1
|
Youssef JR, Boraie NA, Ismail FA, Bakr BA, Allam EA, El-Moslemany RM. Brain targeted lactoferrin coated lipid nanocapsules for the combined effects of apocynin and lavender essential oil in PTZ induced seizures. Drug Deliv Transl Res 2024:10.1007/s13346-024-01610-0. [PMID: 38819768 DOI: 10.1007/s13346-024-01610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 06/01/2024]
Abstract
Apocynin (APO) is a plant derived antioxidant exerting specific NADPH oxidase inhibitory action substantiating its neuroprotective effects in various CNS disorders, including epilepsy. Due to rapid elimination and poor bioavailability, treatment with APO is challenging. Correspondingly, novel APO-loaded lipid nanocapsules (APO-LNC) were formulated and coated with lactoferrin (LF-APO-LNC) to improve br ain targetability and prolong residence time. Lavender oil (LAV) was incorporated into LNC as a bioactive ingredient to act synergistically with APO in alleviating pentylenetetrazol (PTZ)-induced seizures. The optimized LF-APO-LAV/LNC showed a particle size 59.7 ± 4.5 nm with narrow distribution and 6.07 ± 1.6mV zeta potential) with high entrapment efficiency 92 ± 2.4% and sustained release (35% in 72 h). Following subcutaneous administration, LF-APO-LAV/LNC brought about ⁓twofold increase in plasma AUC and MRT compared to APO. A Log BB value of 0.2 ± 0.14 at 90 min reflects increased brain accumulation. In a PTZ-induced seizures rat model, LF-APO-LAV/LNC showed a Modified Racine score of 0.67 ± 0.47 with a significant increase in seizures latency and decrease in duration. Moreover, oxidant/antioxidant capacity and inflammatory markers levels in brain tissue were significantly improved. Histopathological and immunohistochemical assessment of brain tissue sections further supported these findings. The results suggest APO/LAV combination in LF-coated LNC as a promising approach to counteract seizures.
Collapse
Affiliation(s)
- Julie R Youssef
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt.
| | - Nabila A Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Fatma A Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21523, Egypt
| | - Eman A Allam
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| |
Collapse
|
2
|
Révész C, Kaucsár T, Godó M, Bocskai K, Krenács T, Mócsai A, Szénási G, Hamar P. Neutrophils and NADPH Oxidases Are Major Contributors to Mild but Not Severe Ischemic Acute Kidney Injury in Mice. Int J Mol Sci 2024; 25:2948. [PMID: 38474193 DOI: 10.3390/ijms25052948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Upregulation of free radical-generating NADPH oxidases (NOX), xanthine oxidoreductase (XOR), and neutrophil infiltration-induced, NOX2-mediated respiratory burst contribute to renal ischemia-reperfusion injury (IRI), but their roles may depend on the severity of IRI. We investigated the role of NOX, XOR, and neutrophils in developing IRI of various severities. C57BL/6 and Mcl-1ΔMyelo neutrophil-deficient mice were used. Oxidases were silenced by RNA interference (RNAi) or pharmacologically inhibited. Kidney function, morphology, immunohistochemistry and mRNA expression were assessed. After reperfusion, the expression of NOX enzymes and XOR increased until 6 h and from 15 h, respectively, while neutrophil infiltration was prominent from 3 h. NOX4 and XOR silencing or pharmacological XOR inhibition did not protect the kidney from IRI. Attenuation of NOX enzyme-induced oxidative stress by apocynin and neutrophil deficiency improved kidney function and ameliorated morphological damage after mild but not moderate/severe IRI. The IR-induced postischemic renal functional impairment (BUN, Lcn-2), tubular necrosis score, inflammation (TNF-α, F4/80), and decreases in the antioxidant enzyme (GPx3) mRNA expression were attenuated by both apocynin and neutrophil deficiency. Inhibition of NOX enzyme-induced oxidative stress or the lack of infiltration by NOX2-expressing neutrophils can attenuate reperfusion injury after mild but not moderate/severe renal IR.
Collapse
Affiliation(s)
- Csaba Révész
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Tamás Kaucsár
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Mária Godó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Krisztián Bocskai
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Tibor Krenács
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
3
|
Lu TL, Wu SN. Investigating the Impact of Selective Modulators on the Renin-Angiotensin-Aldosterone System: Unraveling Their Off-Target Perturbations of Transmembrane Ionic Currents. Int J Mol Sci 2023; 24:14007. [PMID: 37762309 PMCID: PMC10530685 DOI: 10.3390/ijms241814007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) plays a crucial role in maintaining various physiological processes in the body, including blood pressure regulation, electrolyte balance, and overall cardiovascular health. However, any compounds or drugs known to perturb the RAAS might have an additional impact on transmembrane ionic currents. In this retrospective review article, we aimed to present a selection of chemical compounds or medications that have long been recognized as interfering with the RAAS. It is noteworthy that these substances may also exhibit regulatory effects in different types of ionic currents. Apocynin, known to attenuate the angiotensin II-induced activation of epithelial Na+ channels, was shown to stimulate peak and late components of voltage-gated Na+ current (INa). Esaxerenone, an antagonist of the mineralocorticoid receptor, can exert an inhibitory effect on peak and late INa directly. Dexamethasone, a synthetic glucocorticoid, can directly enhance the open probability of large-conductance Ca2+-activated K+ channels. Sparsentan, a dual-acting antagonist of the angiotensin II receptor and endothelin type A receptors, was found to suppress the amplitude of peak and late INa effectively. However, telmisartan, a blocker of the angiotensin II receptor, was effective in stimulating the peak and late INa along with a slowing of the inactivation time course of the current. However, telmisartan's presence can also suppress the erg-mediated K+ current. Moreover, tolvaptan, recognized as an aquaretic agent that can block the vasopressin receptor, was noted to suppress the amplitude of the delayed-rectifier K+ current and the M-type K+ current directly. The above results indicate that these substances not only have an interference effect on the RAAS but also exert regulatory effects on different types of ionic currents. Therefore, to determine their mechanisms of action, it is necessary to gain a deeper understanding.
Collapse
Affiliation(s)
- Te-Ling Lu
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan;
| | - Sheng-Nan Wu
- Department of Research and Education, An Nan Hospital, China Medical University, Tainan 709040, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| |
Collapse
|
4
|
BİLGİÇ Y, KANAT BH, ÖZHAN O, YILDIZ A, AKSUNGUR Z, ERDEMLİ ME, VARDI N, TÜRKÖZ Y, AKBULUT S, KÖSE A, PARLAKPINAR H. Does apocynin increase liver regeneration in the partial hepatectomy model? Turk J Med Sci 2023; 53:647-658. [PMID: 37476910 PMCID: PMC10388095 DOI: 10.55730/1300-0144.5627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 06/19/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Hepayocyte loss may develop secondary to liver surgery and at this point liver regeneration plays a significant act in terms of liver reserve. The purpose of this research was to investigate the efficacy of apocynin on liver regeneration and preservation after partial hepatectomy in rats. METHODS A total of 32 rats, have been divided into 4 groups (n: 8) for hepatectomy model. Inflammatory and antiinflammatory parameters were measured from blood and liver tissue samples. In addition, the effects of apocynin were examined immunohistochemically and histopathologically from liver tissue. RESULTS In liver tissue samples, a significant difference has been found in glutathione peroxidase, total nitrite, catalase, oxidative stress index, total antioxidant and total oxidant status between sham and hepatectomy groups. A significant difference has been achieved between hepatectomy and posthepatectomy-Apocynin in terms of glutathione peroxidase and oxidative stress index. Total antioxidant status, oxidative stress index, and total oxidant status were significantly different only between the sham and the hepatectomy groups. Statistical differences were found between sham and hepatectomy groups and between hepatectomy and pre+post-hepatectomy-Apocynin groups in terms of serum glutathione, malondialdehyde, total nitrite, and L-Arginine. There were significant differences between the sham and hepatectomy groups, between hepatectomy and posthepatectomy-apocynin groups, between posthepatctomy-apocynin and pre+posthepatectomy-apocynin groups in terms of sinusoidal dilatation, intracytoplasmic vacuolization and glycogen loss (p < 0.001), in all histopathologic parameters except sinusoidal dilatation (p < 0.05). However, significant Ki-67 increases have been elaborated in hepatectomy, posthepatectomy-apocynin, and pre+posthepatectomy-apocynin groups compared to sham group (p < 0.001), in pre+posthepatectomy apocynin group compared to hepatectomy and posthepatectomy-apocynin groups (p < 0.001). DISCUSSION Histopathology, immunohistochemistry, and biochemistry results of this study revealed that apocynin has a protective effect on enhancing liver regeneration in partial hepatectomy cases in rats.
Collapse
Affiliation(s)
- Yılmaz BİLGİÇ
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, İnönü University, Malatya,
Turkey
| | - Burhan Hakan KANAT
- Department of General Surgery, Faculty of Medicine, İnönü University, Malatya,
Turkey
| | - Onural ÖZHAN
- Department of Pharmacology, Faculty of Medicine, İnönü University, Malatya,
Turkey
| | - Azibe YILDIZ
- Department of Histology and Embryology, Faculty of Medicine, İnönü University, Malatya,
Turkey
| | - Zeynep AKSUNGUR
- Department of Biostatistics and Bioinformatics, Faculty of Medicine, İnönü University, Malatya,
Turkey
| | - Mehmet Erman ERDEMLİ
- Department of Biostatistics and Bioinformatics, Faculty of Medicine, İnönü University, Malatya,
Turkey
| | - Nigar VARDI
- Department of Histology and Embryology, Faculty of Medicine, İnönü University, Malatya,
Turkey
| | - Yusuf TÜRKÖZ
- Department of Biostatistics and Bioinformatics, Faculty of Medicine, İnönü University, Malatya,
Turkey
| | - Sami AKBULUT
- Department of General Surgery, Faculty of Medicine, İnönü University, Malatya,
Turkey
| | - Adem KÖSE
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, İnönü University, Malatya,
Turkey
| | - Hakan PARLAKPINAR
- Department of Pharmacology, Faculty of Medicine, İnönü University, Malatya,
Turkey
| |
Collapse
|
5
|
Mahmoud NA, Hassanein EHM, Bakhite EA, Shaltout ES, Sayed AM. Apocynin and its chitosan nanoparticles attenuated cisplatin-induced multiorgan failure: Synthesis, characterization, and biological evaluation. Life Sci 2023; 314:121313. [PMID: 36565813 DOI: 10.1016/j.lfs.2022.121313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Cisplatin (CDDP) is an effective chemotherapeutic drug that has been used successfully in treating various tumors. Although its higher antineoplastic agent activity, CDDP exhibited severe side effects that limit its use. CDDP-induced toxicity is attributed to oxidative stress and inflammation. Apocynin (APO) is a bioactive phytochemical with potent antioxidant and anti-inflammatory properties. However, pharmaceutical experts face significant hurdles due to the limited bioavailability and quick elimination of APO. Therefore, we synthesized a chitosan (CTS)-based nano delivery system using the ionic gelation method to enhance APO bioactivity. CTS-APO-NPs were characterized using different physical and chemical approaches, including FTIR, XRD, TGA, Zeta-sizer, SEM, and TEM. In addition, the protective effect of CTS-APO-NPs against CDDP-induced nephrotoxicity, hepatotoxicity, and cardiotoxicity in rats was evaluated. CTS-APO-NPs restored serum biomarkers and antioxidants to their normal levels. Also, histopathological examination was used to assess the recovery of heart, kidney, and liver tissues. CTS-APO-NPs attenuated the oxidative stress mediated by Nrf2 activation while it dampened inflammation mediated by NF-κB suppression. CTS-APO-NPs is a potentially attractive target for more therapeutic trials.
Collapse
Affiliation(s)
- Nahed A Mahmoud
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Egypt
| | - Etify A Bakhite
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Eman S Shaltout
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt.
| |
Collapse
|
6
|
Fan LM, Liu F, Du J, Geng L, Li JM. Inhibition of endothelial Nox2 activation by LMH001 protects mice from angiotensin II-induced vascular oxidative stress, hypertension and aortic aneurysm. Redox Biol 2022; 51:102269. [PMID: 35276443 PMCID: PMC8908273 DOI: 10.1016/j.redox.2022.102269] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Endothelial oxidative stress and inflammation attributable to the activation of a Nox2-NADPH oxidase are key features of many cardiovascular diseases. Here, we report a novel small chemical compound (LMH001, MW = 290.079), by blocking phosphorylated p47phox interaction with p22phox, inhibited effectively angiotensin II (AngII)-induced endothelial Nox2 activation and superoxide production at a small dose (IC50 = 0.25 μM) without effect on peripheral leucocyte oxidative response to pathogens. The therapeutic potential of LMH001 was tested using a mouse model (C57BL/6J, 7-month-old) of AngII infusion (0.8 mg/kg/d, 14 days)-induced vascular oxidative stress, hypertension and aortic aneurysm. Age-matched littermates of p47phox knockout mice were used as controls of Nox2 inhibition. LMH001 (2.5 mg/kg/d, ip. once) showed no effect on control mice, but inhibited completely AngII infusion-induced excess ROS production in vital organs, hypertension, aortic walls inflammation and reduced incidences of aortic aneurysm. LMH001 effects on reducing vascular oxidative stress was due to its inhibition of Nox2 activation and was abrogated by knockout of p47phox. LMH001 has the potential to be developed as a novel drug candidate to treat oxidative stress-related cardiovascular diseases.
Collapse
Affiliation(s)
- Lampson M Fan
- Department of Cardiology, Royal Wolverhampton NHS Trust, UK
| | - Fangfei Liu
- School of Biological Sciences, University of Reading, UK
| | - Junjie Du
- Department of Cardiovascular Surgery, Nanjing Medical University, PR China; Faculty of Health and Medical Sciences, University of Surrey, UK
| | - Li Geng
- School of Biological Sciences, University of Reading, UK; Faculty of Health and Medical Sciences, University of Surrey, UK
| | - Jian-Mei Li
- School of Biological Sciences, University of Reading, UK; Faculty of Health and Medical Sciences, University of Surrey, UK.
| |
Collapse
|
7
|
Effective Accentuation of Voltage-Gated Sodium Current Caused by Apocynin (4'-Hydroxy-3'-methoxyacetophenone), a Known NADPH-Oxidase Inhibitor. Biomedicines 2021; 9:biomedicines9091146. [PMID: 34572332 PMCID: PMC8464932 DOI: 10.3390/biomedicines9091146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Apocynin (aPO, 4'-Hydroxy-3'-methoxyacetophenone) is a cell-permeable, anti-inflammatory phenolic compound that acts as an inhibitor of NADPH-dependent oxidase (NOX). However, the mechanisms through which aPO can interact directly with plasmalemmal ionic channels to perturb the amplitude or gating of ionic currents in excitable cells remain incompletely understood. Herein, we aimed to investigate any modifications of aPO on ionic currents in pituitary GH3 cells or murine HL-1 cardiomyocytes. In whole-cell current recordings, GH3-cell exposure to aPO effectively stimulated the peak and late components of voltage-gated Na+ current (INa) with different potencies. The EC50 value of aPO required for its differential increase in peak or late INa in GH3 cells was estimated to be 13.2 or 2.8 μM, respectively, whereas the KD value required for its retardation in the slow component of current inactivation was 3.4 μM. The current-voltage relation of INa was shifted slightly to more negative potential during cell exposure to aPO (10 μM); however, the steady-state inactivation curve of the current was shifted in a rightward direction in its presence. Recovery of peak INa inactivation was increased in the presence of 10 μM aPO. In continued presence of aPO, further application of rufinamide or ranolazine attenuated aPO-stimulated INa. In methylglyoxal- or superoxide dismutase-treated cells, the stimulatory effect of aPO on peak INa remained effective. By using upright isosceles-triangular ramp pulse of varying duration, the amplitude of persistent INa measured at low or high threshold was enhanced by the aPO presence, along with increased hysteretic strength appearing at low or high threshold. The addition of aPO (10 μM) mildly inhibited the amplitude of erg-mediated K+ current. Likewise, in HL-1 murine cardiomyocytes, the aPO presence increased the peak amplitude of INa as well as decreased the inactivation or deactivation rate of the current, and further addition of ranolazine or esaxerenone attenuated aPO-accentuated INa. Altogether, this study provides a distinctive yet unidentified finding that, despite its effectiveness in suppressing NOX activity, aPO may directly and concertedly perturb the amplitude, gating and voltage-dependent hysteresis of INa in electrically excitable cells. The interaction of aPO with ionic currents may, at least in part, contribute to the underlying mechanisms through which it affects neuroendocrine, endocrine or cardiac function.
Collapse
|
8
|
Abstract
Apocynin is a naturally occurring acetophenone, found in the roots of Apocynum cannabinum and Picrorhiza kurroa. Various chemical and pharmaceutical modifications have been carried out to enhance the absorption and duration of action of apocynin, like, formulation of chitosan-based apocynin-loaded solid lipid nanoparticles, chitosan-oligosaccharide based nanoparticles, and biodegradable polyanhydride nanoparticles. Apocynin has been subjected to a wide range of experimental screening and has proved to be useful for amelioration of a variety of disorders, like diabetic complications, neurodegeneration, cardiovascular disorders, lung cancer, hepatocellular cancer, pancreatic cancer, and pheochromocytoma. Apocynin has been primarily reported as an NADPH oxidase (NOX) inhibitor and prevents translocation of its p47phox subunit to the plasma membrane, observed in neurodegeneration and hypertension. However, recent studies highlight its off-target effects that it is able to function as a scavenger of non-radical oxidant species, which is relevant for its activity against NOX 4 mediated production of hydrogen peroxide. Additionally, apocynin has shown inhibition of eNOS-dependent superoxide production in diabetic cardiomyopathy, reduction of NLRP3 activation and TGFβ/Smad signaling in diabetic nephropathy, diminished VEGF expression and decreased retinal NF-κB activation in diabetic retinopathy, inhibition of P38/MAPK/Caspase3 pathway in pheochromocytoma, inhibition of AKT-GSK3β and ERK1/2 pathways in pancreatic cancer, and decreased FAK/PI3K/Akt signaling in hepatocellular cancer. This review aims to discuss the pharmacokinetics and mechanisms of the pharmacological actions of apocynin.
Collapse
Affiliation(s)
- Shreya R Savla
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
9
|
Ahmad A, Nawaz MI, Siddiquei MM, Abu El-Asrar AM. Apocynin ameliorates NADPH oxidase 4 (NOX4) induced oxidative damage in the hypoxic human retinal Müller cells and diabetic rat retina. Mol Cell Biochem 2021; 476:2099-2109. [PMID: 33515385 DOI: 10.1007/s11010-021-04071-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
NADPH oxidase (NOX) is a main producers of reactive oxygen species (ROS) that may contribute to the early pathogenesis of diabetic retinopathy (DR). ROS has harmful effects on endogenous neuro-survival factors brain-derived neurotrophic factor (BDNF) and sirtuin 1 (SIRT1) are necessary for the growth and survival of the retina. The role of NOX isoforms NOX4 in triggering ROS in DR is not clear. Here we determine the protective effects of a plant-derived NOX inhibitor apocynin (APO) on NOX4-induced ROS production which may contribute to the depletion of survival factors BDNF/SIRT1 or cell death in the diabetic retinas. Human retinal Müller glial cells (MGCs) were treated with hypoxia mimetic agent cobalt chloride (CoCl2) in the absence or presence of APO. Molecular analysis demonstrates that NOX4 is upregulated in CoCl2-treated MGCs and in the diabetic retinas. Increased NOX4 was accompanied by the downregulation of BDNF/SIRT1 expression or in the activation of apoptotic marker caspase-3. Whereas, APO treatment downregulates NOX4 and subsequently upregulates BDNF/SIRT1 or alleviate caspase-3 expression. Accordingly, in the diabetic retina we found a positive correlation in NOX4 vs ROS (p = 0.025; R2 = 0.488) and caspase-3 vs ROS (p = 0.04; R2 = 0.428); whereas a negative correlation in BDNF vs ROS (p = 0.009; R2 = 0.596) and SIRT1 vs ROS (p = 0.0003; R2 = 0.817) respectively. Taken together, NOX4-derived ROS could be a main contributor in downregulating BDNF/SIRT1 expression or in the activation of caspase-3. Whereas, APO treatment may minimize the deleterious effects occurring due to hyperglycemia and/or diabetic mimic hypoxic condition in early pathogenesis of DR.
Collapse
Affiliation(s)
- Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Mohd Imtiaz Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|