1
|
Fotopoulou E, Lykogianni M, Papadimitriou E, Mavrikou S, Machera K, Kintzios S, Thomaidou D, Aliferis ΚΑ. Mining the effect of the neonicotinoids imidacloprid and clothianidin on the chemical homeostasis and energy equilibrium of primary mouse neural stem/progenitor cells using metabolomics. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104617. [PMID: 32711778 DOI: 10.1016/j.pestbp.2020.104617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
The projection of plant protection products' (PPPs) toxicity to non-target organisms at early stages of their development is challenging and demanding. Recent developments in bioanalytics, however, have facilitated the study of fluctuations in the metabolism of biological systems in response to treatments with bioactives and the discovery of corresponding toxicity biomarkers. Neonicotinoids are improved insecticides that target nicotinic acetylocholine receptors (nAChR) in insects which are similar to mammals. Nonetheless, they have sparked controversy due to effects on non-target organisms. Within this context, mammalian cell cultures represent ideal systems for the development of robust models for the dissection of PPPs' toxicity. Thus, we have investigated the toxicity of imidacloprid, clothianidin, and their mixture on primary mouse (Mus musculus) neural stem/progenitor (NSPCs) and mouse neuroblastoma-derived Neuro-2a (N2a) cells, and the undergoing metabolic changes applying metabolomics. Results revealed that NSPCs, which in vitro resemble those that reside in the postnatal and adult central nervous system, are five to seven-fold more sensitive than N2a to the applied insecticides. The energy equilibrium of NSPCs was substantially altered, as it is indicated by fluctuations of metabolites involved in energy production (e.g. glucose, lactate), Krebs cycle intermediates, and fatty acids, which are important components of cell membranes. Such evidence plausibly suggests a switch of cells' energy-producing mechanism to the direct metabolism of glucose to lactate in response to insecticides. The developed pipeline could be further exploited in the discovery of unintended effects of PPPs at early steps of development and for regulatory purposes.
Collapse
Affiliation(s)
- E Fotopoulou
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - M Lykogianni
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; Laboratory of Biological Control of Pesticides, Benaki Phytopathological Institute, St. Delta 8, 14561 Kifissia, Greece
| | - E Papadimitriou
- Neural Stem Cells and Neuroimaging Group, Neurobiology, Hellenic Pasteur Institute, Vasilissis Sofias 127, 11521 Athens, Greece
| | - S Mavrikou
- Laboratory of Cell Technology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - K Machera
- Laboratory of Toxicological Control of Pesticides, Benaki Phytopathological Institute, St. Delta 8, 14561 Kifissia, Greece
| | - S Kintzios
- Laboratory of Cell Technology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - D Thomaidou
- Neural Stem Cells and Neuroimaging Group, Neurobiology, Hellenic Pasteur Institute, Vasilissis Sofias 127, 11521 Athens, Greece.
| | - Κ Α Aliferis
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; Department of Plant Science, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9C, Canada.
| |
Collapse
|
2
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
3
|
Characterization of multidrug transporter-mediated efflux of avermectins in human and mouse neuroblastoma cell lines. Toxicol Lett 2015; 235:189-98. [DOI: 10.1016/j.toxlet.2015.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 01/16/2023]
|