant differences are found in the distribution of surface charges including a sodium ion binding site present in Bc-Csp, which was not observed in the crystal structure of the Bs-CspB. Electrostatic interactions are overall favorable for Bc-Csp, but unfavorable for Bs-CspB. They provide the major source for the increased thermostability of Bc-Csp. This can be explained based on the atomic-resolution crystal structure of Bc-Csp. It identifies a number of potentially stabilizing ionic interactions including a cation-binding site and reveals significant changes in the electrostatic surface potential.
Collapse
Affiliation(s)
- U Mueller
- Forschungsgruppe Kristallographie, Max-Delbrück-Centrum für Molekulare Medizin, Robert-Roessle-Str. 10, Berlin, D-13125, Germany
| | | | | | | |
Collapse
|
27
|
Lopez MM, Yutani K, Makhatadze GI. Interactions of the major cold shock protein of Bacillus subtilis CspB with single-stranded DNA templates of different base composition. J Biol Chem 1999; 274:33601-8. [PMID: 10559248 DOI: 10.1074/jbc.274.47.33601] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CspB is a small acidic protein of Bacillus subtilis, the induction of which is increased dramatically in response to cold shock. Although the exact functional role of CspB is unknown, it has been demonstrated that this protein binds single-stranded deoxynucleic acids (ssDNA). We addressed the question of the effect of base composition on the CspB binding to ssDNA by analyzing the thermodynamics of CspB interactions with model oligodeoxynucleotides. Combinations of four different techniques, fluorescence spectroscopy, gel shift mobility assays, isothermal titration calorimetry, and analytical ultracentrifugation, allowed us to show that: 1) CspB can preferentially bind poly-pyrimidine but not poly-purine ssDNA templates; 2) binding to T-based ssDNA template occurs with high affinity (K(d(25 degrees C)) approximately 42 nM) and is salt-independent, whereas binding of CspB to C-based ssDNA template is strongly salt-dependent (no binding is observed at 1 M NaCl), indicating large electrostatic component involved in the interactions; 3) upon binding each CspB covers a stretch of 6-7 thymine bases on T-based ssDNA; and 4) the binding of CspB to T-based ssDNA template is enthalpically driven, indicating the possible involvement of interactions between aromatic side chains on the protein with the thymine bases. The significance of these results with respect to the functional role of CspB in the bacterial cold shock response is discussed.
Collapse
Affiliation(s)
- M M Lopez
- Department of Chemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
| | | | | |
Collapse
|
28
|
Schindler T, Graumann PL, Perl D, Ma S, Schmid FX, Marahiel MA. The family of cold shock proteins of Bacillus subtilis. Stability and dynamics in vitro and in vivo. J Biol Chem 1999; 274:3407-13. [PMID: 9920884 DOI: 10.1074/jbc.274.6.3407] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus subtilis possesses three homologous small cold shock proteins (CSPs; CspB, CspC, CspD, sequence identity >72%). They share a similar beta-sheet structure, as shown by circular dichroism, and have a very low conformational stability, with CspC being the least stable. Similar to CspB, CspC and CspD unfold and refold extremely fast in a N <==> U two-state reaction with average lifetimes of only 100-150 ms for the native state and 1-6 ms for the unfolded states at 25 degreesC. As a consequence of their low stability and low kinetic protection against unfolding, all three cold shock proteins are rapidly degraded by proteases in vitro. Analysis of the CSP stabilities in vivo by pulse-chase experiments revealed that CspB and CspD are stable during logarithmic growth at 37 degreesC as well as after cold shock. The cellular half-life of CspC is shortened at 37 degreesC, but under cold shock conditions CspC becomes stable. The proteolytic susceptibility of the CSPs in vitro was strongly reduced in the presence of a nucleic acid ligand, suggesting that the observed stabilization of CSPs in vivo is mediated by binding to their substrate mRNA at 37 degreesC and, in particular, under cold shock conditions.
Collapse
Affiliation(s)
- T Schindler
- Laboratorium für Biochemie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Perl D, Welker C, Schindler T, Schröder K, Marahiel MA, Jaenicke R, Schmid FX. Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins. NATURE STRUCTURAL BIOLOGY 1998; 5:229-35. [PMID: 9501917 DOI: 10.1038/nsb0398-229] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cold shock protein CspB from Bacillus subtilis is only marginally stable, but it folds extremely fast in a simple N reversible U two-state reaction. The corresponding cold shock proteins from the thermophile Bacillus caldolyticus and the hyperthermophile Thermotoga maritima show strongly increased conformational stabilities, but unchanged very fast two-state refolding kinetics. The absence of intermediates in the folding of B. subtilis CspB is thus not a corollary of its low stability. Rather, two-state folding and an unusually native-like activated state of folding seem to be inherent properties of these small all-beta proteins. There is no link between stability and folding rate, and numerous sequence positions exist which can be varied to modulate the stability without affecting the rate and mechanism of folding.
Collapse
Affiliation(s)
- D Perl
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Schindler T, Perl D, Graumann P, Sieber V, Marahiel MA, Schmid FX. Surface-exposed phenylalanines in the RNP1/RNP2 motif stabilize the cold-shock protein CspB from Bacillus subtilis. Proteins 1998; 30:401-6. [PMID: 9533624 DOI: 10.1002/(sici)1097-0134(19980301)30:4<401::aid-prot7>3.0.co;2-l] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the cold-shock protein CspB from Bacillus subtilis three exposed Phe residues (F15, F17, and F27) are essential for its function in binding to single-stranded nucleic acids. Usually, the hydrophobic Phe side chains are buried in folded proteins. We asked here whether the exposition of the essential Phe residues could be a cause for the very low conformational stability of CspB. Urea-induced and heat-induced equilibrium unfolding transitions were measured for three mutants of CspB, where Phe 15, Phe 17, and Phe 27 were individually replaced by alanine. Unexpectedly, all three mutations strongly destabilized CspB. The aromatic side chains of Phe 15, Phe 17, and Phe 27 in the active site are thus important for both binding to nucleic acids and conformational stability. There is no compromise between function and stability in the active site. Model calculations indicate that, although they are partially exposed to solvent, all three Phe residues nevertheless lose accessible surface upon folding, and this should favor the native state. A different result is obtained with the F38A variant. Phe 38 is hyperexposed in native CspB, and its substitution by Ala is in fact stabilizing.
Collapse
Affiliation(s)
- T Schindler
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Prediction of protein structure by fold recognition, or threading, was recently put to the test in a 'blind' structure prediction experiment, CASP2. Thirty-two teams from around the world participated, preparing predictions for 22 different 'target' proteins whose structures were soon to be determined. As experimental structures became available, we, as organizers of the threading competition, computed objective measures of fold-recognition specificity and model accuracy, to identify and characterize successful predictions. Here, we present a brief summary of these prediction evaluations, a tally of 'correct' predictions and a discussion of factors associated with correct predictions. We find that threading produced specific recognition and accurate models whenever the structural database contained a template spanning a large fraction of target sequence. Presence of conserved sequence motifs was helpful, but not required, and it would appear that threading can succeed whenever similarity to a known structure is sufficiently extensive.
Collapse
Affiliation(s)
- A Marchler-Bauer
- Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA
| | | |
Collapse
|
32
|
Schindler T, Herrler M, Marahiel MA, Schmid FX. Extremely rapid protein folding in the absence of intermediates. NATURE STRUCTURAL BIOLOGY 1995; 2:663-73. [PMID: 7552728 DOI: 10.1038/nsb0895-663] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Here we used the cold-shock protein CspB from Bacillus subtilis to study protein folding at an elementary level. The thermodynamic stability of this small five-stranded beta-barrel protein is low, but unfolding and refolding are extremely rapid reactions. In 0.6 M urea the time constant of refolding is about 1.5 ms, and at the transition midpoint (4 M urea) the folded and unfolded forms equilibrate in less than 100 ms. Both the equilibrium unfolding transition and the folding kinetics are perfectly described by a N<-->U two-state model. The validity of this model was confirmed by several kinetic tests. Folding intermediates could neither be detected at equilibrium nor in the folding kinetics. We suggest that the extremely rapid folding of CspB and the absence of folding intermediates are related phenomena.
Collapse
Affiliation(s)
- T Schindler
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | | | | | |
Collapse
|
33
|
Schröder K, Graumann P, Schnuchel A, Holak TA, Marahiel MA. Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. Mol Microbiol 1995; 16:699-708. [PMID: 7476164 DOI: 10.1111/j.1365-2958.1995.tb02431.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The major cold-shock protein of Bacillus subtilis, CspB, is a member of a protein family widespread among prokaryotes and eukaryotes that share the highly conserved cold-shock domain (CSD). The CSD domain is involved in transcriptional and translational regulation and was shown to bind the Y-box motif, a cis-element that contains the core sequence ATTGG, with high affinity. The three-dimensional structure of CspB, a prototype of this protein family, revealed that this hydrophilic CSD domain creates a surface rich in aromatic and basic amino acids that may act as the nucleic acid-binding site. We have analysed the potential role of conserved aromatic and basic residues in nucleic acid binding by site-directed mutagenesis. In gel retardation and ultraviolet cross-linking experiments, the ability of CspB mutants to bind single-stranded oligonucleotides (ssDNA) that contain the Y-box motif was investigated. Single substitutions of three highly conserved phenylalanine residues (Phe-15, Phe-17, Phe-27) by alanine and substitution of one histidine (His-29) by glutamine, all located within the putative RNA-binding sites RNP-1 and RNP-2, abolished the nucleic acid-binding activity of CspB. Conservative substitutions of Phe-15 to tyrosine (F15Y) showed a small increase in binding affinity, whereas separate replacement of Phe-17 and Phe-27 by tyrosine caused a reduction in binding activity. These and other substitutions including the conserved basic residues Lys-7, Lys-13 and Arg-56 as well as the aromatic residues Trp-8 and Phe-30 strongly suggest that CspB uses the side-chains of these amino acids for specific interaction with nucleic acids. Ultraviolet cross-linking experiments for CspB mutants with ssDNA supported the idea of specific CspB/nucleic acid interaction and indicated an essential role for the aromatic and basic residues in this binding. In addition, two-dimensional nuclear magnetic resonance studies with F17A, K13Q, F15Y and F27Y revealed that the mutants have the same overall structure as the wild-type CspB protein.
Collapse
|
34
|
Abstract
The cold shock response in the Gram-positive soil bacterium Bacillus subtilis is described. Cells were exposed to sudden decreases in temperature from their optimal growth temperature of 37 degrees C. The B. subtilis cells were cold shocked at 25 degrees C, 20 degrees C, 15 degrees C, and 10 degrees C. A total of 53 polypeptides were induced at the various cold shock temperatures and were revealed by two-dimensional gel electrophoresis. General stress proteins were identified by a comparative analysis with the heat shock response of B. subtilis. Some unique, prominent cold shock proteins such as the 115 kDa, 97 kDa, and 21 kDa polypeptides were microsequenced. Sequence comparison demonstrated that the 115-kDa protein had homology to the TCA cycle enzyme, aconitase.
Collapse
Affiliation(s)
- E A Lottering
- Department of Microbiology and Immunology, School of Medicine University of Louisville, KY 40292
| | | |
Collapse
|
35
|
Makhatadze GI, Marahiel MA. Effect of pH and phosphate ions on self-association properties of the major cold-shock protein from Bacillus subtilis. Protein Sci 1994; 3:2144-7. [PMID: 7703860 PMCID: PMC2142648 DOI: 10.1002/pro.5560031127] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The intermolecular interactions of the major cold-shock protein from Bacillus subtilis (CspB) in solution in the presence of different salts, including phosphate, have been studied by means of scanning calorimetry and size-exclusion chromatography. Calorimetric results indicate that, in all cases, protein unfolding can be approximated by a 2-state model, but the modes of unfolding can differ depending on the conditions. In the presence of phosphate, the cooperative folding unit is a monomer, whereas in the absence of phosphate, the cooperative unit is a dimer. The difference in the self-association of CspB in the presence and absence of phosphate was supported by size-exclusion chromatography. These results are compared with recent structural studies of CspB in crystal and in solution.
Collapse
Affiliation(s)
- G I Makhatadze
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
36
|
A human protein containing a “cold shock” domain binds specifically to H-DNA upstream from the human gamma-globin genes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36764-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Graumann P, Marahiel MA. The major cold shock protein of Bacillus subtilis CspB binds with high affinity to the ATTGG- and CCAAT sequences in single stranded oligonucleotides. FEBS Lett 1994; 338:157-60. [PMID: 8307174 DOI: 10.1016/0014-5793(94)80355-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have characterized the nucleic acid binding properties of the major cold shock protein of Bacillus subtilis, CspB. CspB is a member of the cold shock domain (CSD) family, which is widespread among pro- and eukaryotes and shares the nucleic acid binding domain CSD. The CSD domain is highly conserved and binds with strong affinity to the Y-box motif, a cis-element that contains the CTGATTGGC/TC/TAA sequence. In a series of gel retardation experiments using oligonucleotides, which contain the Y-box motif and altered sequences, we show the preferential binding of CspB to single-stranded DNA that contains the ATTGG as well as the complementary CCAAT Y-box core sequence. In contrast CspB exhibits lower affinity to altered Y-box core sequences. Dependent on the length of the oligonucleotide and the degree of sequence deviation from the Y-box core sequence 3- to over 10-fold overexcess of CspB was needed for complete retardation.
Collapse
|
38
|
Schröder K, Zuber P, Willimsky G, Wagner B, Marahiel MA. Mapping of the Bacillus subtilis cspB gene and cloning of its homologs in thermophilic, mesophilic and psychrotrophic bacilli. Gene X 1993; 136:277-80. [PMID: 8294017 DOI: 10.1016/0378-1119(93)90479-m] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Bacillus subtilis cold shock (CS)-inducible gene, cspB, encoding the nucleic-acid-binding, major CS protein CspB, is located at about 80 degrees on the B. subtilis genetic map. Using this cspB as a probe, the CspB-encoding genes from two thermophilic bacilli were cloned and characterized. The nucleotide (nt) sequences of the B. caldolyticus and B. stearothermophilus cspB coding regions are 78 and 76% identical to the B. subtilis cspB and the deduced amino acid (aa) sequences revealed 84 and 82% identity, respectively. The cspB genes of the mesophilic B. globigii and the some what psychrotrophic B. globisporus, were amplified by PCR using mixed degenerate oligodeoxyribonts based on the 5' and 3' ends of B. subtilis cspB. The nt sequence comparisons of the resulting cloned PCR fragments revealed 98 to 99% identity to cspB of B. subtilis and 97% aa identity to the CspB protein. The high conservation of CspB within the genus Bacillus and the presence of a related nucleic acid-binding domain within several eukaryotic transcription factors implies an important common biological function that seems to be highly conserved from bacteria to man.
Collapse
Affiliation(s)
- K Schröder
- Biochemie/Fachbereich Chemie, Philipps-Universität Marburg, Germany
| | | | | | | | | |
Collapse
|
39
|
Schindelin H, Marahiel MA, Heinemann U. Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature 1993; 364:164-8. [PMID: 8321288 DOI: 10.1038/364164a0] [Citation(s) in RCA: 287] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cold-shock response in both Escherichia coli and Bacillus subtilis is induced by an abrupt downshift in growth temperature. It leads to the increased production of the major cold-shock proteins, CS7.4 and CspB, respectively. CS7.4 is a transcriptional activator of two genes. CS7.4 and CspB share 43 per cent sequence identity with the nucleic acid-binding domain of the eukaryotic gene-regulatory Y-box factors. This cold-shock domain is conserved from bacteria to man and contains the RNA-binding RNP1 sequence motif. As a prototype of the cold-shock domain, the structure of CspB has been determined here from two crystal forms. In both, CspB is present as an antiparallel five-stranded beta-barrel. Three consecutive beta-strands, the central one containing the RNP1 motif, create a surface rich in aromatic and basic residues that are presumably involved in nucleic acid binding. Preferential binding of CspB to single-stranded DNA is observed in gel retardation experiments.
Collapse
Affiliation(s)
- H Schindelin
- Institut für Kristallographie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
40
|
Willimsky G, Bang H, Fischer G, Marahiel MA. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J Bacteriol 1992; 174:6326-35. [PMID: 1400185 PMCID: PMC207576 DOI: 10.1128/jb.174.20.6326-6335.1992] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A new class of cold shock-induced proteins that may be involved in an adaptive process required for cell viability at low temperatures or may function as antifreeze proteins in Escherichia coli and Saccharomyces cerevisiae has been identified. We purified a small Bacillus subtilis cold shock protein (CspB) and determined its amino-terminal sequence. By using mixed degenerate oligonucleotides, the corresponding gene (cspB) was cloned on two overlapping fragments of 5 and 6 kb. The gene encodes an acidic 67-amino-acid protein (pI 4.31) with a predicted molecular mass of 7,365 Da. Nucleotide and deduced amino acid sequence comparisons revealed 61% identity to the major cold shock protein of E. coli and 43% identity to a family of eukaryotic DNA binding proteins. Northern RNA blot and primer extension studies indicated the presence of one cspB transcript that was initiated 119 bp upstream of the initiation codon and was found to be induced severalfold when exponentially growing B. subtilis cell cultures were transferred from 37 degrees C to 10 degrees C. Consistent with this cold shock induction of cspB mRNA, a six- to eightfold induction of a cspB-directed beta-galactosidase synthesis was observed upon downshift in temperature. To investigate the function of CspB, we inactivated the cold shock protein by replacing the cspB gene in the B. subtilis chromosome with a cat-interrupted copy (cspB::cat) by marker replacement recombination. The viability of cells of this mutant strain, GW1, at freezing temperatures was strongly affected. However, the effect of having no CspB in GW1 could be slightly compensated for when cells were preincubated at 10 degrees C before freezing. These results indicate that CspB belongs to a new type of stress-inducible proteins that might be able to protect B. subtilis cells from damage caused by ice crystal formation during freezing.
Collapse
Affiliation(s)
- G Willimsky
- Fachbereich Chemie/Biochemie, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|