1
|
Yang Y, An Y, Ren M, Wang H, Bai J, Du W, Kong D. The mechanisms of action of mitochondrial targeting agents in cancer: inhibiting oxidative phosphorylation and inducing apoptosis. Front Pharmacol 2023; 14:1243613. [PMID: 37954849 PMCID: PMC10635426 DOI: 10.3389/fphar.2023.1243613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
The tumor microenvironment affects the structure and metabolic function of mitochondria in tumor cells. This process involves changes in metabolic activity, an increase in the amount of reactive oxygen species (ROS) in tumor cells compared to normal cells, the production of more intracellular free radicals, and the activation of oxidative pathways. From a practical perspective, it is advantageous to develop drugs that target mitochondria for the treatment of malignant tumors. Such drugs can enhance the selectivity of treatments for specific cell groups, minimize toxic effects on normal tissues, and improve combinational treatments. Mitochondrial targeting agents typically rely on small molecule medications (such as synthetic small molecules agents, active ingredients of plants, mitochondrial inhibitors or autophagy inhibitors, and others), modified mitochondrial delivery system agents (such as lipophilic cation modification or combining other molecules to form targeted mitochondrial agents), and a few mitochondrial complex inhibitors. This article will review these compounds in three main areas: oxidative phosphorylation (OXPHOS), changes in ROS levels, and endogenous oxidative and apoptotic processes.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yahui An
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingli Ren
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haijiao Wang
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Bai
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenli Du
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dezhi Kong
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Liang J, Vitale T, Zhang X, Jackson TD, Yu D, Jedrychowski M, Gygi SP, Widlund HR, Wucherpfennig KW, Puigserver P. Selective Mitochondrial Respiratory Complex I Subunit Deficiency Causes Tumor Immunogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560316. [PMID: 37873273 PMCID: PMC10592908 DOI: 10.1101/2023.10.02.560316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Targeting of specific metabolic pathways in tumor cells has the potential to sensitize them to immune-mediated attack. Here we provide evidence for a specific means of mitochondrial respiratory Complex I (CI) inhibition that improves tumor immunogenicity and sensitivity to immune checkpoint blockade (ICB). Targeted genetic deletion of the CI subunits Ndufs4 and Ndufs6 , but not other subunits, induces an immune-dependent tumor growth attenuation in mouse melanoma models. We show that deletion of Ndufs4 induces expression of the transcription factor Nlrc5 and genes in the MHC class I antigen presentation and processing pathway. This induction of MHC-related genes is driven by an accumulation of pyruvate dehydrogenase-dependent mitochondrial acetyl-CoA downstream of CI subunit deletion. This work provides a novel functional modality by which selective CI inhibition restricts tumor growth, suggesting that specific targeting of Ndufs4 , or related CI subunits, increases T-cell mediated immunity and sensitivity to ICB.
Collapse
|
3
|
Tarazi D, Maynes JT. Impact of Opioids on Cellular Metabolism: Implications for Metabolic Pathways Involved in Cancer. Pharmaceutics 2023; 15:2225. [PMID: 37765194 PMCID: PMC10534826 DOI: 10.3390/pharmaceutics15092225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Opioid utilization for pain management is prevalent among cancer patients. There is significant evidence describing the many effects of opioids on cancer development. Despite the pivotal role of metabolic reprogramming in facilitating cancer growth and metastasis, the specific impact of opioids on crucial oncogenic metabolic pathways remains inadequately investigated. This review provides an understanding of the current research on opioid-mediated changes to cellular metabolic pathways crucial for oncogenesis, including glycolysis, the tricarboxylic acid cycle, glutaminolysis, and oxidative phosphorylation (OXPHOS). The existing literature suggests that opioids affect energy production pathways via increasing intracellular glucose levels, increasing the production of lactic acid, and reducing ATP levels through impediment of OXPHOS. Opioids modulate pathways involved in redox balance which may allow cancer cells to overcome ROS-mediated apoptotic signaling. The majority of studies have been conducted in healthy tissue with a predominant focus on neuronal cells. To comprehensively understand the impact of opioids on metabolic pathways critical to cancer progression, research must extend beyond healthy tissue and encompass patient-derived cancer tissue, allowing for a better understanding in the context of the metabolic reprogramming already undergone by cancer cells. The current literature is limited by a lack of direct experimentation exploring opioid-induced changes to cancer metabolism as they relate to tumor growth and patient outcome.
Collapse
Affiliation(s)
- Doorsa Tarazi
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jason T. Maynes
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
4
|
Kurelac I, Cavina B, Sollazzo M, Miglietta S, Fornasa A, De Luise M, Iorio M, Lama E, Traversa D, Nasiri HR, Ghelli A, Musiani F, Porcelli AM, Iommarini L, Gasparre G. NDUFS3 knockout cancer cells and molecular docking reveal specificity and mode of action of anti-cancer respiratory complex I inhibitors. Open Biol 2022; 12:220198. [PMID: 36349549 PMCID: PMC9653258 DOI: 10.1098/rsob.220198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Inhibition of respiratory complex I (CI) is becoming a promising anti-cancer strategy, encouraging the design and the use of inhibitors, whose mechanism of action, efficacy and specificity remain elusive. As CI is a central player of cellular bioenergetics, a finely tuned dosing of targeting drugs is required to avoid side effects. We compared the specificity and mode of action of CI inhibitors metformin, BAY 87-2243 and EVP 4593 using cancer cell models devoid of CI. Here we show that both BAY 87-2243 and EVP 4593 were selective, while the antiproliferative effects of metformin were considerably independent from CI inhibition. Molecular docking predictions indicated that the high efficiency of BAY 87-2243 and EVP 4593 may derive from the tight network of bonds in the quinone binding pocket, although in different sites. Most of the amino acids involved in such interactions are conserved across species and only rarely found mutated in human. Our data make a case for caution when referring to metformin as a CI-targeting compound, and highlight the need for dosage optimization and careful evaluation of molecular interactions between inhibitors and the holoenzyme.
Collapse
Affiliation(s)
- Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Beatrice Cavina
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Stefano Miglietta
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Agnese Fornasa
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Maria Iorio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Eleonora Lama
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Daniele Traversa
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Hamid Razi Nasiri
- Department of Cellular Microbiology, University Hohenheim, Stuttgart, Germany
| | - Anna Ghelli
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy,Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Anna Maria Porcelli
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy,Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy,Interdepartmental Centre for Industrial Research ‘Scienze della Vita e Tecnologie per la Salute’, University of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy,Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| |
Collapse
|