1
|
Pan X, Hua Z, Fan G, Feng Q. Inflammatory suppression and immunity regulation benefits of honokiol in a rat model of acute peritonitis via the regulation of NLRP3 inflammasome and Sirt1/autophagy axis. Histol Histopathol 2024; 39:921-934. [PMID: 38112214 DOI: 10.14670/hh-18-688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND NLRP3 inflammasome and Sirt1/autophagy axis are potential targets for advancing acute peritonitis (AP). Honokiol (HNK), a bioactive substance, has the potential to improve AP. MATERIALS AND METHODS The AP model rats were established by cecal ligation and puncture (CLP). Rats were randomized into the Sham, Sham+HNK, CLP, and CLP+HNK groups. The therapeutic effects of HNK on organ infection, inflammation and immunity were observed in AP rats. The inflammation of RAW 264.7 cells was induced by lipopolysaccharide (LPS) and divided into the Control, HNK, LPS, and LPS+HNK groups. The effects of HNK on immunity and inflammation were observed. Moreover, the inflammatory cell model was further transfected with NLRP3 overexpressing plasmid, and the regulatory effect of HNK on NLRP3 in AP cells was detected. RESULTS HNK treatment improved survival, biochemical indexes, and lung and kidney injury and inhibited inflammatory cytokine release and bacterial infection in CLP rats. In CLP rats and RAW 264.7 cells, HNK treatment improved the release of the CD4+ and CD8+ T cells, decreased the associated proteins' levels of the NLRP3 inflammasome, and activated the expression of proteins in the Sirt1/autophagy axis. It improved viability and reduced apoptosis and the degrees of TNF-α, IL-1β, and IL-6 mRNA in RAW 264.7 cells. In addition, HNK treatment antagonized the effect of NLRP3-overexpressed on inflammation and immunity. CONCLUSIONS HNK improved AP by inhibiting NLRP3 inflammasome and activating the Sirt1 autophagy axis in vivo and in vitro.
Collapse
Affiliation(s)
- Ximing Pan
- Department of Emergency, Suichang People's Hospital, Lishui , PR China
| | - Zhou Hua
- Department of Nephrology, Suichang People's Hospital, Lishui, PR China
| | - Guocai Fan
- Department of Breast Surgery, Suichang People's Hospital, Lishui, PR China
| | - Qinglong Feng
- Intensive Care Unit, Quzhou Kecheng People's Hospital, Quzhou, PR China.
| |
Collapse
|
2
|
Yosri N, Alsharif SM, Xiao J, Musharraf SG, Zhao C, Saeed A, Gao R, Said NS, Di Minno A, Daglia M, Guo Z, Khalifa SAM, El-Seedi HR. Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine. Biomed Pharmacother 2023; 158:114104. [PMID: 36516694 DOI: 10.1016/j.biopha.2022.114104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Arctium lappa L. is a medicinal edible homologous plant, commonly known as burdock or bardana, which belongs to the Asteraceae family. It is widely distributed throughout Northern Asia, Europe, and North America and has been utilized for hundreds of years. The roots, fruits, seeds, and leaves of A. lappa have been extensively used in traditional Chinese Medicine (TCM). A. lappa has attracted a great deal of attention due to its possession of highly recognized bioactive metabolites with significant therapeutic potential. Numerous pharmacological effects have been demonstrated in vitro and in vivo by A. lappa and its bioactive metabolites, including antimicrobial, anti-obesity, antioxidant, anticancer, anti-inflammatory, anti-diabetic, anti-allergic, antiviral, gastroprotective, hepatoprotective, and neuroprotective activities. Additionally, A. lappa has demonstrated considerable clinical efficacies and valuable applications in nanomedicine. Collectively, this review covers the properties of A. lappa and its bioactive metabolites, ethnopharmacology aspects, pharmacological effects, clinical trials, and applications in the field of nanomedicine. Hence, a significant attention should be paid to clinical trials and industrial applications of this plant with particular emphasis, on drug discovery and nanotechnology.
Collapse
Affiliation(s)
- Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt
| | - Sultan M Alsharif
- Biology Department, Faculty of Science, Taibah University, Al Madinah 887, Saudi Arabia
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Syed G Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Aamer Saeed
- Chemistry Department, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Noha S Said
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate, Naples 80131, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shaden A M Khalifa
- Department of Molecular Biosciences, Stockholm University, The Wenner-GrenInstitute, SE-106 91 Stockholm, Sweden
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE 751 24 Uppsala, Sweden; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China.
| |
Collapse
|
3
|
Shibuya N, Itokazu T, Ueda T, Yamashita T. Intravital Imaging Reveals the Ameliorating Effect of Colchicine in a Photothrombotic Stroke Model via Inhibition of Neutrophil Recruitment. Transl Stroke Res 2023; 14:100-110. [PMID: 35441983 DOI: 10.1007/s12975-022-01022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 01/31/2023]
Abstract
Although post-stroke neutrophil recruitment is known to be deleterious to neural tissues in the peri-infarct area, the precise behavior of recruited neutrophils remains elusive. In this study, potential therapeutic agents for modifying neutrophil behavior in the peri-infarct area were explored through intravital imaging of an experimental stroke mouse model. By applying in vivo 2-photon imaging to study a tightly controlled photothrombotic stroke mouse model, we established a highly sensitive and reproducible method for investigating the temporal dynamics of ischemic brain lesions. Taking advantage of this system, we revealed that neutrophil depletion by a neutrophil-specific antibody ameliorated the expansion of the infarct area, confirming the deleterious effect of neutrophils in the peri-infarct cortex. To identify neutrophil-targeted therapeutic approaches, we screened various agents and found that colchicine and an anti-P-selectin antibody were the most effective in inhibiting neutrophil attachment to the vessel wall in the early phase (6 h post-infarction). Interestingly, further investigation in the later phase (16 h post-infarction) revealed that colchicine potently inhibited neutrophil infiltration into the peri-infarct cortex; however, the anti-P-selectin antibody did not. Subsequent analysis revealed that the effect of the anti-P-selectin antibody against neutrophil attachment to the vessel wall was transient and thus insufficient for mitigating neutrophil infiltration. Finally, we revealed that colchicine treatment effectively ameliorated infarct expansion. In conclusion, we have established an intravital strategy to directly investigate pathophysiology in the ischemic border zone, and found that colchicine administration in the acute phase of ischemic stroke is a potential novel therapeutic strategy.
Collapse
Affiliation(s)
- Nao Shibuya
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Tsubasa Ueda
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.
| |
Collapse
|