5
|
Paech D, Weckesser N, Franke VL, Breitling J, Görke S, Deike-Hofmann K, Wick A, Scherer M, Unterberg A, Wick W, Bendszus M, Bachert P, Ladd ME, Schlemmer HP, Korzowski A. Whole-Brain Intracellular pH Mapping of Gliomas Using High-Resolution 31P MR Spectroscopic Imaging at 7.0 T. Radiol Imaging Cancer 2024; 6:e220127. [PMID: 38133553 PMCID: PMC10825708 DOI: 10.1148/rycan.220127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023]
Abstract
Malignant tumors commonly exhibit a reversed pH gradient compared with normal tissue, with a more acidic extracellular pH and an alkaline intracellular pH (pHi). In this prospective study, pHi values in gliomas were quantified using high-resolution phosphorous 31 (31P) spectroscopic MRI at 7.0 T and were used to correlate pHi alterations with histopathologic findings. A total of 12 participants (mean age, 58 years ± 18 [SD]; seven male, five female) with histopathologically proven, newly diagnosed glioma were included between September 2018 and November 2019. The 31P spectroscopic MRI scans were acquired using a double-resonant 31P/1H phased-array head coil together with a three-dimensional (3D) 31P chemical shift imaging sequence (5.7-mL voxel volume) performed with a 7.0-T whole-body system. The 3D volumetric segmentations were performed for the whole-tumor volumes (WTVs); tumor subcompartments of necrosis, gadolinium enhancement, and nonenhancing T2 (NCE T2) hyperintensity; and normal-appearing white matter (NAWM), and pHi values were compared. Spearman correlation was used to assess association between pHi and the proliferation index Ki-67. For all study participants, mean pHi values were higher in the WTV (7.057 ± 0.024) compared with NAWM (7.006 ± 0.012; P < .001). In eight participants with high-grade gliomas, pHi was increased in all tumor subcompartments (necrosis, 7.075 ± 0.033; gadolinium enhancement, 7.075 ± 0.024; NCE T2 hyperintensity, 7.043 ± 0.015) compared with NAWM (7.004 ± 0.014; all P < .01). The pHi values of WTV positively correlated with Ki-67 (R2 = 0.74, r = 0.78, P = .001). In conclusion, 31P spectroscopic MRI at 7.0 T enabled high-resolution quantification of pHi in gliomas, with pHi alteration associated with the Ki-67 proliferation index, and may aid in diagnosis and treatment monitoring. Keywords: 31P MRSI, pH, Glioma, Glioblastoma, Ultra-High-Field MRI, Imaging Biomarker, 7 Tesla Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
| | | | - Vanessa L. Franke
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes Breitling
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Steffen Görke
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Katerina Deike-Hofmann
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Antje Wick
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Moritz Scherer
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Unterberg
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Bachert
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Mark E. Ladd
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Korzowski
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
15
|
Hannen R, Selmansberger M, Hauswald M, Pagenstecher A, Nist A, Stiewe T, Acker T, Carl B, Nimsky C, Bartsch JW. Comparative Transcriptomic Analysis of Temozolomide Resistant Primary GBM Stem-Like Cells and Recurrent GBM Identifies Up-Regulation of the Carbonic Anhydrase CA2 Gene as Resistance Factor. Cancers (Basel) 2019; 11:cancers11070921. [PMID: 31262047 PMCID: PMC6678269 DOI: 10.3390/cancers11070921] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 01/03/2023] Open
Abstract
About 95% of patients with Glioblastoma (GBM) show tumor relapse, leaving them with limited therapeutic options as recurrent tumors are most often resistant to the first line chemotherapy standard Temozolomide (TMZ). To identify molecular pathways involved in TMZ resistance, primary GBM Stem-like Cells (GSCs) were isolated, characterized, and selected for TMZ resistance in vitro. Subsequently, RNA sequencing analysis was performed and revealed a total of 49 differentially expressed genes (|log2-fold change| > 0.5 and adjusted p-value < 0.1) in TMZ resistant stem-like cells compared to their matched DMSO control cells. Among up-regulated genes, we identified carbonic anhydrase 2 (CA2) as a candidate gene correlated with glioma malignancy and patient survival. Notably, we describe consistent up-regulation of CA2 not only in TMZ resistant GSCs on mRNA and protein level, but also in patient-matched clinical samples of first manifest and recurrent tumors. Co-treatment with the carbonic anhydrase inhibitor Acetazolamid (ACZ) sensitized cells to TMZ induced cell death. Cumulatively, our findings illustrate the potential of CA2 as a chemosensitizing target in recurrent GBM and provide a rationale for a therapy associated inhibition of CA2 to overcome TMZ induced chemoresistance.
Collapse
Affiliation(s)
- Ricarda Hannen
- Department of Neurosurgery, UKGM, Philipps University Marburg, Baldingerstraße, 35033 Marburg, Germany
| | - Martin Selmansberger
- Department of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Maria Hauswald
- Department of Neurosurgery, UKGM, Philipps University Marburg, Baldingerstraße, 35033 Marburg, Germany
| | - Axel Pagenstecher
- Department of Neuropathology, UKGM, Philipps University Marburg, Baldingerstraße, 35033 Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
- Institute of Molecular Oncology, member of the German Center for Lung Research (DZL), Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Till Acker
- Institute for Neuropathology, Justus-Liebig University Gießen, Arndtstr. 16, 35392 Gießen, Germany
| | - Barbara Carl
- Department of Neurosurgery, UKGM, Philipps University Marburg, Baldingerstraße, 35033 Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, UKGM, Philipps University Marburg, Baldingerstraße, 35033 Marburg, Germany
| | - Jörg Walter Bartsch
- Department of Neurosurgery, UKGM, Philipps University Marburg, Baldingerstraße, 35033 Marburg, Germany.
| |
Collapse
|