1
|
Albanese F, Domenicale C, Mercatelli D, Brugnoli A, Dovero S, Bezard E, Morari M. Viral mediated α-synuclein overexpression results in greater transgene levels and α-synuclein overload in mice bearing kinase dead mutation of LRRK2. Sci Rep 2025; 15:9992. [PMID: 40121347 PMCID: PMC11929741 DOI: 10.1038/s41598-025-94165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
The relationship between LRRK2 mutations and susceptibility to synuclein pathology in Parkinson's disease (PD) is still unclear. We here investigate whether the mice carrying the D1994S kinase-dead (KD) mutation of LRRK2 show enhanced susceptibility to synucleinopathy. Twelve-month-old LRRK2 KD and WT mice were injected with AAV2/9 carrying human A53T α-synuclein (AAV-h-A53Tα-syn) or AAV2/9-GFP as a control. Three months after injection, α-synuclein pathology and nigrostriatal dopaminergic neuron degeneration were assessed along with motor behaviour. AAV-h-A53Tα-syn-injected LRRK2 KD mice showed a decline in stepping activity in the drag test compared to baseline levels and AAV-GFP-injected controls. This was associated with higher transgene levels and Serine129 α-syn phosphorylation in striatum and substantia nigra measured by immunohistochemistry. Total α-synuclein levels were also elevated in the substantia nigra but not striatum of AAV-h-A53Tα-syn LRRK2 KD mice compared to AAV-h-A53Tα-syn controls. Stereological counting of nigral dopaminergic neurons and densitometric analysis of striatal dopaminergic terminals did not reveal overt nigrostriatal degeneration. We conclude that silencing of kinase activity results in greater α-syn load due to greater viral transduction and/or defective α-syn clearance, possibly related to autophagy-lysosomal pathway impairment, however, with no consequence upon dopaminergic neuron survival in the mouse.
Collapse
Affiliation(s)
- Federica Albanese
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Chiara Domenicale
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Daniela Mercatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Alberto Brugnoli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Sandra Dovero
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, 33000, Bordeaux, France
| | - Erwan Bezard
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, 33000, Bordeaux, France
| | - Michele Morari
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy.
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti, 2, 35131, Padova, Italy.
| |
Collapse
|
2
|
Mercatelli D, Brugnoli A, Di Maio A, Albanese F, Shimshek DR, Usiello A, Morari M. Enhancement of D1 dopaminergic responses in aged LRRK2 G2019S knock-in mice. Neurobiol Dis 2025; 208:106881. [PMID: 40120831 DOI: 10.1016/j.nbd.2025.106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
LRRK2 G2019S is associated with familial and sporadic Parkinson's disease and G2019S knock-in mice represent a valuable model to study early changes of basal ganglia transmission associated with Parkinson's disease. Here, we performed behavioral, biochemical and neurochemical analysis in 3-month-old and 12-month-old G2019S knock-in (KI) mice to investigate whether the G2019S mutation is associated with changes of D1 transmission during ageing. Behavioral analysis revealed no difference across genotypes at 3 months but elevated grooming activity in 12-month-old G2019S KI mice compared to wild-type and LRRK2 kinase-dead mice. Immunoblotting revealed a two-fold increase of the levels of phosphorylated GluA1 subunit of the AMPA receptor in 12-month-old G2019S KI mice challenged with the D1 receptor agonist SKF-81297 (5 mg/Kg), compared to wild-type mice. In vivo dual probe microdialysis revealed elevations of basal striatal and nigral extracellular glutamate levels and reduction of nigral GABA levels in 12-month-old G2019S KI mice. Systemic administration of the D1 receptor agonist SKF-81297 did not affect neurotransmitter release whereas reverse dialysis of the D1 receptor antagonist SCH-23390 (10-1000 nM) elevated striatal GABA release in 12-month-old G2019S KI but not wild-type mice. Intrastriatal SCH-233390 was also associated with a prolonged reduction of glutamate release in the substantia nigra reticulata in both genotypes. Finally, 12-month-old G2019S KI mice showed a more prolonged hypokinetic response to intraperitoneal administration of SCH-23390 (1 mg/Kg) compared to wild-type mice. We conclude that the LRRK2 G2019S mutation is associated with age-dependent enhancement of D1 dopaminergic responses, possibly due to elevated endogenous D1 transmission in striatum, that might be instrumental to sustain motor and cognitive function over ageing and help explain the slower and more benign course of G2019S-associated Parkinson's disease.
Collapse
Affiliation(s)
- Daniela Mercatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, 44121 Ferrara, Italy.
| | - Alberto Brugnoli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| | - Anna Di Maio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy; Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate "Franco Salvatore", Naples, Italy.
| | - Federica Albanese
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| | - Derya R Shimshek
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland.
| | - Alessandro Usiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy; Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate "Franco Salvatore", Naples, Italy.
| | - Michele Morari
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
3
|
Nyarko-Danquah I, Pajarillo E, Kim S, Digman A, Multani HK, Ajayi I, Son DS, Aschner M, Lee E. Microglial Sp1 induced LRRK2 upregulation in response to manganese exposure, and 17β-estradiol afforded protection against this manganese toxicity. Neurotoxicology 2024; 103:105-114. [PMID: 38857675 DOI: 10.1016/j.neuro.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
Chronic exposure to elevated levels of manganese (Mn) causes a neurological disorder referred to as manganism, presenting symptoms similar to those of Parkinson's disease (PD), yet the mechanisms by which Mn induces its neurotoxicity are not completely understood. 17β-estradiol (E2) affords neuroprotection against Mn toxicity in various neural cell types including microglia. Our previous studies have shown that leucine-rich repeat kinase 2 (LRRK2) mediates Mn-induced inflammatory toxicity in microglia. The LRRK2 promoter sequences contain three putative binding sites of the transcription factor (TF), specificity protein 1 (Sp1), which increases LRRK2 promoter activity. In the present study, we tested if the Sp1-LRRK2 pathway plays a role in both Mn toxicity and the protection afforded by E2 against Mn toxicity in BV2 microglial cells. The results showed that Mn induced cytotoxicity, oxidative stress, and tumor necrosis factor-α production, which were attenuated by an LRRK2 inhibitor, GSK2578215A. The overexpression of Sp1 increased LRRK2 promoter activity, mRNA and protein levels, while inhibition of Sp1 with its pharmacological inhibitor, mithramycin A, attenuated the Mn-induced increases in LRRK2 expression. Furthermore, E2 attenuated the Mn-induced Sp1 expression by decreasing the expression of Sp1 via the promotion of the ubiquitin-dependent degradation pathway, which was accompanied by increased protein levels of RING finger protein 4, the E3-ligase of Sp1, Sp1 ubiquitination, and SUMOylation. Taken together, our novel findings suggest that Sp1 serves as a critical TF in Mn-induced LRRK2 expression as well as in the protection afforded by E2 against Mn toxicity through reduction of LRRK2 expression in microglia.
Collapse
Affiliation(s)
- Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Alexis Digman
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Harpreet Kaur Multani
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Itunu Ajayi
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
| |
Collapse
|
4
|
Østergaard FG. Knocking out the LRRK2 gene increases sensitivity to wavelength information in rats. Sci Rep 2024; 14:4984. [PMID: 38424139 PMCID: PMC10904730 DOI: 10.1038/s41598-024-55350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a gene related to familial Parkinson's disease (PD). It has been associated with nonmotor symptoms such as disturbances in the visual system affecting colour discrimination and contrast sensitivity. This study examined how deficiency of LRRK2 impacts visual processing in adult rats. Additionally, we investigated whether these changes can be modelled in wild-type rats by administering the LRRK2 inhibitor PFE360. Visual evoked potentials (VEPs) and steady-state visual evoked potentials (SSVEPs) were recorded in the visual cortex and superior colliculus of female LRRK2-knockout and wild-type rats to study how the innate absence of LRRK2 changes visual processing. Exposing the animals to stimulation at five different wavelengths revealed an interaction between genotype and the response to stimulation at different wavelengths. Differences in VEP amplitudes and latencies were robust and barely impacted by the presence of the LRRK2 inhibitor PFE360, suggesting a developmental effect. Taken together, these results indicate that alterations in visual processing were related to developmental deficiency of LRRK2 and not acute deficiency of LRRK2, indicating a role of LRRK2 in the functional development of the visual system and synaptic transmission.
Collapse
Affiliation(s)
- Freja Gam Østergaard
- H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark.
- GELIFES, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
5
|
Domenicale C, Magnabosco S, Morari M. Modeling Parkinson's disease in LRRK2 rodents. Neuronal Signal 2023; 7:NS20220040. [PMID: 37601008 PMCID: PMC10432857 DOI: 10.1042/ns20220040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with familial and sporadic forms of Parkinson's disease (PD). Sporadic PD and LRRK2 PD share main clinical and neuropathological features, namely hypokinesia, degeneration of nigro-striatal dopamine neurons and α-synuclein aggregates in the form of Lewy bodies. Animals harboring the most common LRRK2 mutations, i.e. p.G2019S and p.R1441C/G, have been generated to replicate the parkinsonian phenotype and investigate the underlying pathogenic mechanisms. Disappointingly, however, LRRK2 rodents did not consistently phenocopy hypokinesia and nigro-striatal degeneration, or showed Lewy body-like aggregates. Instead, LRRK2 rodents manifested non-motor signs and dysregulated transmission at dopaminergic and non-dopaminergic synapses that are reminiscent of behavioral and functional network changes observed in the prodromal phase of the disease. LRRK2 rodents also manifested greater susceptibility to different parkinsonian toxins or stressors when subjected to dual-hit or multiple-hit protocols, confirming LRRK2 mutations as genetic risk factors. In conclusion, LRRK2 rodents represent a unique tool to identify the molecular mechanisms through which LRRK2 modulates the course and clinical presentations of PD and to study the interplay between genetic, intrinsic and environmental protective/risk factors in PD pathogenesis.
Collapse
Affiliation(s)
- Chiara Domenicale
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Stefano Magnabosco
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Michele Morari
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Obergasteiger J, Castonguay AM, Pizzi S, Magnabosco S, Frapporti G, Lobbestael E, Baekelandt V, Hicks AA, Pramstaller PP, Gravel C, Corti C, Lévesque M, Volta M. The small GTPase Rit2 modulates LRRK2 kinase activity, is required for lysosomal function and protects against alpha-synuclein neuropathology. NPJ Parkinsons Dis 2023; 9:44. [PMID: 36973269 PMCID: PMC10042831 DOI: 10.1038/s41531-023-00484-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
In Parkinson's disease (PD) misfolded alpha-synuclein (aSyn) accumulates in the substantia nigra, where dopaminergic neurons are progressively lost. The mechanisms underlying aSyn pathology are still unclear, but they are hypothesized to involve the autophagy-lysosome pathway (ALP). LRRK2 mutations are a major cause of familial and sporadic PD, and LRRK2 kinase activity has been shown to be involved in pS129-aSyn inclusion modulation. We observed selective downregulation of the novel PD risk factor RIT2 in vitro and in vivo. Rit2 overexpression in G2019S-LRRK2 cells rescued ALP abnormalities and diminished aSyn inclusions. In vivo, viral mediated overexpression of Rit2 operated neuroprotection against AAV-A53T-aSyn. Furthermore, Rit2 overexpression prevented the A53T-aSyn-dependent increase of LRRK2 kinase activity in vivo. On the other hand, reduction of Rit2 levels leads to defects in the ALP, similar to those induced by the G2019S-LRRK2 mutation. Our data indicate that Rit2 is required for correct lysosome function, inhibits overactive LRRK2 to ameliorate ALP impairment, and counteracts aSyn aggregation and related deficits. Targeting Rit2 could represent an effective strategy to combat neuropathology in familial and idiopathic PD.
Collapse
Affiliation(s)
- Julia Obergasteiger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Anne-Marie Castonguay
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Sara Pizzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Stefano Magnabosco
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Giulia Frapporti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Evy Lobbestael
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000, Leuven, Belgium
| | - Veerle Baekelandt
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000, Leuven, Belgium
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Claude Gravel
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada.
| | - Mattia Volta
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy.
| |
Collapse
|
7
|
Ruz C, Alcantud JL, Vives F, Arrebola F, Hardy J, Lewis PA, Manzoni C, Duran R. Seventy-Two-Hour LRRK2 Kinase Activity Inhibition Increases Lysosomal GBA Expression in H4, a Human Neuroglioma Cell Line. Int J Mol Sci 2022; 23:ijms23136935. [PMID: 35805938 PMCID: PMC9266636 DOI: 10.3390/ijms23136935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in LRRK2 and GBA1 are key contributors to genetic risk of developing Parkinson's disease (PD). To investigate how LRRK2 kinase activity interacts with GBA and contributes to lysosomal dysfunctions associated with the pathology of PD. The activity of the lysosomal enzyme β-Glucocerebrosidase (GCase) was assessed in a human neuroglioma cell model treated with two selective inhibitors of LRKK2 kinase activity (LRRK2-in-1 and MLi-2) and a GCase irreversible inhibitor, condutirol-beta-epoxide (CBE), under 24 and 72 h experimental conditions. We observed levels of GCase activity comparable to controls in response to 24 and 72 h treatments with LRRK2-in-1 and MLi-2. However, GBA protein levels increased upon 72 h treatment with LRRK2-in-1. Moreover, LC3-II protein levels were increased after both 24 and 72 h treatments with LRRK2-in-1, suggesting an activation of the autophagic pathway. These results highlight a possible regulation of lysosomal function through the LRRK2 kinase domain and suggest an interplay between LRRK2 kinase activity and GBA. Although further investigations are needed, the enhancement of GCase activity might restore the defective protein metabolism seen in PD.
Collapse
Affiliation(s)
- Clara Ruz
- Department of Physiology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain; (C.R.); (F.V.)
- Institute of Neurosciences “Federico Olóriz”, Centro de Investigación Biomédica (CIBM), Universidad de Granada, 18016 Granada, Spain; (J.L.A.); (F.A.)
| | - José Luis Alcantud
- Institute of Neurosciences “Federico Olóriz”, Centro de Investigación Biomédica (CIBM), Universidad de Granada, 18016 Granada, Spain; (J.L.A.); (F.A.)
| | - Francisco Vives
- Department of Physiology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain; (C.R.); (F.V.)
- Institute of Neurosciences “Federico Olóriz”, Centro de Investigación Biomédica (CIBM), Universidad de Granada, 18016 Granada, Spain; (J.L.A.); (F.A.)
| | - Francisco Arrebola
- Institute of Neurosciences “Federico Olóriz”, Centro de Investigación Biomédica (CIBM), Universidad de Granada, 18016 Granada, Spain; (J.L.A.); (F.A.)
- Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; (J.H.); (P.A.L.)
| | - Patrick A. Lewis
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; (J.H.); (P.A.L.)
- Department of Comparative Biomedical Science, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Claudia Manzoni
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK;
| | - Raquel Duran
- Department of Physiology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain; (C.R.); (F.V.)
- Institute of Neurosciences “Federico Olóriz”, Centro de Investigación Biomédica (CIBM), Universidad de Granada, 18016 Granada, Spain; (J.L.A.); (F.A.)
- Correspondence:
| |
Collapse
|
8
|
Dopamine Transporter, PhosphoSerine129 α-Synuclein and α-Synuclein Levels in Aged LRRK2 G2019S Knock-In and Knock-Out Mice. Biomedicines 2022; 10:biomedicines10040881. [PMID: 35453631 PMCID: PMC9027615 DOI: 10.3390/biomedicines10040881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
The G2019S mutation in leucine rich-repeat kinase 2 (LRRK2) is a major cause of familial Parkinson’s disease. We previously reported that G2019S knock-in mice manifest dopamine transporter dysfunction and phosphoSerine129 α-synuclein (pSer129 α-syn) immunoreactivity elevation at 12 months of age, which might represent pathological events leading to neuronal degeneration. Here, the time-dependence of these changes was monitored in the striatum of 6, 9, 12, 18 and 23-month-old G2019S KI mice and wild-type controls using DA uptake assay, Western analysis and immunohistochemistry. Western analysis showed elevation of membrane dopamine transporter (DAT) levels at 9 and 12 months of age, along with a reduction of vesicular monoamine transporter 2 (VMAT2) levels at 12 months. DAT uptake was abnormally elevated from 9 to up to 18 months. DAT and VMAT2 level changes were specific to the G2019S mutation since they were not observed in LRRK2 kinase-dead or knock-out mice. Nonetheless, dysfunctional DAT uptake was not normalized by acute pharmacological inhibition of LRRK2 kinase activity with MLi-2. Immunoblot analysis showed elevation of pSer129 α-syn levels in the striatum of 12-month-old G2019S KI mice, which, however, was not confirmed by immunohistochemical analysis. Instead, total α-syn immunoreactivity was found elevated in the striatum of 23-month-old LRRK2 knock-out mice. These data indicate mild changes in DA transporters and α-syn metabolism in the striatum of 12-month-old G2019S KI mice whose pathological relevance remains to be established.
Collapse
|
9
|
Modeling Parkinson's disease in LRRK2 mice: focus on synaptic dysfunction and the autophagy-lysosomal pathway. Biochem Soc Trans 2022; 50:621-632. [PMID: 35225340 DOI: 10.1042/bst20211288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/18/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with familial and sporadic forms of Parkinson's disease (PD), for which the LRRK2 locus itself represents a risk factor. Idiopathic and LRRK2-related PD share the main clinical and neuropathological features, thus animals harboring the most common LRRK2 mutations, i.e. G2019S and R1441C/G, have been generated to replicate the parkinsonian phenotype and investigate the underlying pathological mechanisms. Most LRRK2 rodent models, however, fail to show the main neuropathological hallmarks of the disease i.e. the degeneration of dopaminergic neurons in the substantia nigra pars compacta and presence of Lewy bodies or Lewy body-like aggregates of α-synuclein, lacking face validity. Rather, they manifest dysregulation in cellular pathways and functions that confer susceptibility to a variety of parkinsonian toxins/triggers and model the presymptomatic/premotor stages of the disease. Among such susceptibility factors, dysregulation of synaptic activity and proteostasis are evident in LRRK2 mutants. These abnormalities are also manifest in the PD brain and represent key events in the development and progression of the pathology. The present minireview covers recent articles (2018-2021) investigating the role of LRRK2 and LRRK2 mutants in the regulation of synaptic activity and autophagy-lysosomal pathway. These articles confirm a perturbation of synaptic vesicle endocytosis and glutamate release in LRRK2 mutants. Likewise, LRRK2 mutants show a marked impairment of selective forms of autophagy (i.e. mitophagy and chaperone-mediated autophagy) and lysosomal function, with minimal perturbations of nonselective autophagy. Thus, LRRK2 rodents might help understand the contribution of these pathways to PD.
Collapse
|
10
|
Novello S, Mercatelli D, Albanese F, Domenicale C, Brugnoli A, D'Aversa E, Vantaggiato S, Dovero S, Murtaj V, Presotto L, Borgatti M, Shimshek DR, Bezard E, Moresco RM, Belloli S, Morari M. In vivo susceptibility to energy failure parkinsonism and LRRK2 kinase activity. Neurobiol Dis 2021; 162:105579. [PMID: 34871735 DOI: 10.1016/j.nbd.2021.105579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/08/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022] Open
Abstract
The G2019S mutation of LRRK2 represents a risk factor for idiopathic Parkinson's disease. Here, we investigate whether LRRK2 kinase activity regulates susceptibility to the environmental toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). G2019S knock-in mice (bearing enhanced kinase activity) showed greater nigro-striatal degeneration compared to LRRK2 knock-out, LRRK2 kinase-dead and wild-type mice following subacute MPTP treatment. LRRK2 kinase inhibitors PF-06447475 and MLi-2, tested under preventive or therapeutic treatments, protected against nigral dopamine cell loss in G2019S knock-in mice. MLi-2 also rescued striatal dopaminergic terminal degeneration in both G2019S knock-in and wild-type mice. Immunoblot analysis of LRRK2 Serine935 phosphorylation levels confirmed target engagement of LRRK2 inhibitors. However, MLi-2 abolished phosphoSerine935 levels in the striatum and midbrain of both wild-type and G2019S knock-in mice whereas PF-06447475 partly reduced phosphoSerine935 levels in the midbrain of both genotypes. In vivo and ex vivo uptake of the 18-kDa translocator protein (TSPO) ligand [18F]-VC701 revealed a similar TSPO binding in MPTP-treated wild-type and G2019S knock-in mice which was consistent with an increased GFAP striatal expression as revealed by Real Time PCR. We conclude that LRRK2 G2019S, likely through enhanced kinase activity, confers greater susceptibility to mitochondrial toxin-induced parkinsonism. LRRK2 kinase inhibitors are neuroprotective in this model.
Collapse
Affiliation(s)
- Salvatore Novello
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| | - Daniela Mercatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, 44121 Ferrara, Italy.
| | - Federica Albanese
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| | - Chiara Domenicale
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| | - Alberto Brugnoli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| | - Elisabetta D'Aversa
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Silvia Vantaggiato
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Sandra Dovero
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| | - Valentina Murtaj
- Nuclear Medicine Department, San Raffaele Scientific Institute, Milan, Italy; PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy; Medicine and Surgery Department, University of Milano Bicocca, Monza, Italy.
| | - Luca Presotto
- Nuclear Medicine Department, San Raffaele Scientific Institute, Milan, Italy.
| | - Monica Borgatti
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Derya R Shimshek
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland.
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| | - Rosa Maria Moresco
- Nuclear Medicine Department, San Raffaele Scientific Institute, Milan, Italy; Medicine and Surgery Department, University of Milano Bicocca, Monza, Italy; Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy.
| | - Sara Belloli
- Nuclear Medicine Department, San Raffaele Scientific Institute, Milan, Italy; Medicine and Surgery Department, University of Milano Bicocca, Monza, Italy; Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy.
| | - Michele Morari
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
11
|
Constitutive silencing of LRRK2 kinase activity leads to early glucocerebrosidase deregulation and late impairment of autophagy in vivo. Neurobiol Dis 2021; 159:105487. [PMID: 34419621 DOI: 10.1016/j.nbd.2021.105487] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinson's disease. LRRK2 modulates the autophagy-lysosome pathway (ALP), a clearance process subserving the quality control of cellular proteins and organelles. Since dysfunctional ALP might lead to α-synuclein accumulation and, hence, Parkinson's disease, LRRK2 kinase modulation of ALP, its age-dependence and relation with pSer129 α-synuclein inclusions were investigated in vivo. Striatal ALP markers were analyzed by Western blotting in 3, 12 and 20-month-old LRRK2 G2019S knock-in mice (bearing enhanced kinase activity), LRRK2 knock-out mice, LRRK2 D1994S knock-in (kinase-dead) mice and wild-type controls. The lysosomotropic agent chloroquine was used to investigate the autophagic flux in vivo. Quantitative Real-time PCR was used to quantify the transcript levels of key ALP genes. The activity of the lysosomal enzyme glucocerebrosidase was measured using enzymatic assay. Immunohistochemistry was used to co-localize LC3B puncta with pSer129 α-synuclein inclusion in striatal and nigral neurons. No genotype differences in ALP markers were observed at 3 months. Conversely, increase of LC3-I, p62, LAMP2 and GAPDH levels, decrease of p-mTOR levels and downregulation of mTOR and TFEB expression was observed in 12-month-old kinase-dead mice. The LC3-II/I ratio was reduced following administration of chloroquine, suggesting a defective autophagic flux. G2019S knock-in mice showed LAMP2 accumulation and downregulation of ALP key genes MAP1LC3B, LAMP2, mTOR, TFEB and GBA1. Subacute administration of the LRRK2 kinase inhibitor MLi-2 in wild-type and G2019S knock-in mice did not replicate the pattern of kinase-dead mice. Lysosomal glucocerebrosidase activity was increased in 3 and 12-month-old knock-out and kinase-dead mice. LC3B puncta accumulation and pSer129 α-synuclein inclusions were dissociated in striatal neurons of kinase-dead and G2019S knock-in mice. We conclude that constitutive LRRK2 kinase silencing results in early deregulation of GCase activity followed by late impairment of macroautophagy and chaperone-mediated autophagy.
Collapse
|
12
|
Viaro R, Longo F, Vincenzi F, Varani K, Morari M. l-DOPA promotes striatal dopamine release through D1 receptors and reversal of dopamine transporter. Brain Res 2021; 1768:147583. [PMID: 34284020 DOI: 10.1016/j.brainres.2021.147583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/08/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
Previous studies have pointed out that l-DOPA can interact with D1 or D2 receptors independent of its conversion to endogenous dopamine. The present study was set to investigate whether l-DOPA modulates dopamine release from striatal nerve terminals, using a preparation of synaptosomes preloaded with [3H]DA. Levodopa (1 µM) doubled the K+-induced [3H]DA release whereas the D2/D3 receptor agonist pramipexole (100 nM) inhibited it. The l-DOPA-evoked facilitation was mimicked by the D1 receptor agonist SKF38393 (30-300 nM) and prevented by the D1/D5 antagonist SCH23390 (100 nM) but not the DA transporter inhibitor GBR12783 (300 nM) or the aromatic l-amino acid decarboxylase inhibitor benserazide (1 µM). Higher l-DOPA concentrations (10 and 100 µM) elevated spontaneous [3H]DA efflux. This effect was counteracted by GBR12783 but not SCH23390. Binding of [3H]SCH23390 in synaptosomes (in test tubes) revealed a dense population of D1 receptors (2105 fmol/mg protein). Both SCH23390 and SKF38393 fully inhibited [3H]SCH23390 binding (Ki 0.42 nM and 29 nM, respectively). l-DOPA displaced [3H]SCH23390 binding maximally by 44% at 1 mM. This effect was halved by addition of GBR12935 and benserazide. We conclude that l-DOPA facilitates exocytotic [3H]DA release through SCH23390-sensitive D1 receptors, independent of its conversion to DA. It also promotes non-exocytotic [3H]DA release, possibly via conversion to DA and reversal of DA transporter. These data confirm that l-DOPA can directly interact with dopamine D1 receptors and might extend our knowledge of the neurobiological mechanisms underlying l-DOPA clinical effects.
Collapse
Affiliation(s)
- Riccardo Viaro
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy; Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, via Fossato di Mortara 19, 44121 Ferrara, Italy
| | - Francesco Longo
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Michele Morari
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy.
| |
Collapse
|
13
|
Pischedda F, Piccoli G. LRRK2 at the pre-synaptic site: A 16-years perspective. J Neurochem 2021; 157:297-311. [PMID: 33206398 DOI: 10.1111/jnc.15240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is a common neurodegenerative disorder and is clinically characterized by bradykinesia, rigidity, and resting tremor. Missense mutations in the leucine-rich repeat protein kinase-2 gene (LRRK2) are a recognized cause of inherited Parkinson's disease. The physiological and pathological impact of LRRK2 is still obscure, but accumulating evidence indicates that LRRK2 orchestrates diverse aspects of membrane trafficking, such as membrane fusion and vesicle formation and transport along actin and tubulin tracks. In the present review, we focus on the special relation between LRRK2 and synaptic vesicles. LRRK2 binds and phosphorylates key actors within the synaptic vesicle cycle. Accordingly, alterations in dopamine and glutamate transmission have been described upon LRRK2 manipulations. However, the different modeling strategies and phenotypes observed require a critical approach to decipher the outcome of LRRK2 at the pre-synaptic site.
Collapse
Affiliation(s)
- Francesca Pischedda
- CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| | - Giovanni Piccoli
- CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| |
Collapse
|
14
|
Divergent Effects of G2019S and R1441C LRRK2 Mutations on LRRK2 and Rab10 Phosphorylations in Mouse Tissues. Cells 2020; 9:cells9112344. [PMID: 33105882 PMCID: PMC7690595 DOI: 10.3390/cells9112344] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in LRRK2 cause familial Parkinson’s disease and common variants increase disease risk. LRRK2 kinase activity and cellular localization are tightly regulated by phosphorylation of key residues, primarily Ser1292 and Ser935, which impacts downstream phosphorylation of its substrates, among which Rab10. A comprehensive characterization of LRRK2 activity and phosphorylation in brain as a function of age and mutations is missing. Here, we monitored Ser935 and Ser1292 phosphorylation in midbrain, striatum, and cortex of 1, 6, and 12 months-old mice carrying G2019S and R1441C mutations or murine bacterial artificial chromosome (BAC)-Lrrk2-G2019S. We observed that G2019S and, at a greater extent, R1441C brains display decreased phospho-Ser935, while Ser1292 autophosphorylation increased in G2019S but not in R1441C brain, lung, and kidney compared to wild-type. Further, Rab10 phosphorylation, is elevated in R1441C carrying mice, indicating that the effect of LRRK2 mutations on substrate phosphorylation is not generalizable. In BAC-Lrrk2-G2019S striatum and midbrain, Rab10 phosphorylation, but not Ser1292 autophosphorylation, decreases at 12-months, pointing to autophosphorylation and substrate phosphorylation as uncoupled events. Taken together, our study provides novel evidence that LRRK2 phosphorylation in mouse brain is differentially impacted by mutations, brain area, and age, with important implications as diagnostic markers of disease progression and stratification.
Collapse
|
15
|
Kuhlmann N, Milnerwood AJ. A Critical LRRK at the Synapse? The Neurobiological Function and Pathophysiological Dysfunction of LRRK2. Front Mol Neurosci 2020; 13:153. [PMID: 32973447 PMCID: PMC7482583 DOI: 10.3389/fnmol.2020.00153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Since the discovery of LRRK2 mutations causal to Parkinson's disease (PD) in the early 2000s, the LRRK2 protein has been implicated in a plethora of cellular processes in which pathogenesis could occur, yet its physiological function remains elusive. The development of genetic models of LRRK2 PD has helped identify the etiological and pathophysiological underpinnings of the disease, and may identify early points of intervention. An important role for LRRK2 in synaptic function has emerged in recent years, which links LRRK2 to other genetic forms of PD, most notably those caused by mutations in the synaptic protein α-synuclein. This point of convergence may provide useful clues as to what drives dysfunction in the basal ganglia circuitry and eventual death of substantia nigra (SN) neurons. Here, we discuss the evolution and current state of the literature placing LRRK2 at the synapse, through the lens of knock-out, overexpression, and knock-in animal models. We hope that a deeper understanding of LRRK2 neurobiology, at the synapse and beyond, will aid the eventual development of neuroprotective interventions for PD, and the advancement of useful treatments in the interim.
Collapse
Affiliation(s)
- Naila Kuhlmann
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Austen J Milnerwood
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Albanese F, Novello S, Morari M. Autophagy and LRRK2 in the Aging Brain. Front Neurosci 2019; 13:1352. [PMID: 31920513 PMCID: PMC6928047 DOI: 10.3389/fnins.2019.01352] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a highly conserved process by which long-lived macromolecules, protein aggregates and dysfunctional/damaged organelles are delivered to lysosomes for degradation. Autophagy plays a crucial role in regulating protein quality control and cell homeostasis in response to energetic needs and environmental challenges. Indeed, activation of autophagy increases the life-span of living organisms, and impairment of autophagy is associated with several human disorders, among which neurodegenerative disorders of aging, such as Parkinson’s disease. These disorders are characterized by the accumulation of aggregates of aberrant or misfolded proteins that are toxic for neurons. Since aging is associated with impaired autophagy, autophagy inducers have been viewed as a strategy to counteract the age-related physiological decline in brain functions and emergence of neurodegenerative disorders. Parkinson’s disease is a hypokinetic, multisystemic disorder characterized by age-related, progressive degeneration of central and peripheral neuronal populations, associated with intraneuronal accumulation of proteinaceous aggregates mainly composed by the presynaptic protein α-synuclein. α-synuclein is a substrate of macroautophagy and chaperone-mediated autophagy (two major forms of autophagy), thus impairment of its clearance might favor the process of α-synuclein seeding and spreading that trigger and sustain the progression of this disorder. Genetic factors causing Parkinson’s disease have been identified, among which mutations in the LRRK2 gene, which encodes for a multidomain protein encompassing central GTPase and kinase domains, surrounded by protein-protein interaction domains. Six LRRK2 mutations have been pathogenically linked to Parkinson’s disease, the most frequent being the G2019S in the kinase domain. LRRK2-associated Parkinson’s disease is clinically and neuropathologically similar to idiopathic Parkinson’s disease, also showing age-dependency and incomplete penetrance. Several mechanisms have been proposed through which LRRK2 mutations can lead to Parkinson’s disease. The present article will focus on the evidence that LRRK2 and its mutants are associated with autophagy dysregulation. Studies in cell lines and neurons in vitro and in LRRK2 knock-out, knock-in, kinase-dead and transgenic animals in vivo will be reviewed. The role of aging in LRRK2-induced synucleinopathy will be discussed. Possible mechanisms underlying the LRRK2-mediated control over autophagy will be analyzed, and the contribution of autophagy dysregulation to the neurotoxic actions of LRRK2 will be examined.
Collapse
Affiliation(s)
- Federica Albanese
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Salvatore Novello
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michele Morari
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|