1
|
In situ high-resolution structure of the baseplate antenna complex in Chlorobaculum tepidum. Nat Commun 2016; 7:12454. [PMID: 27534696 PMCID: PMC4992139 DOI: 10.1038/ncomms12454] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/05/2016] [Indexed: 01/01/2023] Open
Abstract
Photosynthetic antenna systems enable organisms harvesting light and transfer the energy to the photosynthetic reaction centre, where the conversion to chemical energy takes place. One of the most complex antenna systems, the chlorosome, found in the photosynthetic green sulfur bacterium Chlorobaculum (Cba.) tepidum contains a baseplate, which is a scaffolding super-structure, formed by the protein CsmA and bacteriochlorophyll a. Here we present the first high-resolution structure of the CsmA baseplate using intact fully functional, light-harvesting organelles from Cba. tepidum, following a hybrid approach combining five complementary methods: solid-state NMR spectroscopy, cryo-electron microscopy, isotropic and anisotropic circular dichroism and linear dichroism. The structure calculation was facilitated through development of new software, GASyCS for efficient geometry optimization of highly symmetric oligomeric structures. We show that the baseplate is composed of rods of repeated dimers of the strongly amphipathic CsmA with pigments sandwiched within the dimer at the hydrophobic side of the helix. The chlorosome of the photosynthetic bacterium C. tepidum harvests light and transfers the energy to the photosynthetic reaction centre. Here the authors determine the structure of the baseplate, a scaffolding super-structure, to show that the baseplate consists of rods of repeated CsmA dimers containing pigment molecules.
Collapse
|
2
|
Hierarchical cascades of instability govern the mechanics of coiled coils: helix unfolding precedes coil unzipping. Biophys J 2015; 107:477-484. [PMID: 25028889 DOI: 10.1016/j.bpj.2014.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/13/2014] [Accepted: 06/03/2014] [Indexed: 12/31/2022] Open
Abstract
Coiled coils are a fundamental emergent motif in proteins found in structural biomaterials, consisting of α-helical secondary structures wrapped in a supercoil. A fundamental question regarding the thermal and mechanical stability of coiled coils in extreme environments is the sequence of events leading to the disassembly of individual oligomers from the universal coiled-coil motifs. To shed light on this phenomenon, here we report atomistic simulations of a trimeric coiled coil in an explicit water solvent and investigate the mechanisms underlying helix unfolding and coil unzipping in the assembly. We employ advanced sampling techniques involving steered molecular dynamics and metadynamics simulations to obtain the free-energy landscapes of single-strand unfolding and unzipping in a three-stranded assembly. Our comparative analysis of the free-energy landscapes of instability pathways shows that coil unzipping is a sequential process involving multiple intermediates. At each intermediate state, one heptad repeat of the coiled coil first unfolds and then unzips due to the loss of contacts with the hydrophobic core. This observation suggests that helix unfolding facilitates the initiation of coiled-coil disassembly, which is confirmed by our 2D metadynamics simulations showing that unzipping of one strand requires less energy in the unfolded state compared with the folded state. Our results explain recent experimental findings and lay the groundwork for studying the hierarchical molecular mechanisms that underpin the thermomechanical stability/instability of coiled coils and similar protein assemblies.
Collapse
|
3
|
Simultaneous prediction of protein folding and docking at high resolution. Proc Natl Acad Sci U S A 2009; 106:18978-83. [PMID: 19864631 DOI: 10.1073/pnas.0904407106] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interleaved dimers and higher order symmetric oligomers are ubiquitous in biology but present a challenge to de novo structure prediction methodology: The structure adopted by a monomer can be stabilized largely by interactions with other monomers and hence not the lowest energy state of a single chain. Building on the Rosetta framework, we present a general method to simultaneously model the folding and docking of multiple-chain interleaved homo-oligomers. For more than a third of the cases in a benchmark set of interleaved homo-oligomers, the method generates near-native models of large alpha-helical bundles, interlocking beta sandwiches, and interleaved alpha/beta motifs with an accuracy high enough for molecular replacement based phasing. With the incorporation of NMR chemical shift information, accurate models can be obtained consistently for symmetric complexes with as many as 192 total amino acids; a blind prediction was within 1 A rmsd of the traditionally determined NMR structure, and fit independently collected RDC data equally well. Together, these results show that the Rosetta "fold-and-dock" protocol can produce models of homo-oligomeric complexes with near-atomic-level accuracy and should be useful for crystallographic phasing and the rapid determination of the structures of multimers with limited NMR information.
Collapse
|
4
|
Wise JG, Vogel PD. Accommodating discontinuities in dimeric left-handed coiled coils in ATP synthase external stalks. Biophys J 2009; 96:2823-31. [PMID: 19348765 DOI: 10.1016/j.bpj.2008.12.3938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 11/19/2008] [Accepted: 12/17/2008] [Indexed: 11/16/2022] Open
Abstract
ATP synthases from coupling membranes are complex rotary motors that convert the energy of proton gradients across coupling membranes into the chemical potential of the beta-gamma anhydride bond of ATP. Proton movement within the ring of c subunits localized in the F(0)-sector drives gamma and epsilon rotation within the F(1)alpha(3)beta(3) catalytic core where substrates are bound and products are released. An external stalk composed of homodimeric subunits b(2) in Escherichia coli or heterodimeric bb' in photosynthetic synthases connects F(0) subunit a with F(1) subunits delta and most likely alpha. The external stalk resists rotation, and is of interest both functionally and structurally. Hypotheses that the external stalk contributes to the overall efficiency of the reaction through elastic coupling of rotational substeps, and that stalks form staggered, right-handed coiled coils, are investigated here. We report on different structures that accommodate heptad discontinuities with either local or global underwinding. Analyses of the knob-and-hole packing of the E. coli b(2) and Synechocystis bb' stalks strongly support the possibility that these proteins can adopt conventional left-handed coiled coils.
Collapse
Affiliation(s)
- John G Wise
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275, USA.
| | | |
Collapse
|
5
|
Sharma G, Mavroidis C, Rege K, Yarmush ML, Budil D. Computational Studies of a Protein-based Nanoactuator for Nanogripping Applications. Int J Rob Res 2009. [DOI: 10.1177/0278364908100278] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The design hypothesis, architectures, and computational modeling of a novel peptide-based nanoactuator are presented in this paper. We engineered the α-helical coiled-coil portion of the yeast transcriptional activator peptide called GCN4 to obtain an environmentally responsive nanoactuator. The dimeric coiled-coil peptide consists of two identical approximately 4.5 nm long and approximately 3 nm wide polypeptide chains. The actuation mechanism depends on the modification of electrostatic charges along the peptide by varying the pH of the solution resulting in the reversible movement of helices and, therefore, creating the motion of an actuator. Using molecular dynamics simulations we showed that pH changes led to a reversible opening of up to 1.5 nm which is approximately 150% of the initial separation of the nanoactuator. We also investigated the forces generated by the nanoactuator upon pH actuation, using a new method based on a modified steered molecular dynamics technique. Owing to its open and close motion resembling that of tweezers, the new nanoactuator can potentially be used as a nanogripper in various nanomanipulation tasks such as detection and removal of heavy metal ions during nanofabrication processes or as a molecular switch.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Mechanical and Industrial Engineering, 360 Huntington Avenue, Northeastern University, Boston, MA 02115, USA
| | - Constantinos Mavroidis
- Department of Mechanical and Industrial Engineering, 360 Huntington Avenue, Northeastern University, Boston, MA 02115, USA,
| | - Kaushal Rege
- The Center for Engineering in Medicine (CEM), Massachusetts General Hospital and Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA, Department of Chemical Engineering, Arizona State University, Tempe, AZ, USA
| | - Martin L. Yarmush
- The Center for Engineering in Medicine (CEM), Massachusetts General Hospital and Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA
| | - David Budil
- Department of Chemistry and Chemical Biology, 60 Huntington Avenue, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
6
|
Pendley SS, Yu YB, Cheatham TE. Molecular dynamics guided study of salt bridge length dependence in both fluorinated and non-fluorinated parallel dimeric coiled-coils. Proteins 2009; 74:612-29. [PMID: 18704948 PMCID: PMC2692595 DOI: 10.1002/prot.22177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The alpha-helical coiled-coil is one of the most common oligomerization motifs found in both native and engineered proteins. To better understand the stability and dynamics of the coiled-coil motifs, including those modified by fluorination, several fluorinated and nonfluorinated parallel dimeric coiled-coil protein structures were designed and modeled. We also attempt to investigate how changing the length and geometry of the important stabilizing salt bridges influences the coiled-coil protein structure. Molecular dynamics (MD) and free energy simulations with AMBER used a particle mesh Ewald treatment of the electrostatics in explicit TIP3P solvent with balanced force field treatments. Preliminary studies with legacy force fields (ff94, ff96, and ff99) show a profound instability of the coiled-coil structures in short MD simulation. Significantly, better behavior is evident with the more balanced ff99SB and ff03 protein force fields. Overall, the results suggest that the coiled-coil structures can readily accommodate the larger acidic arginine or S-2,7-diaminoheptanedoic acid mutants in the salt bridge, whereas substitution of the smaller L-ornithine residue leads to rapid disruption of the coiled-coil structure on the MD simulation time scale. This structural distortion of the secondary structure allows both the formation of large hydration pockets proximal to the charged groups and within the hydrophobic core. Moreover, the increased structural fluctuations and movement lead to a decrease in the water occupancy lifetimes in the hydration pockets. In contrast, analysis of the hydration in the stable dimeric coiled-coils shows high occupancy water sites along the backbone residues with no water occupancy in the hydrophobic core, although transitory water interactions with the salt bridge residues are evident. The simulations of the fluorinated coiled-coils suggest that in some cases fluorination electrostatically stabilizes the intermolecular coiled-coil salt bridges. Structural analyses also reveal different side chain rotamer preferences for leucine when compared with 5,5,5,5',5',5'-hexafluoroleucine mutants. These observed differences in the side chain rotamer populations suggest differential changes in the side chain conformational entropy upon coiled-coil formation when the protein is fluorinated. The free energy of hydration of the isolated 5,5,5,5',5',5'-hexafluoroleucine amino acid is calculated to be 1.1 kcal/mol less stable than leucine; this hydrophobic penalty in the monomer may provide a driving force for coiled-coil dimer formation. Estimation of the ellipticity at 222 nm from a series of snapshots from the MD simulations with DicroCalc shows distinct increases in the ellipticity when the coiled-coil is fluorinated, which suggests that the helicity in the folded coiled-coils is greater when fluorinated.
Collapse
Affiliation(s)
- Scott S. Pendley
- Departments of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
| | - Yihua B. Yu
- Departments of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
- Departments of Pharmaceutical Sciences and Bioengineering, University of Maryland, University of Maryland, 20 Penn Street, Rm. 635, Baltimore, MD 21201
| | - Thomas E. Cheatham
- Departments of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
- Department of Medicinal Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
- Department of Bioengineering, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
| |
Collapse
|
7
|
Chapagain PP, Liu Y, Gerstman BS. The trigger sequence in the GCN4 leucine zipper: α-helical propensity and multistate dynamics of folding and dimerization. J Chem Phys 2008; 129:175103. [DOI: 10.1063/1.3006421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
8
|
Subunit b-dimer of the Escherichia coli ATP synthase can form left-handed coiled-coils. Biophys J 2008; 94:5040-52. [PMID: 18326648 DOI: 10.1529/biophysj.107.121012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One remaining challenge to our understanding of the ATP synthase concerns the dimeric coiled-coil stator subunit b of bacterial synthases. The subunit b-dimer has been implicated in important protein interactions that appear necessary for energy conservation and that may be instrumental in energy conservation during rotary catalysis by the synthase. Understanding the stator structure and its interactions with the rest of the enzyme is crucial to the understanding of the overall catalytic mechanism. Controversy exists on whether subunit b adopts a classic left-handed or a presumed right-handed dimeric coiled-coil and whether or not staggered pairing between nonhomologous residues in the homodimer is required for intersubunit packing. In this study we generated molecular models of the Escherichia coli subunit b-dimer that were based on the well-established heptad-repeat packing exhibited by left-handed, dimeric coiled-coils by employing simulated annealing protocols with structural restraints collected from known structures. In addition, we attempted to create hypothetical right-handed coiled-coil models and left- and right-handed models with staggered packing in the coiled-coil domains. Our analyses suggest that the available structural and biochemical evidence for subunit b can be accommodated by classic left-handed, dimeric coiled-coil quaternary structures.
Collapse
|
9
|
Skolnick J, Kolinski A. Monte Carlo Approaches to the Protein Folding Problem. ADVANCES IN CHEMICAL PHYSICS 2007. [DOI: 10.1002/9780470141649.ch7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Ramos J, Lazaridis T. Energetic determinants of oligomeric state specificity in coiled coils. J Am Chem Soc 2007; 128:15499-510. [PMID: 17132017 DOI: 10.1021/ja0655284] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The coiled coil is one of the simplest and best-studied protein structural motifs, consisting of two to five helices wound around each other. Empirical rules have been established on the tendency of different core sequences to form a certain oligomeric state but the physical forces behind this specificity are unclear. In this work, we model four sequences onto the structures of dimeric, trimeric, tetrameric, and pentameric coiled coils. We first examine the ability of an effective energy function (EEF1.1) to discriminate the correct oligomeric state for a given sequence. We find that inclusion of the translational, rotational, and side-chain conformational entropy is necessary for discriminating the native structures from their misassembled counterparts. The decomposition of the effective energy into residue contributions yields theoretical values for the oligomeric propensity of different residue types at different heptad positions. We find that certain calculated residue propensities are general and consistent with existing rules. For example, leucine at d favors dimers, leucine at a favors tetramers or pentamers, and isoleucine at a favors trimers. Other residue propensities are sequence context dependent. For example, glutamine at d favors trimers in one context and pentamers in another. Charged residues at e and g positions usually destabilize higher oligomers due to higher desolvation. Nonpolar residues at these positions confer pentamer specificity when combined with certain residues at positions a and d. Specifically, the pair Leua-Alag' or the inverse was found to stabilize the pentamer. The small energy gap between the native and misfolded counterparts explains why a few mutations at the core sites are sufficient to induce a change in the oligomeric state of these peptides. A large number of possible experiments are suggested by these results.
Collapse
Affiliation(s)
- Jorge Ramos
- Department of Chemistry, The City College of CUNY Convent Avenue & 138 Street, New York, New York 10031, USA
| | | |
Collapse
|
11
|
Charest G, Lavigne P. Simple and versatile restraints for the accurate modeling of α-helical coiled-coil structures of multiple strandedness, orientation and composition. Biopolymers 2006; 81:202-14. [PMID: 16245262 DOI: 10.1002/bip.20401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We present a minimalist approach for the modeling of the three-dimensional structure of multistranded alpha-helical coiled coils. The approach is based on empirical principles introduced by F. H. C. Crick (F. H. C. Crick, Acta Crystallogr, 1953, Vol. 6, pp. 689-697). Crick hypothesized that keeping the distance between the residues at the interacting interface of alpha-helices constant would lead to supercoiling or the formation of a coiled coil through the knobs-into-holes mode of packing. We have implemented the latter hypothesis in a simulating annealing protocol in the simple form of interhelical distance restraints (two per heptad) between Calpha at the interfacial positions and. To demonstrate the authenticity of Crick's hypothesis and the precision and accuracy of our approach, we have modeled the crystal structures of six synthetic coiled coils in dimeric, trimeric, and tetrameric states. The mean root mean square deviations (RMSDs) between the backbone atoms of the ensemble of structures calculated and those of the corresponding geometric averages is always below 0.76 A, indicating that our protocol has an excellent degree of convergence and precision. The RMSDs between the backbone atoms of each of the six geometric average structures and the backbone of the corresponding crystal structures all range between 0.43 and 0.95 A, indicative of excellent accuracy and proving the authenticity of Crick's hypothesis. Moreover, without specifying any dihedral angles, we found that in 81% of the occurrences, the most populated conformer of the side chains at positions and in the ensembles calculated were identical to those observed in the crystal structures. This shows that our simple approach, which is the simplest reported so far, can generate accurate results for the backbone and side chains. Finally, as a test case for a wider application of our approach in the field of structural proteomics, we describe the successful modeling of the overall structure of SNARE and the organization of its interfacial ionic layer known to play an important functional role.
Collapse
Affiliation(s)
- Gabriel Charest
- Département de Pharmacologie, Faculté de Médecine, Université de Sherbrooke 3001, 12e Avenue Nord, Sherbrooke, Qc J1H 5N4, Canada
| | | |
Collapse
|
12
|
Sparr E, Ash WL, Nazarov PV, Rijkers DTS, Hemminga MA, Tieleman DP, Killian JA. Self-association of transmembrane alpha-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch. J Biol Chem 2005; 280:39324-31. [PMID: 16169846 DOI: 10.1074/jbc.m502810200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interactions between transmembrane helices play a key role in almost all cellular processes involving membrane proteins. We have investigated helix-helix interactions in lipid bilayers with synthetic tryptophan-flanked peptides that mimic the membrane spanning parts of membrane proteins. The peptides were functionalized with pyrene to allow the self-association of the helices to be monitored by pyrene fluorescence and Trp-pyrene fluorescence resonance energy transfer (FRET). Specific labeling of peptides at either their N or C terminus has shown that helix-helix association occurs almost exclusively between antiparallel helices. Furthermore, computer modeling suggested that antiparallel association arises primarily from the electrostatic interactions between alpha-helix backbone atoms. We propose that such interactions may provide a force for the preferentially antiparallel association of helices in polytopic membrane proteins. Helix-helix association was also found to depend on the lipid environment. In bilayers of dioleoylphosphatidylcholine, in which the hydrophobic length of the peptides approximately matched the bilayer thickness, association between the helices was found to require peptide/lipid ratios exceeding 1/25. Self-association of the helices was promoted by either increasing or decreasing the bilayer thickness, and by adding cholesterol. These results indicate that helix-helix association in membrane proteins can be promoted by unfavorable protein-lipid interactions.
Collapse
Affiliation(s)
- Emma Sparr
- Department of Biochemistry of Membranes, Institute of Biomembranes and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kelly E, Privé GG, Tieleman DP. Molecular Models of Lipopeptide Detergents: Large Coiled-Coils with Hydrocarbon Interiors. J Am Chem Soc 2005; 127:13446-7. [PMID: 16190678 DOI: 10.1021/ja051275n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have constructed molecular models of octameric micelles formed by a recently developed lipopeptide detergent consisting of a single amphipathic alpha-helix coupled to two acyl chains at either end of the helix. The models explain the experimentally observed aggregation behavior of peptides with different acyl chain lengths. The octameric micelles form a unique coiled-coil structure, with the acyl chains in a nearly frozen conformation inside the cylindrical assemblies. Two extreme models with helices either all parallel or in an alternating orientation suggest that the alternating orientation is energetically more favorable. The models suggest several new directions for further diversifying this new class of detergents for the structural studies of membrane proteins.
Collapse
Affiliation(s)
- Evan Kelly
- Department of Biological Sciences, Structural Biology Research Group, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | |
Collapse
|
14
|
Kairys V, Gilson MK, Luy B. Structural model for an AxxxG-mediated dimer of surfactant-associated protein C. ACTA ACUST UNITED AC 2004; 271:2086-92. [PMID: 15153098 DOI: 10.1111/j.1432-1033.2004.04107.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The pulmonary surfactant prevents alveolar collapse and is required for normal pulmonary function. One of the important components of the surfactant besides phospholipids is surfactant-associated protein C (SP-C). SP-C shows complex oligomerization behavior and a transition to beta-amyloid-like fibril structures, which are not yet fully understood. Besides this nonspecific oligomerization, MS and chemical cross-linking data combined with CD spectra provide evidence of a specific, mainly alpha-helical, dimer at low to neutral pH. Furthermore, resistance to CNBr cleavage and dual NMR resonances of porcine and human recombinant SP-C with Met32 replaced by isoleucine point to a dimerization site located at the C-terminus of the hydrophobic alpha-helix of SP-C, where a strictly conserved heptapeptide sequence is found. Computational docking of two SP-C helices, described here, reveals a dimer with a helix-helix interface that strikingly resembles that of glycophorin A and is mediated by an AxxxG motif similar to the experimentally determined GxxxG pattern of glycophorin A. It is highly likely that mature SP-C adopts such a dimeric structure in the lamellar bilayer systems found in the surfactant. Dimerization has been shown in previous studies to have a role in sorting and trafficking of SP-C and may also be important to the surfactant function of this protein.
Collapse
Affiliation(s)
- Visvaldas Kairys
- Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | | | |
Collapse
|
15
|
Choma CT, Tieleman DP, Cregut D, Serrano L, Berendsen HJ. Towards the design and computational characterization of a membrane protein. J Mol Graph Model 2002; 20:219-34. [PMID: 11766047 DOI: 10.1016/s1093-3263(01)00111-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The design of a transmembrane four-helix bundle is described. We start with an idealized four-helix bundle geometry, then use statistical information to build a plausible transmembrane bundle. Appropriate residues are chosen using database knowledge on the sequences of membrane helices and loops, then the packing of the bundle core is optimized, and favorable side chain rotamers from rotamer libraries are selected. Next, we use explicit physical knowledge from biomolecular simulation force fields and molecular dynamics simulations to test whether the designed structure is physically possible. These procedures test whether the designed protein will indeed be alpha-helical, well packed and stable over a time scale of several nanoseconds in a realistic lipid bilayer environment. We then test a modeling approach that does not include sophisticated database knowledge about proteins, but rather relies on applying our knowledge of the physics that governs protein motions. This independent validation of the design is based on simulated annealing and restrained molecular dynamics simulation in vacuo, comparable to procedures used to refine NMR and X-ray structures.
Collapse
Affiliation(s)
- C T Choma
- Cogswell Lab, Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
| | | | | | | | | |
Collapse
|
16
|
Offer G, Hicks MR, Woolfson DN. Generalized Crick equations for modeling noncanonical coiled coils. J Struct Biol 2002; 137:41-53. [PMID: 12064932 DOI: 10.1006/jsbi.2002.4448] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crick envisaged the alpha-helical coiled coil to result from systematic bending of an alpha-helix such that every seventh residue was structurally equivalent, and he derived equations for the coordinates of the backbone atoms. Crick's predictions were vindicated experimentally and coiled-coil sequences were shown to have hydrophobic residues alternately spaced 3 and 4 residues apart. Nonetheless, in some coiled coils such canonical heptad repeats are interrupted by inserts of 3 or 4 residues generating decad and hendecad motifs. The supercoiling of the coiled coils varies with the sequence pattern, being left- or right-handed in purely heptad-based or hendecad-based motifs, respectively. To model coiled coils with a mixture of motifs, we describe how Crick's equations can be modified for cases where the pitch is not constant. Using the analogy of the bending of a beam, we took the tilt angle to change linearly with distance along the major helix and the pitch of a motif to be affected by neighboring motifs depending on the rigidity of the alpha-helical strands. We tested our approach by fitting the two-, three-, and four-stranded noncanonical coiled coils of GrpE, hemagglutinin, and tetrabrachion. The backbone atoms of the model and crystal structures agreed with root mean square deviations of <1.1 A.
Collapse
Affiliation(s)
- Gerald Offer
- Muscle Contraction Group, Department of Physiology, Medical School, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| | | | | |
Collapse
|
17
|
Abstract
The relationship between the amino acid sequence and the three-dimensional structure of proteins with internal repeats is discussed. In particular, correlations between the amino acid composition and the ability to fold in a unique structure, as well as classification of the structures based on their repeat length, are described. This analysis suggests rules that can be used for the structural prediction of repeat-containing proteins. The paper is focused on prediction and modeling of solenoid-like proteins with the repeat length ranging between 5 and 40 residues. The models of leucine-rich repeat proteins and bacterial proteins with pentapeptide repeats are examined in light of the recently solved structures of the related molecules.
Collapse
Affiliation(s)
- A V Kajava
- Center for Molecular Modeling, Bethesda, Maryland 20892-5626, USA
| |
Collapse
|
18
|
Abstract
This unit addresses how to predict the tertiary structure of a protein from its amino acid sequence using computational methods. Three types of prediction methods--homology modeling, fold recognition, and ab initio prediction--are introduced.
Collapse
Affiliation(s)
- D Xu
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | |
Collapse
|
19
|
Renaud JP, Harris JM, Downes M, Burke LJ, Muscat GE. Structure-function analysis of the Rev-erbA and RVR ligand-binding domains reveals a large hydrophobic surface that mediates corepressor binding and a ligand cavity occupied by side chains. Mol Endocrinol 2000; 14:700-17. [PMID: 10809233 DOI: 10.1210/mend.14.5.0444] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rev-erbA/RVR are closely related orphan nuclear receptors (NRs) functioning as dominant transcriptional silencers through an association with the nuclear receptor corepressor N-CoR. In contrast with ligand-regulated NRs, Rev-erbA/RVR lack the ligand-binding domain (LBD) C-terminal activation helix, H12. In the case of retinoid acid receptor and thyroid hormone receptor, ligand binding is thought to reposition H12, causing corepressor dissociation and coactivator recruitment, thus leading to transcriptional activation. Here we present homology models of the Rev-erbA/RVR LBDs, which show that the putative ligand cavity is occupied by side chains, suggesting the absence of endogenous ligands. Modeling also revealed a very hydrophobic surface due to the absence of H12, exposing residues from H3, loop 3-4, H4, and H11. Mutation of specific residues from this surface severely impaired the in vitro and in vivo interaction of the Rev-erbA/RVR LBD with the receptor-interacting domain of the corepressors N-CoR or its splice variant RIP13delta1, reinforcing the view of the physical association of N-CoR with a LBD surface encompassing H3-H4 and H11. Furthermore, mutations in the LBD surface significantly reduced the ability of Rev-erbA and RVR to function as repressors of transcription. Interestingly, a hydrophobic surface comprised of H3-H4 and H12 in liganded NRs mediates the interaction with coactivators. Hence, it appears that corepressors and coactivators bind to overlapping surfaces of NR LBDs, the conformational change associated with H12 upon ligand binding resulting in a switch from a corepressor- to a coactivator-binding surface.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Binding Sites
- Chemical Phenomena
- Chemistry, Physical
- DNA-Binding Proteins
- Humans
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nuclear Receptor Subfamily 1, Group D, Member 1
- Promoter Regions, Genetic
- Protein Conformation
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/genetics
- Proteins/metabolism
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/chemistry
- Receptors, Thyroid Hormone
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Retinoic Acid Receptor alpha
- Sequence Alignment
- Sequence Homology, Amino Acid
- Structure-Activity Relationship
- Transcription, Genetic
Collapse
Affiliation(s)
- J P Renaud
- Centre Nationale de la Recherche Scientifique, UPR9004 Laboratoire de Biologie et Genomic Structurales, Institut de Génétique et Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | | | | | | |
Collapse
|
20
|
Borisenko V, Sansom MS, Woolley GA. Protonation of lysine residues inverts cation/anion selectivity in a model channel. Biophys J 2000; 78:1335-48. [PMID: 10692320 PMCID: PMC1300733 DOI: 10.1016/s0006-3495(00)76688-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A dimeric alamethicin analog with lysine at position 18 in the sequence (alm-K18) was previously shown to form stable anion-selective channels in membranes at pH 7.0 [Starostin, A. V., R. Butan, V. Borisenko, D. A. James, H. Wenschuh, M. S. Sansom, and G. A. Woolley. 1999. Biochemistry. 38:6144-6150]. To probe the charge state of the conducting channel and how this might influence cation versus anion selectivity, we performed a series of single-channel selectivity measurements at different pH values. At pH 7.0 and below, only anion-selective channels were found with P(K(+))/P(Cl(-)) = 0. 25. From pH 8-10, a mixture of anion-selective, non-selective, and cation-selective channels was found. At pH > 11 only cation-selective channels were found with P(K(+))/P(Cl(-)) = 4. In contrast, native alamethicin-Q18 channels (with Gln in place of Lys at position 18) were cation-selective (P(K(+))/P(Cl(-)) = 4) at all pH values. Continuum electrostatics calculations were then carried out using an octameric model of the alm-K18 channel embedded in a low dielectric slab to simulate a membrane. Although the calculations can account for the apparent pK(a) of the channel, they fail to correctly predict the degree of selectivity. Although a switch from cation- to anion-selectivity as the channel becomes protonated is indicated, the degree of anion-selectivity is severely overestimated, suggesting that the continuum approach does not adequately represent some aspect of the electrostatics of permeation in these channels. Side-chain conformational changes upon protonation, conformational changes, and deprotonation caused by permeating cations and counterion binding by lysine residues upon protonation are considered as possible sources of the overestimation.
Collapse
Affiliation(s)
- V Borisenko
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| | | | | |
Collapse
|
21
|
|
22
|
Abstract
The alpha-helical coiled coil motif is among the first characterized and widely found architecture of protein structures. We report here a fast and reliable approach of simulated annealing molecular dynamics (SA/MD) for predicting the three-dimensional structures of various alpha-helical coiled coils of heptad repeat. One key element of our simulation involves a geometric restraint requiring residues occupying the first and fourth positions of the heptad to orient to the angle of their respective statistical average derived from a survey of coiled-coil structures deposited in the Protein Data Bank. Another is the incorporation of subunit rotation and inversion operations for generating symmetrized protein assemblies during the dynamics simulations. The procedure is fully automated and can be applied to different oligomerization states of identical subunits, as well as both parallel and antiparallel arrangements. Despite simplicity, the formation of five coiled-coil prototype systems driven by the restraint-based SA/MD approach shows that the level of prediction accuracy achieved previously by more elaborate procedures can be retained. The present work thus provides validation of a simulation approach that can be employed to utilize a wide variety of knowledge-based geometric restraints for structural prediction of symmetrical or pseudo-symmetrical protein systems.
Collapse
Affiliation(s)
- P K Yang
- Division of Structural Biology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
23
|
Gil MM, Rubio AM, Rey A. Simplified model for the analysis of interaction types in two-stranded coiled-coils. J Chem Phys 1999. [DOI: 10.1063/1.479502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Mohanty D, Kolinski A, Skolnick J. De novo simulations of the folding thermodynamics of the GCN4 leucine zipper. Biophys J 1999; 77:54-69. [PMID: 10388740 PMCID: PMC1300312 DOI: 10.1016/s0006-3495(99)76872-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Entropy Sampling Monte Carlo (ESMC) simulations were carried out to study the thermodynamics of the folding transition in the GCN4 leucine zipper (GCN4-lz) in the context of a reduced model. Using the calculated partition functions for the monomer and dimer, and taking into account the equilibrium between the monomer and dimer, the average helix content of the GCN4-lz was computed over a range of temperatures and chain concentrations. The predicted helix contents for the native and denatured states of GCN4-lz agree with the experimental values. Similar to experimental results, our helix content versus temperature curves show a small linear decline in helix content with an increase in temperature in the native region. This is followed by a sharp transition to the denatured state. van't Hoff analysis of the helix content versus temperature curves indicates that the folding transition can be described using a two-state model. This indicates that knowledge-based potentials can be used to describe the properties of the folded and unfolded states of proteins.
Collapse
Affiliation(s)
- D Mohanty
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
25
|
Constantinescu SN, Liu X, Beyer W, Fallon A, Shekar S, Henis YI, Smith SO, Lodish HF. Activation of the erythropoietin receptor by the gp55-P viral envelope protein is determined by a single amino acid in its transmembrane domain. EMBO J 1999; 18:3334-47. [PMID: 10369674 PMCID: PMC1171414 DOI: 10.1093/emboj/18.12.3334] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The spleen focus forming virus (SFFV) gp55-P envelope glycoprotein specifically binds to and activates murine erythropoietin receptors (EpoRs) coexpressed in the same cell, triggering proliferation of erythroid progenitors and inducing erythroleukemia. Here we demonstrate specific interactions between the single transmembrane domains of the two proteins that are essential for receptor activation. The human EpoR is not activated by gp55-P but by mutation of a single amino acid, L238, in its transmembrane sequence to its murine counterpart serine, resulting in its ability to be activated. The converse mutation in the murine EpoR (S238L) abolishes activation by gp55-P. Computational searches of interactions between the membrane-spanning segments of murine EpoR and gp55-P provide a possible explanation: the face of the EpoR transmembrane domain containing S238 is predicted to interact specifically with gp55-P but not gp55-A, a variant which is much less effective in activating the murine EpoR. Mutational studies on gp55-P M390, which is predicted to interact with S238, provide additional support for this model. Mutation of M390 to isoleucine, the corresponding residue in gp55-A, abolishes activation, but the gp55-P M390L mutation is fully functional. gp55-P is thought to activate signaling by the EpoR by inducing receptor oligomerization through interactions involving specific transmembrane residues.
Collapse
Affiliation(s)
- S N Constantinescu
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mohanty D, Dominy BN, Kolinski A, Brooks CL, Skolnick J. Correlation between knowledge-based and detailed atomic potentials: Application to the unfolding of the GCN4 leucine zipper. Proteins 1999. [DOI: 10.1002/(sici)1097-0134(19990601)35:4<447::aid-prot8>3.0.co;2-o] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Kohn WD, Kay CM, Hodges RS. Orientation, positional, additivity, and oligomerization-state effects of interhelical ion pairs in alpha-helical coiled-coils. J Mol Biol 1998; 283:993-1012. [PMID: 9799639 DOI: 10.1006/jmbi.1998.2125] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of interhelical g-e' ion pairs in the dimerization specificity and stability of alpha-helical coiled-coils is highly controversial. Synthetic 35-residue coiled-coils based on the heptad repeat QgVaGbAcLdQeK f were used to investigate the effect of orientation of interhelical ion pairs between lysine and glutamic acid residues on coiled-coil stability. Stability was estimated from urea denaturation at 20 degreesC, monitoring unfolding with circular-dichroism spectroscopy. Double mutant cycles were employed to estimate the net interaction energy, Delta DeltaGuint, for the two orientations of the ion pair; Ee-Kg and Ke-Eg. Delta DeltaGuint was found to be about 1.4-fold higher for the Ee-Kg orientation in a coiled-coil containing an N-terminal disulfide bridge. The Delta DeltaGuint value was similar whether obtained from the middle heptad or averaged over all five heptads of the coiled-coil, suggesting that ion pairs contribute additively to coiled-coil stability. The effect of uncompensated charges was also illustrated by single substitutions of Gln with either Lys or Glu, resulting in Lys-Gln or Glu-Gln g-e' pairs. These substitutions were found to be twice as destabilizing at position g as at position e, and Lys was about twice as destabilizing as Glu at both positions e and g. In the absence of an interhelical disulfide bridge, Glu and Lys substitutions in the middle heptad were equally destabilizing at positions e and g (Lys continued to be more destabilizing than Glu) and the Delta DeltaGuint value for Lys-Glu ion pairs was not orientation dependent. These and previous results suggest the non-covalently-linked synthetic coiled-coils behave as molten globules, whereas a disulfide-bridge may "lock in" the structural differences between positions of the heptad repeat. Interhelical Lys-Glu ion pairs in either orientation promoted the formation of trimeric coiled-coils (in the absence of a disulfide bridge) while Gln-Gln g-e' interactions led to dimer formation. The results support a role for g-e' ionic attractions in controlling coiled-coil specificity, stability and oligomerization state, possibly through effects on the side-chain packing at the subunit interface.
Collapse
Affiliation(s)
- W D Kohn
- Department of Biochemistry and the Medical Research Council Group in Protein Structure and Function, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | |
Collapse
|
28
|
Abstract
The nicotinic acetylcholine receptor (nAChR) is a cation-selective ion channel that opens in response to acetylcholine binding. The related glycine receptor (GlyR) is anion selective. The pore-lining domain of each protein may be modeled as a bundle of five parallel M2 helices. Models of the pore-lining domains of homopentameric nAChR and GlyR have been used in continuum electrostatics calculations to probe the origins of ion selectivity. Calculated pKA values suggest that "rings" of acidic or basic side chains at the mouths of the nAChR or GlyR M2 helix bundles, respectively, may not be fully ionized. In particular, for the nAChR the ring of glutamate side chains at the extracellular mouth of the pore is predicted to be largely protonated at neutral pH, whereas those glutamate side chains in the intracellular and intermediate rings (at the opposite mouth of the pore) are predicted to be fully ionized. Inclusion of the other domains of each protein represented as an irregular cylindrical tube in which the M2 bundles are embedded suggests that both the M2 helices and the extramembrane domains play significant roles in determining ion selectivity.
Collapse
Affiliation(s)
- C Adcock
- Laboratory of Molecular Biophysics, University of Oxford, England
| | | | | |
Collapse
|
29
|
Affiliation(s)
- M S Sansom
- Laboratory of Molecular Biophysics, University of Oxford, United Kingdom
| |
Collapse
|
30
|
Sansom MS, Adcock C, Smith GR. Modelling and simulation of ion channels: applications to the nicotinic acetylcholine receptor. J Struct Biol 1998; 121:246-62. [PMID: 9615441 DOI: 10.1006/jsbi.1997.3950] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular dynamics simulations with experimentally derived restraints have been used to develop atomic models of M2 helix bundles forming the pore-lining domains of the nicotinic acetylcholine receptor and related ligand-gated ion channels. M2 helix bundles have been used in microscopic simulations of the dynamics and energetics of water and ions within an ion channel. Translational and rotational motion of water are restricted within the pore, and water dipoles are aligned relative to the pore axis by the surrounding helix dipoles. Potential energy profiles for translation of a Na+ ion along the pore suggest that the protein and water components of the interaction energy exert an opposing effect on the ion, resulting in a relatively flat profile which favors cation permeation. Empirical conductance calculations based on a pore radius profile suggest that the M2 helix model is consistent with a single channel conductance of ca. 50 pS. Continuum electrostatics calculations indicate that a ring of glutamate residues at the cytoplasmic mouth of the alpha 7 nicotinic receptor M2 helix bundle may not be fully ionized. A simplified model of the remainder of the channel protein when added to the M2 helix bundle plays a significant role in enhancing the ion selectivity of the channel.
Collapse
Affiliation(s)
- M S Sansom
- Laboratory of Molecular Biophysics, University of Oxford, United Kingdom.
| | | | | |
Collapse
|
31
|
Kohn WD, Kay CM, Sykes BD, Hodges RS. Metal Ion Induced Folding of a de Novo Designed Coiled-Coil Peptide. J Am Chem Soc 1998. [DOI: 10.1021/ja973673z] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wayne D. Kohn
- Contribution from the Department of Biochemistry and the Protein Engineering Network of Centres of Excellence, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Cyril M. Kay
- Contribution from the Department of Biochemistry and the Protein Engineering Network of Centres of Excellence, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Brian D. Sykes
- Contribution from the Department of Biochemistry and the Protein Engineering Network of Centres of Excellence, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Robert S. Hodges
- Contribution from the Department of Biochemistry and the Protein Engineering Network of Centres of Excellence, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
32
|
Kohn WD, Kay CM, Hodges RS. Effects of lanthanide binding on the stability of de novo designed alpha-helical coiled-coils. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1998; 51:9-18. [PMID: 9495586 DOI: 10.1111/j.1399-3011.1998.tb00411.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Effects of La3+ ion binding on the stability of de novo designed two-stranded alpha-helical coiled-coils were studied. The coiled-coils were composed of two 35-residue polypeptide chains based on the "native" heptad sequence Q(g)V(a)G(b)A(c)L(d)Q(e)K(f) and each contained a Cys residue at position 2a to allow formation of an interchain disulfide bridge. The effect of LaCl3 on the stability of five analogs containing two or three Glu substitutions per chain at heptad positions e and g was observed by urea denaturation at 20 degrees C. The analog E2(15,20), in which Glu residues are involved in interhelical i to i' + 5 repulsions, was stabilized relative to the control native peptide by addition of 50 mM LaCl3 to the buffer, whereas two analogs, in which Glu residues do not interact, were destabilized. These results suggest that LaCl3 may preferentially stabilize the folded state of E2(15,20) by the "bridging" of La3+ ions between two pairs of Glu residues usually involved in interhelical repulsions. Two analogs designed to contain two La3+ binding sites composed of three Glu residues each show greater stabilization by LaCl3 than E2(15,20) in the disulfide-bridged form. The apparent stabilization of E2(15,20) by La3+ binding was not observed with either Ca2+ or Mg2+, indicating that the effect is specific for trivalent versus divalent cations.
Collapse
Affiliation(s)
- W D Kohn
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
33
|
Cosette P, Kerr ID, La Rocca P, Duclohier H, Sansom MS. Secondary structure of an isolated P-region from the voltage-gated sodium channel: a molecular modelling/dynamics study. Biophys Chem 1997; 69:221-32. [PMID: 17029930 DOI: 10.1016/s0301-4622(97)00099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/1997] [Revised: 07/08/1997] [Accepted: 07/08/1997] [Indexed: 10/18/2022]
Abstract
Conformational studies of synthetic peptides corresponding to the pore-forming regions of voltage-gated sodium channels show a high tendency for beta-sheet conformation when interacting with lipid vesicles, as revealed by circular dichroism and infrared spectroscopy. These observations have guided our choice of possible molecular models for the P-region peptide of domain II of voltage-gated sodium channels: three alternative beta-hairpins, with differing turn assignments, or an alpha-helical hairpin. After generation of models by distance geometry-based methods, molecular dynamics (MD) simulations were run. in the absence of explicit solvent molecules but employing three different dielectric constants, to explore possible conformational preferences. The simulations in the different dielectric environments suggest that a 4-residue turn with the sequence LCGE yields more stable beta-hairpins. The MD results suggest that the SS1 part of the peptide may be more stable as an alpha-helix, whereas the SS2 part tends to adopt a beta-conformation.
Collapse
Affiliation(s)
- P Cosette
- UMR 6522 CNRS-Université de Rouen (IFRMP 23), Boulevard M. de Broglie, Mont-Saint-Aigman 76821, France
| | | | | | | | | |
Collapse
|
34
|
Abstract
The past several years have seen significant advances in our ability to recognize coiled coils from protein sequences and model their structures. New methods include a detection program based on pairwise residue correlations, a program that distinguishes two-stranded from three-stranded coiled coils and a routine for modelling the coordinates of the core residues in coiled coils. Several widely noted predictions, among them those for heterotrimeric G proteins and for cartilage oligomeric matrix protein, have been confirmed by crystal structures, and several new predictions have been made, including a model for the still hypothetical right-handed coiled coil.
Collapse
Affiliation(s)
- A Lupas
- Max-Planck-Institut für Biochemie, Martinsried, Germany.
| |
Collapse
|
35
|
Breed J, Biggin PC, Kerr ID, Smart OS, Sansom MS. Alamethicin channels - modelling via restrained molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1325:235-49. [PMID: 9168149 DOI: 10.1016/s0005-2736(96)00262-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alamethicin channels have been modelled as approximately parallel bundles of transbilayer helices containing between N = 4 and 8 helices per bundle. Initial models were generated by in vacuo restrained molecular dynamics (MD) simulations, and were refined by 60 ps MD simulations with water molecules present within and at the mouths of the central pore. The helix bundles were stabilized by networks of H-bonds between intra-pore water molecules and Gln-7 side-chains. Channel conductances were predicted on the basis of pore radius profiles, and suggested that the N = 4 bundle formed an occluded pore, whereas pores with N > or = 5 helices per bundle were open. Continuum electrostatics calculations suggested that the N = 6 pore is cation-selective, whereas pores with N > or = 7 helices per bundle were predicted to be somewhat less ion-selective.
Collapse
Affiliation(s)
- J Breed
- Laboratory of Molecular Biophysics, University of Oxford, UK
| | | | | | | | | |
Collapse
|
36
|
Abstract
Alamethicin is an alpha-helical peptide that forms voltage-activated ion channels. Experimental data suggest that channel formation occurs via voltage-dependent insertion of alamethicin helices into lipid bilayers, followed by self-assembly of inserted helices to form a parallel helix bundle. Changes in the kink angle of the alamethicin helix about its central proline residue have also been suggested to play a role in channel gating. Alamethicin helices generated by simulated annealing and restrained molecular dynamics adopt a kink angle similar to that in the x-ray crystal structure, even if such simulations start with an idealized unkinked helix. This suggests that the kinked helix represents a stable conformation of the molecule. Molecular dynamics simulations in the presence of a simple bilayer model and a transbilayer voltage difference are used to explore possible mechanisms of helix insertion. The bilayer is represented by a hydrophobicity potential. An alamethicin helix inserts spontaneously in the absence of a transbilayer voltage. Application of a cis positive voltage decreases the time to insertion. The helix kink angle fluctuates during the simulations. Insertion of the helix is associated with a decrease in the mean kink angle, thus helping the alamethicin molecule to span the bilayer. The simulation results are discussed in terms of models of alamethicin channel gating.
Collapse
Affiliation(s)
- P C Biggin
- Laboratory of Molecular Biophysics, University of Oxford, England
| | | | | | | |
Collapse
|
37
|
Gomar J, Sodano P, Ptak M, Vovelle F. Homology modelling of an antimicrobial protein, Ace-AMP1, from lipid transfer protein structures. FOLDING & DESIGN 1997; 2:183-92. [PMID: 9218956 DOI: 10.1016/s1359-0278(97)00025-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Plant nonspecific lipid transfer proteins (ns-LTPs) are small basic proteins that facilitate lipid shuttling between membranes in vitro. The function of ns-LTPs in vivo is still unknown. It has been suggested, in relation to their lipid binding ability, that they may be involved in cutin formation. Alternatively, they may act in the plant defence system against pathogenic agents. Ace-AMP1 is an antimicrobial protein extracted from onion seed that shows sequence homology with ns-LTPs but that is unable to transfer lipids. We have recently determined the three-dimensional structure of wheat and maize ns-LTPs. In order to compare the structural features of Ace-AMP1 and ns-LTPs, we have used the comparative modelling software MODELLER to predict the structure of Ace-AMP1. RESULTS The global fold of Ace-AMP1 is very similar to those of ns-LTPs, involving four helices and a C-terminal tail without secondary structure elements. The structure of maize and wheat ns-LTP is characterized by the existence of a tunnel-like hydrophobic cavity in which a lipid molecule can be inserted. In the Ace-AMP1 structure, this cavity is blocked by a number of bulky residues. Similarly, the electrostatic potential contours of ns-LTPs show some common features that were not observed in Ace-AMP1. CONCLUSIONS Although Ace-AMP1 displays a similar global fold to ns-LTPs, it does not present a hydrophobic cavity, which may explain why Ace-AMP1 cannot shuttle lipids between membranes in vitro. The large differences in the electrostatic properties of Ace-AMP1 and ns-LTPs suggest a different mode of interaction with membranes.
Collapse
Affiliation(s)
- J Gomar
- Centre de Biophysique Moleculaire, Orléans, France
| | | | | | | |
Collapse
|
38
|
Sankararamakrishnan R, Adcock C, Sansom MS. The pore domain of the nicotinic acetylcholine receptor: molecular modeling, pore dimensions, and electrostatics. Biophys J 1996; 71:1659-71. [PMID: 8889144 PMCID: PMC1233636 DOI: 10.1016/s0006-3495(96)79370-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The pore domain of the nicotinic acetylcholine receptor has been modeled as a bundle of five kinked M2 helices. Models were generated via molecular dynamics simulations incorporating restraints derived from 9-A resolution cryoelectron microscopy data (Unwin, 1993; 1995), and from mutagenesis data that identify channel-lining side chains. Thus, these models conform to current experimental data but will require revision as higher resolution data become available. Models of the open and closed states of a homopentameric alpha 7 pore are compared. The minimum radius of the closed-state model is less than 2 A; the minimum radius of the open-state models is approximately 6 A. It is suggested that the presence of "bound" water molecules within the pore may reduce the effective minimum radii below these values by up to approximately 3 A. Poisson-Boltzmann calculations are used to obtain a first approximation to the potential energy of a monovalent cation as it moves along the pore axis. The differences in electrostatic potential energy profiles between the open-state models of alpha 7 and of a mutant of alpha 7 are consistent with the experimentally observed change in ion selectivity from cationic to anionic. Models of the open state of the heteropentameric Torpedo nicotinic acetylcholine receptor pore domain are also described. Relatively small differences in pore radius and electrostatic potential energy profiles are seen when the Torpedo and alpha 7 models are compared.
Collapse
|
39
|
Shen L, Bruccoleri RE, Krystek S, Novotny J. Factors influencing accuracy of computer-built models: a study based on leucine zipper GCN4 structure. Biophys J 1996; 70:1096-104. [PMID: 8785269 PMCID: PMC1225039 DOI: 10.1016/s0006-3495(96)79675-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A three-dimensional model of the leucine zipper GCN4 built from its amino acid sequence had been reported previously by us. When the two alternative x-ray structures of the GCN4 dimer became available, the root mean square (r.m.s.) shifts between our model and the structures were determined as approximately 2.7 A on all atoms. These values are similar to the r.m.s. shift of 2.8 A between the two GCN4 structures in the different crystal forms (C2 and P2(1)2(1)2(1)). CONGEN conformational searches were run to better understand the conditions that may determine the preference of different conformers in different environments and to test the sensitivity of our current modeling techniques. With a judicious choice of CONGEN search parameters, the backbone r.m.s. deviation improved to 0.8 A and 2.5 A on all atoms. The side-chain conformations of Val and Leu at the helical interface were well reproduced (1.2 A r.m.s.), and the large side-chain misplacements occurred with only a small number of charged amino acids and a tyrosine. Inclusion of the crystal environment (C2 symmetry), as a passive background, into the side-chain conformational search further improved the accuracy of the model to an r.m.s. deviation of 2.1 A. Conformational searches carried out in the two different crystal environments and employing the AMBER protein/DNA forcefield, as implemented in CONGEN, gave the r.m.s. values of 2.2 A (for the C2 symmetry) and 2.5 A (for the P2(1)2(1)2(1) symmetry). In the C2 symmetry crystal, as much as 40% of the surface of each dimer was involved in crystal contacts with other dimers, and the charged residues on the surface often interacted with immobilized water molecules. Thus, occasional large r.m.s. deviations between the model and the x-ray side chains were due to specific conditions that did not occur in solution.
Collapse
Affiliation(s)
- L Shen
- Department of Macromolecular Modeling, Bristol-Myers Squibb Research Institute, Princeton, New Jersey 08543-4000, USA
| | | | | | | |
Collapse
|
40
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|
41
|
Breed J, Kerr ID, Sankararamakrishnan R, Sansom MS. Packing interactions of Aib-containing helices: molecular modeling of parallel dimers of simple hydrophobic helices and of alamethicin. Biopolymers 1995; 35:639-55. [PMID: 7766829 DOI: 10.1002/bip.360350610] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
alpha-Aminoisobutyric acid (Aib) is a helicogenic alpha, alpha-dimethyl amino acid found in channel-forming peptaibols such as alamethicin. Possible effects of Aib on helix-helix packing are analyzed. Simulated annealing via restrained molecular dynamics is used to generate ensembles of approximately parallel helix dimers. Analysis of variations in geometrical and energetic parameters within ensembles defines how tightly a pair of helices interact. Simple hydrophobic helix dimers are compared: Ala20, Leu20, Aib20, and P20, the latter a simple channel-forming peptide [G. Menestrina, K.P. Voges, G. Jung, and G. Boheim (1986) Journal of Membrane Biology, Vol. 93, pp. 111-132]. Ala20 and Leu20 dimers exhibit well-defined ridges-in-grooves packing with helix crossing angles (omega) of the order of +20 degrees. Aib20 alpha-helix dimers are much more loosely packed, as evidenced by a wide range of omega values and small helix-helix interaction energies. However, when in a 3(10) conformation Aib20 helices pack in three well-defined parallel modes, with omega ca. -15 degrees, +5 degrees, and 10 degrees. Comparison of helix-helix interaction energies suggests that dimerization may favor the 3(10) conformation. P20, with 8 Aib residues, also shows looser packing of alpha-helices. The results of these studies of hydrophobic helix dimers are analyzed in the context of the ridges-in-grooves packing model. Simulations are extended to dimers of alamethicin, and of an alamethicin derivative in which all Aib residues are replaced by Leu. This substitution has little effect on helix-helix packing. Rather, such interactions appear to be sensitive to interactions between polar side chains. Overall, the results suggest that Aib may modulate the packing of simple hydrophobic helices, in favor of looser interactions. For more complex amphipathic helices, interactions between polar side chains may be more critical.
Collapse
Affiliation(s)
- J Breed
- Laboratory of Molecular Biophysics, University of Oxford, England
| | | | | | | |
Collapse
|
42
|
Sansom MS, Son HS, Sankararamakrishnan R, Kerr ID, Breed J. Seven-helix bundles: molecular modeling via restrained molecular dynamics. Biophys J 1995; 68:1295-310. [PMID: 7787019 PMCID: PMC1282025 DOI: 10.1016/s0006-3495(95)80303-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Simulated annealing via restrained molecular dynamics (SA/MD) has been used to model compact bundles of seven approximately (anti)parallel alpha-helices. Seven such helix bundles occur, e.g., in bacteriorhodopsin, in rhodopsin, and in the channel-forming N-terminal domain of Bacillus thuringiensis delta-endotoxin. Two classes of model are considered: (a) those consisting of seven Ala20 peptide chains; and (b) those containing a single polypeptide chain, made up of seven Ala20 helices linked by GlyN interhelix loops (where N = 5 or 10). Three different starting C alpha templates for SA/MD are used, in which the seven helices are arranged (a) on a left-handed circular template, (b) on a bacteriorhodopsin-like template, or (c) on a zig-zag template. The ensembles of models generated by SA/MD are analyzed in terms of their geometry and energetics, and the most stable structures from each ensemble are examined in greater detail. Structures resembling bacteriorhodopsin and structures resembling delta-endotoxin are both represented among the most stable structures. delta-Endotoxin-like structures arise from both circular and bacteriorhodopsin-like C alpha templates. A third helix-packing mode occurs several times among the stable structures, regardless of the C alpha template and of the presence or absence of interhelix loops. It is characterized by a "4 + 1" core, in which four helices form a distorted left-handed supercoil around a central, buried helix. The remaining two helices pack onto the outside of the core. This packing mode is comparable with that proposed for rhodopsin on the basis of two-dimensional electron crystallographic and sequence analysis studies.
Collapse
Affiliation(s)
- M S Sansom
- Laboratory of Molecular Biophysics, University of Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
43
|
Kohn WD, Kay CM, Hodges RS. Protein destabilization by electrostatic repulsions in the two-stranded alpha-helical coiled-coil/leucine zipper. Protein Sci 1995; 4:237-50. [PMID: 7757012 PMCID: PMC2143052 DOI: 10.1002/pro.5560040210] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The destabilizing effect of electrostatic repulsions on protein stability has been studied by using synthetic two-stranded alpha-helical coiled-coils as a model system. The native coiled-coil consists of two identical 35-residue polypeptide chains with a heptad repeat QgVaGbAcLdQeKf and a Cys residue at position 2 to allow formation of an interchain disulfide bridge. This peptide, designed to contain no intrahelical or interhelical electrostatic interactions, forms a stable coiled-coil structure at 20 degrees C in benign medium (50 mM KCl, 25 mM PO4, pH 7) with a [urea]1/2 value of 6.1 M. Four mutant coiled-coils were designed to contain one or two Glu substitutions for Gln per polypeptide chain. The resulting coiled-coils contained potential i to i' + 5 Glu-Glu interchain repulsions (denoted as peptide E2(15,20)), i to i' + 2 Glu-Glu interchain repulsions (denoted E2(20,22)), or no interchain ionic interactions (denoted E2(13,22) and E1(20)). The stabilities of the coiled-coils were determined by measuring the ellipticities at 222 nm as a function of urea or guanidine hydrochloride concentration at 20 degrees C in the presence and absence of an interchain disulfide bridge. At pH 7, in the presence of urea, the stabilities of E2(13,22) and E2(20,22) were identical suggesting that the potential i to i' + 2 interchain Glu-Glu repulsion in the E2(20,22) coiled-coil does not occur. In contrast, the mutant E2(15,20) is substantially less stable than E2(13,22) or E2(15,20) by 0.9 kcal/mol due to the presence of two i to i' + 5 interchain Glu-Glu repulsions, which destabilize the coiled-coil by 0.45 kcal/mol each. At pH 3 the coiled-coils were found to increase in stability as the number of Glu substitutions were increased. This, combined with reversed-phase HPLC results at pH 7 and pH 2, supports the conclusion that the protonated Glu side chains present at low pH are significantly more hydrophobic than Gln side chains which are in turn more hydrophobic than the ionized Glu side chains present at neutral pH. The protonated Glu residues increase the hydrophobicity of the coiled-coil interface leading to higher coiled-coil stability. The guanidine hydrochloride results at pH 7 show similar stabilities between the native and mutant coiled-coils indicating that guanidine hydrochloride masks electrostatic repulsions due to its ionic nature and that Glu and Gln in the e and g positions of the heptad repeat have very similar effects on coiled-coil stability in the presence of GdnHCl.
Collapse
Affiliation(s)
- W D Kohn
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
44
|
Horne TJ, Doak DG, Rayne RC, Balacco G, O'Shea M, Campbell ID. A model for the structure of a homodimeric prohormone: the precursor to the locust neuropeptide AKH I. Proteins 1994; 20:356-66. [PMID: 7731954 DOI: 10.1002/prot.340200408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have determined the structure in solution of a homodimeric protein that is a precursor to the locust neuropeptide adipokinetic hormone I using nuclear magnetic resonance spectroscopy. This precursor, called P1, is comprised of two 41 residue strands joined by a single inter-chain disulphide at Cys39. We have also determined the structure of an end product of P1 processing, called APRP1; this is a homodimer comprised of residues 14-41 of P1. Nuclear Overhauser Effect (nOe) data indicate that in both P1 and APRP1, residues 22-37 (numbered with respect to P1) form pairs of alpha-helices, with no evidence for any other secondary structure.
Collapse
Affiliation(s)
- T J Horne
- Department of Biochemistry, University of Oxford, England
| | | | | | | | | | | |
Collapse
|
45
|
DeLano WL, Brünger AT. Helix packing in proteins: prediction and energetic analysis of dimeric, trimeric, and tetrameric GCN4 coiled coil structures. Proteins 1994; 20:105-23. [PMID: 7846022 DOI: 10.1002/prot.340200202] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A simulated annealing method for atomic resolution structure prediction of alpha-helical coiled coil proteins is described which draws upon knowledge of the oligomerization state, the helix directionality, and the properties of heptad repeat sequences. Unknown structural parameters, such as the coiled coil twist angle and the side chain conformations, are heavily sampled while allowing for flexibility in the helix backbone geometry. Structures of the wild-type GCN4 dimer [O'Shea et al., Science 254:539-544, 1991] and a mutant tetramer [Harbury et al., Science 292:1401-1407, 1993] have been generated and compared with the X-ray crystal structures. The wild-type dimer model has a root mean square coordinate deviation from the crystal structure of 0.73 A for nonhydrogen atoms in the dimerization interface. Structures of a mutant dimer and a mutant trimer have been predicted. Packing energetics were analyzed for core leucine and isoleucine side chains in dimeric and tetrameric coiled coils. Strong packing preferences were found in the dimers but not in the tetramers. Thus, packing in the dimer may be responsible for the switch from a two-stranded to a four-stranded coiled coil caused by the GCN4 leucine zipper mutations.
Collapse
Affiliation(s)
- W L DeLano
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520
| | | |
Collapse
|
46
|
Kerr ID, Sankararamakrishnan R, Smart OS, Sansom MS. Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics. Biophys J 1994; 67:1501-15. [PMID: 7529585 PMCID: PMC1225513 DOI: 10.1016/s0006-3495(94)80624-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A parallel bundle of transmembrane (TM) alpha-helices surrounding a central pore is present in several classes of ion channel, including the nicotinic acetylcholine receptor (nAChR). We have modeled bundles of hydrophobic and of amphipathic helices using simulated annealing via restrained molecular dynamics. Bundles of Ala20 helices, with N = 4, 5, or 6 helices/bundle were generated. For all three N values the helices formed left-handed coiled coils, with pitches ranging from 160 A (N = 4) to 240 A (N = 6). Pore radius profiles revealed constrictions at residues 3, 6, 10, 13, and 17. A left-handed coiled coil and a similar pattern of pore constrictions were observed for N = 5 bundles of Leu20. In contrast, N = 5 bundles of Ile20 formed right-handed coiled coils, reflecting loosened packing of helices containing beta-branched side chains. Bundles formed by each of two classes of amphipathic helices were examined: (a) M2a, M2b, and M2c derived from sequences of M2 helices of nAChR; and (b) (LSSLLSL)3, a synthetic channel-forming peptide. Both classes of amphipathic helix formed left-handed coiled coils. For (LSSLLSL)3 the pitch of the coil increased as N increased from 4 to 6. The M2c N = 5 helix bundle is discussed in the context of possible models of the pore domain of nAChR.
Collapse
Affiliation(s)
- I D Kerr
- Laboratory of Molecular Biophysics, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
47
|
Abstract
Although the 'structure from sequence' prediction problem remains fundamentally unsolved, new and promising methods in one, two and three dimensions have reopened the field. Significantly improved one-dimensional prediction of secondary structure from multiple sequence alignments is now in routine use. In the two-dimensional approach, inter-residue contacts can be detected by analysis of correlated mutations, albeit with low accuracy. Finally, three-dimensional methods, in which pseudopotentials or information values are derived from the databases, are proving their value for distinguishing between correct and incorrect models.
Collapse
Affiliation(s)
- B Rost
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
48
|
Abagyan R, Totrov M, Kuznetsov D. ICM?A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J Comput Chem 1994. [DOI: 10.1002/jcc.540150503] [Citation(s) in RCA: 1249] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Abstract
The membrane-spanning portions of many integral membrane proteins consist of one or a number of transmembrane α-helices, which are expected to be independently stable on thermodynamic grounds. Side-by-side interactions between these transmembrane α-helices are important in the folding and assembly of such integral membrane proteins and their complexes. In considering the contribution of these helix–helix interactions to membrane protein folding and oligomerization, a distinction between the energetics and specificity should be recognized. A number of contributions to the energetics of transmembrane helix association within the lipid bilayer will be relatively non-specific, including those resulting from charge–charge interactions and lipid–packing effects. Specificity (and part of the energy) in transmembrane α-helix association, however, appears to rely mainly upon a detailed stereochemical fit between sets of dynamically accessible states of particular helices. In some cases, these interactions are mediated in part by prosthetic groups.
Collapse
Affiliation(s)
- M A Lemmon
- Department of Pharmacology, New York University Medical Center, NY 10016
| | | |
Collapse
|
50
|
|