1
|
Abd-Elnabi AD, Badawy MEI. Combating Spodoptera frugiperda (Lepidoptera: Noctuidae) with Moringa-Synthesized Silica Nanoparticles and Its Combination with Some Insecticides. NEOTROPICAL ENTOMOLOGY 2024; 53:1343-1353. [PMID: 39436567 PMCID: PMC11534884 DOI: 10.1007/s13744-024-01210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024]
Abstract
The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), is a major agricultural pest known for developing resistance to insecticides. This study investigated a novel approach to manage FAW by silica nanoparticles (SiNPs) synthesized from eco-friendly leaf extract of Moringa oleifera Lam. (Moringaceae). This green synthesis method offers a sustainable and potentially safer alternative to traditional chemical processes. SiNP formation was confirmed by various techniques: UV-visible spectrophotometer, X-ray spectroscopy with energy-dispersive (EDX), scanning electron microscopy (SEM), and dynamic light scattering (DLS). The effectiveness of SiNPs alone and their combination with three common insecticides (emamectin benzoate, indoxacarb, and chlorpyrifos) were evaluated against third instar larvae of fall armyworm. While SiNPs after 24 h by leaf dipping method recorded limited insecticidal activity (LC50 = 9947.59 mg/L), it significantly enhanced the potency of all three insecticides. Combining SiNPs with emamectin benzoate resulted in the most dramatic increase in effectiveness compared to the insecticide alone with LC50 = 0.295 mg/L and 0.42 mg/L, respectively. This research suggests that moringa extract can be a valuable resource for the green synthesis of nanoparticles potentially useful in pest control. This approach could potentially reduce the amount of insecticide needed for effective pest control, leading to a more sustainable and environmentally friendly agricultural practice.
Collapse
Affiliation(s)
- Amany D Abd-Elnabi
- Cotton Leafworm Research Department, Plant Protection Research Institute. Agriculture Research Center, Giza, Egypt.
| | - Mohamed E I Badawy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, 21545-El-Shatby, Alexandria, Egypt
| |
Collapse
|
2
|
Jiang X, Yang F, Jia W, Jiang Y, Wu X, Song S, Shen H, Shen J. Nanomaterials and Nanotechnology in Agricultural Pesticide Delivery: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18806-18820. [PMID: 39177444 DOI: 10.1021/acs.langmuir.4c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Pesticides play a crucial role in ensuring food production and food security. Conventional pesticide formulations can not meet the current needs of social and economic development, and they also can not meet the requirements of green agriculture. Therefore, there is an urgent need to develop efficient, stable, safe, and environmentally friendly pesticide formulations to gradually replace old formulations which have high pollution and low efficacy. The rise of nanotechnology provides new possibilities for innovation in pesticide formulations. Through reasonable design and construction of an environmentally friendly pesticide delivery system (PDS) based on multifunctional nanocarriers, the drawbacks of conventional pesticides can be effectively solved, realizing a water-based, nanosized, targeted, efficient, and safe pesticide system. In the past five years, researchers in chemistry, materials science, botany, entomology, plant protection, and other fields are paying close attention to the research of nanomaterials based PDSs and nanopesticide formulations and have made certain research achievements. These explorations provide useful references for promoting the innovation of nanopesticides and developing a new generation of green and environmentally friendly pesticide formulations. This Perspective summarizes the recent advances of nanomaterials in PDSs and nanopesticide innovation, aiming to provide useful guidance for carrier selection, surface engineering, controlled release conditions, and application in agriculture.
Collapse
Affiliation(s)
- Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wei Jia
- Jiangsu Yangnong Chemical Co., Ltd., Yangzhou, 225009, China
| | - Youfa Jiang
- Jiangsu Yangnong Chemical Co., Ltd., Yangzhou, 225009, China
| | - Xiaoju Wu
- Jiangsu Yangnong Chemical Co., Ltd., Yangzhou, 225009, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - He Shen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Lee JHJ, Kasote DM. Nano-Priming for Inducing Salinity Tolerance, Disease Resistance, Yield Attributes, and Alleviating Heavy Metal Toxicity in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:446. [PMID: 38337979 PMCID: PMC10857146 DOI: 10.3390/plants13030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
In today's time, agricultural productivity is severely affected by climate change and increasing pollution. Hence, several biotechnological approaches, including genetic and non-genetic strategies, have been developed and adapted to increase agricultural productivity. One of them is nano-priming, i.e., seed priming with nanomaterials. Thus far, nano-priming methods have been successfully used to mount desired physiological responses and productivity attributes in crops. In this review, the literature about the utility of nano-priming methods for increasing seed vigor, germination, photosynthetic output, biomass, early growth, and crop yield has been summarized. Moreover, the available knowledge about the use of nano-priming methods in modulating plant antioxidant defenses and hormonal networks, inducing salinity tolerance and disease resistance, as well as alleviating heavy metal toxicity in plants, is reviewed. The significance of nano-priming methods in the context of phytotoxicity and environmental safety has also been discussed. For future perspectives, knowledge gaps in the present literature are highlighted, and the need for optimization and validation of nano-priming methods and their plant physiological outcomes, from lab to field, is emphasized.
Collapse
Affiliation(s)
- Jisun H. J. Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Deepak M. Kasote
- Agricultural Research Station, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
4
|
Saw G, Nagdev P, Jeer M, Murali-Baskaran RK. Silica nanoparticles mediated insect pest management. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105524. [PMID: 37532341 DOI: 10.1016/j.pestbp.2023.105524] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Silicon is known for mitigating the biotic and abiotic stresses of crop plants. Many studies have proved beneficial effects of bulk silicon against biotic stresses in general and insect pests in particular. However, the beneficial effects of silica nanoparticles in crop plants against insect pests were barely studied and reported. By virtue of its physical and chemical nature, silica nanoparticles offer various advantages over bulk silicon sources for its applications in the field of insect pest management. Silica nanoparticles can act as insecticide for killing target insect pest or it can act as a carrier of insecticide molecule for its sustained release. Silica nanoparticles can improve plant resistance to insect pests and also aid in attracting natural enemies via enhanced volatile compounds emission. Silica nanoparticles are safe to use and eco-friendly in nature in comparison to synthetic pesticides. This review provides insights into the applications of silica nanoparticles in insect pest management along with discussion on its synthesis, side effects and future course of action.
Collapse
Affiliation(s)
- Gouranga Saw
- ICAR-National Institute of Biotic Stress Management, Raipur 493225, Chhattisgarh, India
| | - Priyanka Nagdev
- ICAR-National Institute of Biotic Stress Management, Raipur 493225, Chhattisgarh, India
| | - Mallikarjuna Jeer
- ICAR-National Institute of Biotic Stress Management, Raipur 493225, Chhattisgarh, India.
| | - R K Murali-Baskaran
- ICAR-National Institute of Biotic Stress Management, Raipur 493225, Chhattisgarh, India
| |
Collapse
|
5
|
Yadav A, Yadav K, Abd-Elsalam KA. Nanofertilizers: Types, Delivery and Advantages in Agricultural Sustainability. AGROCHEMICALS 2023; 2:296-336. [DOI: 10.3390/agrochemicals2020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In an alarming tale of agricultural excess, the relentless overuse of chemical fertilizers in modern farming methods have wreaked havoc on the once-fertile soil, mercilessly depleting its vital nutrients while inflicting irreparable harm on the delicate balance of the surrounding ecosystem. The excessive use of such fertilizers leaves residue on agricultural products, pollutes the environment, upsets agrarian ecosystems, and lowers soil quality. Furthermore, a significant proportion of the nutrient content, including nitrogen, phosphorus, and potassium, is lost from the soil (50–70%) before being utilized. Nanofertilizers, on the other hand, use nanoparticles to control the release of nutrients, making them more efficient and cost-effective than traditional fertilizers. Nanofertilizers comprise one or more plant nutrients within nanoparticles where at least 50% of the particles are smaller than 100 nanometers. Carbon nanotubes, graphene, and quantum dots are some examples of the types of nanomaterials used in the production of nanofertilizers. Nanofertilizers are a new generation of fertilizers that utilize advanced nanotechnology to provide an efficient and sustainable method of fertilizing crops. They are designed to deliver plant nutrients in a controlled manner, ensuring that the nutrients are gradually released over an extended period, thus providing a steady supply of essential elements to the plants. The controlled-release system is more efficient than traditional fertilizers, as it reduces the need for frequent application and the amount of fertilizer. These nanomaterials have a high surface area-to-volume ratio, making them ideal for holding and releasing nutrients. Naturally occurring nanoparticles are found in various sources, including volcanic ash, ocean, and biological matter such as viruses and dust. However, regarding large-scale production, relying solely on naturally occurring nanoparticles may not be sufficient or practical. In agriculture, nanotechnology has been primarily used to increase crop production while minimizing losses and activating plant defense mechanisms against pests, insects, and other environmental challenges. Furthermore, nanofertilizers can reduce runoff and nutrient leaching into the environment, improving environmental sustainability. They can also improve fertilizer use efficiency, leading to higher crop yields and reducing the overall cost of fertilizer application. Nanofertilizers are especially beneficial in areas where traditional fertilizers are inefficient or ineffective. Nanofertilizers can provide a more efficient and cost-effective way to fertilize crops while reducing the environmental impact of fertilizer application. They are the product of promising new technology that can help to meet the increasing demand for food and improve agricultural sustainability. Currently, nanofertilizers face limitations, including higher costs of production and potential environmental and safety concerns due to the use of nanomaterials, while further research is needed to fully understand their long-term effects on soil health, crop growth, and the environment.
Collapse
Affiliation(s)
- Anurag Yadav
- Department of Microbiology, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, District Banaskantha, Gujarat 385506, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
6
|
Zhang J, Kothalawala S, Yu C. Engineered silica nanomaterials in pesticide delivery: Challenges and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121045. [PMID: 36639042 DOI: 10.1016/j.envpol.2023.121045] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/04/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Over the past decade, nanopesticide has been developed rapidly for exploring effective and safe alternatives to conventional pesticides with significant drawbacks and risks. Many nanotechnologies, including pesticide nanoemulsions, polymer-based nanopesticides, and metal/metal oxide nanoparticle-based pesticides have emerged and are extensively reviewed. Engineered silica nanomaterials (ESNs) have also shown promising potential as carriers in nanopesticides for modern agriculture. However, there are limited reviews specifically on ESN-based nanopesticides. Herein, we provide a comprehensive review on the recent progress of ESN-based nanopesticide technologies. An introduction of synthetic technology, formation mechanism, and surface engineering technology is firstly presented. Then, the advantages of ESN-based pesticide formulation and their structure-function-relationship are illustrated in detail. Finally, our perspectives on challenges and future research in ESN-based nanopesticide development are discussed.
Collapse
Affiliation(s)
- Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Sukitha Kothalawala
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
7
|
Xiao D, Wu H, Zhang Y, Kang J, Dong A, Liang W. Advances in stimuli-responsive systems for pesticides delivery: Recent efforts and future outlook. J Control Release 2022; 352:288-312. [PMID: 36273530 DOI: 10.1016/j.jconrel.2022.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022]
Abstract
Effective pest management for enhanced crop output is one of the primary goals of establishing sustainable agricultural practices in the world. Pesticides are critical in preventing biological disasters, ensuring crop productivity, and fostering sustainable agricultural production growth. Studies showed that crops are unable to properly utilize pesticides because of several limiting factors, such as leaching and bioconversion, thereby damaging ecosystems and human health. In recent years, stimuli-responsive systems for pesticides delivery (SRSP) by nanotechnology demonstrated excellent promise in enhancing the effectiveness and safety of pesticides. SRSP are being developed with the goal of delivering precise amounts of active substances in response to biological needs and environmental factors. An in-depth analysis of carrier materials, design fundamentals, and classification of SRSP were provided. The adhesion of SRSP to crop tissue, absorption, translocation in and within plants, mobility in the soil, and toxicity were also discussed. The problems and shortcomings that need be resolved to accelerate the actual deployment of SRSP were highlighted in this review.
Collapse
Affiliation(s)
- Douxin Xiao
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Wenlong Liang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
8
|
Shi L, Yan W, Sun L, Hou C, Wei N, Chen Z, Feng J. Preparation and characterization of emamectin benzoate nanocapsules based on the dual role of polydopamine. PEST MANAGEMENT SCIENCE 2022; 78:4407-4416. [PMID: 35767285 DOI: 10.1002/ps.7061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Developing pesticide-controlled release formulations with foliage adhesion has become the focus of current research in the field of crop protection. In this study, an excellent adhesive nanocapsule loaded with emamectin benzoate (Eb@PDA) was prepared via emulsion interfacial polymerization based on the self-polymerization ability and adhesion properties of polydopamine (PDA). RESULTS The physicochemical properties of the Eb@PDA were characterized by scanning electron microscopy, transmission electron microscopy, particle size statistics, Fourier transform infrared spectroscopy and X-ray diffraction. The Eb@PDA presented a regular spherical shape, with an average particle size of 163.8 nm. Compared with conventional formulations, it had higher pesticide-loading content (34%) and excellent adhesion onto corn leaf. In addition, Eb@PDA showed sustained-release characteristics, facilitating the release of Eb at low pH and high temperature. Eb@PDA could effectively protect Eb against photodegradation and had a longer effective period for controlling Spodoptera frugiperda and Spodoptera exigua. Furthermore, acute toxicity tests showed that the 50% lethal concentration (LC50 ) was 80.91 and 57.91 mg kg-1 at 7 and 14 days, respectively, indicating a lower toxicity of the Eb@PDA to earthworms. The cells (L02) treated with Eb@PDA showed a higher cell viability but a lower apoptosis rate (only 5.75%), demonstrating the lower cytotoxicity of the Eb@PDA. CONCLUSION The self-prepared Eb@PDA could be used as a formulation with the advantages of slow release, UV shielding, strong leaf adhesion, superior insecticidal properties, sustained effectiveness and biosafety. It will also facilitate the development of an efficient and safe pesticide delivery system. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liyin Shi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Weiyao Yan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Li Sun
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chaoqun Hou
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Nuo Wei
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Deltamethrin and Its Nanoformulations Induce Behavioral Alteration and Toxicity in Rat Brain through Oxidative Stress and JAK2/STAT3 Signaling Pathway. TOXICS 2022; 10:toxics10060303. [PMID: 35736911 PMCID: PMC9228259 DOI: 10.3390/toxics10060303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Deltamethrin (DM) is the most powerful synthetic pyrethroid that has toxicity to the central nervous system and results in behavioral changes in both animals and humans. This effect is mediated by inducing alterations in the action of neurotransmitters and brain pathological changes. Nanocarrier encapsulated pesticides may decrease the toxicity of pesticides. Thus, this study aimed to determine the effect of an inorganic metal carrier (silica Nps) and polymeric capsule (chitosan Nps) of deltamethrin nano-formulations on antioxidant levels and oxidative stress in the brain and on behavior of the male albino rat. Sixty male albino rats were equally divided into four groups. Group I: control group; group II given DM liquefied in corn oil at 3.855 mg/kg BW; group III receiving silica-loaded deltamethrin (S/DM Nps) at 8.795 mg/kg BW; and group IV: given chitosan encapsulated deltamethrin (CS/DM Nps) at 30.44 mg/kg BW. All treatments were given orally for four weeks. Following this, behavioral tests were conducted to record locomotor activity, anxiety like behaviors, exploration, and the short memory of rats. In addition, brain antioxidant/oxidant, serum neurotransmitters such as acetylcholine esterase (AchE) and monoamine oxidase (MAO), JAK2 and STAT3 gene and proteins expression were measured. The DM group showed a highly significant elevation in malondialdehyde content, MAO, AchE, vascular endothelial growth factor (VEGF) levels, and the expression level of neurogenic genes, JAK2 and STAT3, in comparison with the control group. Both S/DM Nps and CS/DM Nps significantly decreased MAO, AchE, and VEGF compared with the DM group. Moreover, both S/DM Nps and CS/DM Nps significantly decreased the gene and proteins expression of JAK2 and STAT3 compared with the DM group. These alterations were evidenced by the deficiency in memory and learning behaviors that were accompanied by histopathological findings of the hippocampus and the cortex. It was concluded that the nano formulations containing DM induced less neurobehavioral toxicity than free DM. Additionally, the use of nanocarriers reduced the damage to health and the environment.
Collapse
|
10
|
Akhter F, Rao AA, Abbasi MN, Wahocho SA, Mallah MA, Anees-ur-Rehman H, Chandio ZA. A Comprehensive Review of Synthesis, Applications and Future Prospects for Silica Nanoparticles (SNPs). SILICON 2022; 14. [PMCID: PMC8730748 DOI: 10.1007/s12633-021-01611-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Silica nanoparticles (SNPs) have shown great applicability potential in a number of fields like chemical, biomedical, biotechnology, agriculture, environmental remediation and even wastewater purification. With remarkably instinctive properties like mesoporous structure, high surface area, tunable pore size/diameter, biocompatibility, modifiability and polymeric hybridizability, the SNPs are growing in their applicable potential even further. These particles are shown to be non-toxic in nature, hence safe to be used in biomedical research. Moreover, the molecular mobilizability onto the internal and external surface of the particles makes them excellent carriers for biotic and non-biotic compounds. In this respect, the present study comprehensively reviews the most important and recent applications of SNPs in a number of fields along with synthetic approaches. Moreover, despite versatile contributions, the applicable potential of SNPs is still a tip of the iceberg waiting to be exploited more, hence, the last section of the review presents the future prospects containing only few of the many gaps/research extensions regarding SNPs that need to be addressed in future work.
Collapse
Affiliation(s)
- Faheem Akhter
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan
| | - Ahsan Atta Rao
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan
| | - Mahmood Nabi Abbasi
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan
| | - Shafeeque Ahmed Wahocho
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan
| | - Mukhtiar Ali Mallah
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan
| | - Hafiz Anees-ur-Rehman
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan
| | - Zubair Ahmed Chandio
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan
| |
Collapse
|
11
|
Bueno V, Bosi A, Tosco T, Ghoshal S. Mobility of solid and porous hollow SiO 2 nanoparticles in saturated porous media: Impacts of surface and particle structure. J Colloid Interface Sci 2021; 606:480-490. [PMID: 34399364 DOI: 10.1016/j.jcis.2021.07.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 01/05/2023]
Abstract
Silica nanoparticles (SiO2 NPs) are of increasing interest in nano-enabled agriculture, particularly as nanocarriers for the targeted delivery of agrochemicals. Their direct application in agricultural soils may lead to the release of SiO2 NPs in the environment. Although some studies have investigated transport of solid SiO2 NPs in porous media, there is a knowledge gap on how different SiO2 NP structures incorporating significant porosities can affect the mobility of such particles under different conditions. Herein, we investigated the effect of pH and ionic strength (IS) on the transport of two distinct structures of SiO2 NPs, namely solid SiO2 NPs (SSNs) and porous hollow SiO2 NPs (PHSNs), of comparable sizes (~200 nm). Decreasing pH and increasing ionic strength reduced the mobility of PHSNs in sand-packed columns more significantly than for SSNs. The deposition of PHSNs was approximately 3 times greater than that of SSNs at pH 4.5 and IS 100 mM. The results are non-intuitive given that PHSNs have a lower density and the same chemical composition of SSNs but can be explained by the greater surface roughness and ten-fold greater specific surface area of PHSNs, and their impacts on van der Waals and electrostatic interaction energies.
Collapse
Affiliation(s)
- Vinicius Bueno
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Alessandro Bosi
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Tiziana Tosco
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|
12
|
Gao Y, Liu Y, Qin X, Guo Z, Li D, Li C, Wan H, Zhu F, Li J, Zhang Z, He S. Dual stimuli-responsive fungicide carrier based on hollow mesoporous silica/hydroxypropyl cellulose hybrid nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125513. [PMID: 34030404 DOI: 10.1016/j.jhazmat.2021.125513] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/27/2021] [Accepted: 02/20/2021] [Indexed: 05/18/2023]
Abstract
The controlled release of pesticides based on nanoparticle platforms has emerged as a new technology for increasing the efficiency of pesticides and for reducing environmental pollution because of their size-dependent and target-modifying properties. In the present study, pH/cellulase dual stimuli-responsive controlled-release formulations (PYR-HMS-HPC) were designed by grafting hydroxypropyl cellulose onto pyraclostrobin-loaded hollow mesoporous silica nanoparticles via an ester linkage. The PYR-HMS-HPC formulations were characterized by Fourier transform infrared spectroscopy, thermogravimetric analyzer, transmission electron microscope and scanning electron microscope. The results demonstrated that PYR-HMS-HPC with a loading capacity of 12.1 wt% showed excellent pyraclostrobin release behaviors in response to acidic environments and the introduction of cellulase, could effectively prevented pyraclostrobin from photolysis. Compared with commercial pyraclostrobin formulations, the PYR-HMS-HPC formulations showed much stronger and statistically significant fungicidal activity against Magnaporthe oryzae from 7 to 21 days. Furthermore, the Allium cepa chromosome aberration assay demonstrated that the PYR-HMS-HPC formulations reduced the genotoxicity of pyraclostrobin. These pH/cellulase dual stimuli-responsive controlled-release formulations are of great interest for sustainable on-demand crop disease protection.
Collapse
Affiliation(s)
- Yunhao Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yu Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueyin Qin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziping Guo
- Hubei Provincial Plant Protection General Station, Wuhan 430070, China
| | - Donglin Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenggang Li
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fuxing Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuo Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Meena M, Zehra A, Swapnil P, Harish, Marwal A, Yadav G, Sonigra P. Endophytic Nanotechnology: An Approach to Study Scope and Potential Applications. Front Chem 2021; 9:613343. [PMID: 34113600 PMCID: PMC8185355 DOI: 10.3389/fchem.2021.613343] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Nanotechnology has become a very advanced and popular form of technology with huge potentials. Nanotechnology has been very well explored in the fields of electronics, automobiles, construction, medicine, and cosmetics, but the exploration of nanotecnology's use in agriculture is still limited. Due to climate change, each year around 40% of crops face abiotic and biotic stress; with the global demand for food increasing, nanotechnology is seen as the best method to mitigate challenges in disease management in crops by reducing the use of chemical inputs such as herbicides, pesticides, and fungicides. The use of these toxic chemicals is potentially harmful to humans and the environment. Therefore, using NPs as fungicides/ bactericides or as nanofertilizers, due to their small size and high surface area with high reactivity, reduces the problems in plant disease management. There are several methods that have been used to synthesize NPs, such as physical and chemical methods. Specially, we need ecofriendly and nontoxic methods for the synthesis of NPs. Some biological organisms like plants, algae, yeast, bacteria, actinomycetes, and fungi have emerged as superlative candidates for the biological synthesis of NPs (also considered as green synthesis). Among these biological methods, endophytic microorganisms have been widely used to synthesize NPs with low metallic ions, which opens a new possibility on the edge of biological nanotechnology. In this review, we will have discussed the different methods of synthesis of NPs, such as top-down, bottom-up, and green synthesis (specially including endophytic microorganisms) methods, their mechanisms, different forms of NPs, such as magnesium oxide nanoparticles (MgO-NPs), copper nanoparticles (Cu-NPs), chitosan nanoparticles (CS-NPs), β-d-glucan nanoparticles (GNPs), and engineered nanoparticles (quantum dots, metalloids, nonmetals, carbon nanomaterials, dendrimers, and liposomes), and their molecular approaches in various aspects. At the molecular level, nanoparticles, such as mesoporous silica nanoparticles (MSN) and RNA-interference molecules, can also be used as molecular tools to carry genetic material during genetic engineering of plants. In plant disease management, NPs can be used as biosensors to diagnose the disease.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Botany, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan, Mohanlal Sukhadia University, Udaipur, India
| | - Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
14
|
Meng W, Tian Z, Yao P, Fang X, Wu T, Cheng J, Zou A. Preparation of a novel sustained-release system for pyrethroids by using metal-organic frameworks (MOFs) nanoparticle. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125266] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Nakashima Y, Takai C, Razavi-Khosroshahi H, Fuji M. Effects of cations on the size and silica shell microstructure of hollow silica nanoparticles prepared using PAA/cation/NH4OH template. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Ziaee M, Babamir-Satehi A. Characterization of Nanostructured Silica as Carrier for Insecticides Deltamethrin, Pyriproxyfen, and Chlorpyrifos and Testing the Insecticidal Efficacy Against Trogoderma granarium (Coleoptera: Dermestidae) Larvae. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:511-517. [PMID: 31634405 DOI: 10.1093/jee/toz264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Abstract
Nanostructured silica can be used as a carrier of pesticides to enhance stability and controlled release of agrochemicals with an effective concentration on target pests. Silica nanoparticles (SNPs) were synthesized by sol–gel process and employed as a carrier of three different insecticides including deltamethrin, pyriproxyfen, and chlorpyrifos. The SNPs were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis and the insecticides-loaded in SNPs were characterized by transmission electron microscopy (TEM). The toxicity of insecticides alone and loaded in SNPs was evaluated against small and large larvae of Trogoderma granarium Everts on concrete surfaces. The immediate mortality was counted after 1, 3, and 7 d of exposure, and then surviving individuals were transferred to untreated surfaces for seven more days, with delayed mortality was recorded. Small larvae were more susceptible than large ones on all insecticide treatments. In addition, insecticides loaded in silica nanoparticles were more effective when compared with application of the insecticides alone. For immediate mortality, deltamethrin loaded in SNPs was the most efficient treatment causing 70.5% mortality on small and 55.5% mortality on large larvae after 7 d of exposure to the highest concentration. Pyriproxyfen loaded in SNPs caused low immediate mortality, but the mortality increased in delayed count indicated that the insecticide could control the larvae even after they have been removed from treated surfaces. It can be concluded that loading insecticides in SNPs could significantly increase their insecticidal efficiency, but this increase was compound-dependent.
Collapse
Affiliation(s)
- Masumeh Ziaee
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Asgar Babamir-Satehi
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
17
|
Hollow silica nanoparticles synthesized from core-shell nanoparticles as highly efficient adsorbent for methylene blue and its invitro release: Mechanism and Kinetics study. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Rajiv P, Chen X, Li H, Rehaman S, Vanathi P, Abd-Elsalam KA, Li X. Silica-based nanosystems: Their role in sustainable agriculture. MULTIFUNCTIONAL HYBRID NANOMATERIALS FOR SUSTAINABLE AGRI-FOOD AND ECOSYSTEMS 2020:437-459. [DOI: 10.1016/b978-0-12-821354-4.00018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
19
|
Ziaee M, Ebadollahi A, Wakil W. Integrating inert dusts with other technologies in stored products protection. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1633673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Masumeh Ziaee
- Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Asgar Ebadollahi
- Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Waqas Wakil
- Department of Agricultural Entomology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
20
|
Lin GQ, Chen HY, Zhou HJ, Zhou XH, Xu H. Avermectin/polyacrylate nanoparticles: preparation, characterization, anti-UV and sustained release properties. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1473866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Guan-Quan Lin
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals, Guangzhou, P.R. China
| | - Hua-Yao Chen
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals, Guangzhou, P.R. China
| | - Hong-Jun Zhou
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals, Guangzhou, P.R. China
| | - Xin-Hua Zhou
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals, Guangzhou, P.R. China
| | - Hua Xu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals, Guangzhou, P.R. China
| |
Collapse
|
21
|
Abstract
Each year, 20%–40% of crops are lost due to plant pests and pathogens. Existing plant disease management relies predominantly on toxic pesticides that are potentially harmful to humans and the environment. Nanotechnology can offer advantages to pesticides, like reducing toxicity, improving the shelf-life, and increasing the solubility of poorly water-soluble pesticides, all of which could have positive environmental impacts. This review explores the two directions in which nanoparticles can be utilized for plant disease management: either as nanoparticles alone, acting as protectants; or as nanocarriers for insecticides, fungicides, herbicides, and RNA-interference molecules. Despite the several potential advantages associated with the use of nanoparticles, not many nanoparticle-based products have been commercialized for agricultural application. The scarcity of commercial applications could be explained by several factors, such as an insufficient number of field trials and underutilization of pest–crop host systems. In other industries, nanotechnology has progressed rapidly, and the only way to keep up with this advancement for agricultural applications is by understanding the fundamental questions of the research and addressing the scientific gaps to provide a rational and facilitate the development of commercial nanoproducts.
Collapse
|
22
|
Nuruzzaman M, Liu Y, Rahman MM, Naidu R, Dharmarajan R, Shon HK, Woo YC. Core-Shell Interface-Oriented Synthesis of Bowl-Structured Hollow Silica Nanospheres Using Self-Assembled ABC Triblock Copolymeric Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13584-13596. [PMID: 30352161 DOI: 10.1021/acs.langmuir.8b00792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hollow porous silica nanospheres (HSNs) are emerging classes of cutting-edge nanostructured materials. They have elicited much interest as carriers of active molecule delivery due to their amorphous chemical structure, nontoxic nature, and biocompatibility. Structural development with hierarchical morphology is mostly required to obtain the desired performance. In this context, large through-holes or pore openings on shells are desired so that the postsynthesis loading of active-molecule onto HSNs via a simple immersion method can be facilitated. This study reports the synthesis of HSNs with large through-holes or pore openings on shells, which are subsequently termed bowl-structured hollow porous silica nanospheres (BHSNs). The synthesis of BHSNs was mediated by the core-shell interfaces of the core-shell corona-structured micelles obtained from a commercially available ABC triblock copolymer (polystyrene- b-poly(2-vinylpyridine)- b-poly(ethylene oxide) (PS-P2VP-PEO)). In this synthesis process, polymer@SiO2 composite structure was formed because of the deposition of silica (SiO2) on the micelles' core. The P2VP block played a significant role in the hydrolysis and condensation of the silica precursor, i.e., tetraethylorthosilicate (TEOS) and then maintaining the shell's growth. The PS core of the micelles built the void spaces. Transmission electron microscopy (TEM) images revealed a spherical hollow structure with an average particle size of 41.87 ± 3.28 nm. The average diameter of void spaces was 21.71 ± 1.22 nm, and the shell thickness was 10.17 ± 1.68 nm. According to the TEM image analysis, the average large pore was determined to be 15.95 nm. Scanning electron microscopy (SEM) images further confirmed the presence of large single pores or openings in shells. These were formed as a result of the accumulated ethanol on the PS core acting to prevent the growth of silica.
Collapse
Affiliation(s)
- Md Nuruzzaman
- Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , NSW 2308 , Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building , The University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , NSW 2308 , Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building , The University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , NSW 2308 , Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building , The University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , NSW 2308 , Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building , The University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Rajarathnam Dharmarajan
- Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , NSW 2308 , Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building , The University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Ho Kyong Shon
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building , The University of Newcastle , Callaghan , NSW 2308 , Australia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering , University of Technology Sydney (UTS) , P.O. Box 123, 15 Broadway , Sydney , NSW 2007 , Australia
| | - Yun Chul Woo
- Department of Land, Water and Environment Research , Korea Institute of Civil Engineering and Building Technology (KICT) , 283, Goyangdae-Ro, Ilsanseo-Gu , Goyang-Si , Gyeonggi-Do 411-712 , Republic of Korea
| |
Collapse
|
23
|
Zhu F, Liu X, Cao L, Cao C, Li F, Chen C, Xu C, Huang Q, Du F. Uptake and Distribution of Fenoxanil-Loaded Mesoporous Silica Nanoparticles in Rice Plants. Int J Mol Sci 2018; 19:E2854. [PMID: 30241357 PMCID: PMC6213141 DOI: 10.3390/ijms19102854] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNs) can be used as carriers to deliver pesticides into plants, which is considered to be one method of improving the efficacy of pesticide usage in agricultural production. In the present work, MSNs with an average diameter of 258.1 nm were synthesized and loaded with Fenoxanil. The structure of the nanocarriers was observed by scanning electron microscopy. The loading content of Fenoxanil-loaded MSNs was investigated. After rice plants in a hydroponic system were treated with loaded MSNs, the concentrations of Fenoxanil in different samples were determined using high-performance liquid chromatography⁻tandem mass spectrometry. The results suggested that rice plants can absorb MSNs from water through their roots, and the dosage has almost no effect on the distribution of Fenoxanil in rice plants. The application of pesticide-loaded nanoparticles in a hydroponic system poses a low risk of Fenoxanil accumulation in rice.
Collapse
Affiliation(s)
- Feng Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Huaxi District, Guiyang 550006, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
| | - Lidong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
| | - Chong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
| | - Fengmin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
| | - Caijun Chen
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Huaxi District, Guiyang 550006, China.
| | - Chunli Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
| | - Qiliang Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
| | - Fengpei Du
- Department of Applied Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
24
|
Zhang H, Qin H, Li L, Zhou X, Wang W, Kan C. Preparation and Characterization of Controlled-Release Avermectin/Castor Oil-Based Polyurethane Nanoemulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6552-6560. [PMID: 28562041 DOI: 10.1021/acs.jafc.7b01401] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Avermectin (AVM) is a low-toxic and high-active biopesticide, but it can be easily degraded by UV light. In this paper, biodegradable castor oil-based polyurethanes (CO-PU) are synthesized and used as carriers to fabricate a new kind of AVM/CO-PU nanoemulsion through an emulsion solvent evaporation method, and the chemical structure, colloidal property, AVM loading capacity, controlled-release behavior, foliar adhesion, and photostability of the AVM/CO-PU drug delivery systems are investigated. Results show that AVM is physically encapsulated in the CO-PU carrier nanospheres, the diameter of the AVM/CO-PU nanoparticles is <50 nm, and the AVM/CO-PU films are flat and smooth without any AVM aggregate. The drug loading capacity is up to 42.3 wt % with a high encapsulation efficiency of >85%. The release profiles indicate that the release rate is relatively high at the early stage and then slows, which can be adjusted by loaded AVM content, temperature, and pH of the release medium. The foliar pesticide retention of the AVM/CO-PU nanoemulsions is improved, and the photolysis rate of AVM in the AVM/CO-PU nanoparticles is significantly slower than that of the free AVM. A release mechanism of the AVM/CO-PU nanoemulsions is proposed, which is controlled by both diffusion and matrix erosion.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education , Tsinghua University , Beijing 100084 , People's Republic of China
| | - He Qin
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Lingxiao Li
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Xiaoteng Zhou
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Wei Wang
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Chengyou Kan
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education , Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
25
|
Xu WM, Zhang M, Wei K, Chen Y, Liu Q, Xue W, Jin LH, He M, Chen Z, Zeng S. Development and evaluation of pymetrozine controlled-release formulation to control paddy planthopper. RSC Adv 2018; 8:22687-22693. [PMID: 35539714 PMCID: PMC9081349 DOI: 10.1039/c8ra03516d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/03/2018] [Indexed: 11/21/2022] Open
Abstract
Continuous outbreaks of rice planthoppers in rice-growing regions in China indicates the importance of redesigning several planthopper management programs. Chemical control remains the main strategy for planthopper control in China and other subtropical and temperate regions. Most common chemical insecticides are emulsifiable concentrates, suspension concentrates, soluble concentrates, and wettable powders. These insecticides are applied by dusting or spraying using simple equipment. The active ingredient, with short effectiveness time, is degraded rapidly in natural paddy ecosystems. Thus, repeated pesticide applications are required to control rice planthoppers. Altering the short-term effect formulation of pesticides to a long-acting formulation may be an alternative solution. A pymetrozine controlled-release granule (CRG; 1%) was developed by loading the pesticide on bentonite and coating the solid pesticide with resin. Analysis of pymetrozine release indicated that the 1% pymetrozine CRG release was more than 80% for 60 days. In the field trial screening, the 1% pymetrozine CRG showed a controlled effect of 61.96-78.87% at 48 days after CGR application. Application of 1% pymetrozine CRG at the recommended dosage and 1.5 times the recommended dosage resulted in terminal residues on brown rice below the maximum residue limit (0.1 mg kg-1) of China and Japan. Moreover, the pesticide granules showed low toxicity against all tested beneficial organisms in the environment. Pymetrozine CRG (1%) showed good controlled release and efficacy for controlling paddy planthoppers. The compound exhibited a low terminal residue and low toxicity against all tested beneficial organisms. Pymetrozine CRG (1%) showed great potential for field applications to control paddy planthoppers, because it overcame the rapid loss of biological function during treatment.
Collapse
Affiliation(s)
- Wei-Ming Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86 851 8362 0521 +86 851 8829 2090
| | - Ming Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86 851 8362 0521 +86 851 8829 2090
| | - Kun Wei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86 851 8362 0521 +86 851 8829 2090
| | - Yan Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86 851 8362 0521 +86 851 8829 2090
| | - Qin Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86 851 8362 0521 +86 851 8829 2090
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86 851 8362 0521 +86 851 8829 2090
| | - Lin-Hong Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86 851 8362 0521 +86 851 8829 2090
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86 851 8362 0521 +86 851 8829 2090
| | - Zuo Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86 851 8362 0521 +86 851 8829 2090
| | - Song Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86 851 8362 0521 +86 851 8829 2090
| |
Collapse
|
26
|
Lee JY, Shin K, Seo H, Jun H, Hirai ANS, Lee JW, Nam YS, Kim JW. Tailored layer-by-layer deposition of silica reinforced polyelectrolyte layers on polymer microcapsules for enhanced antioxidant cargo retention. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Shoaib A, Waqas M, Elabasy A, Cheng X, Zhang Q, Shi Z. Preparation and characterization of emamectin benzoate nanoformulations based on colloidal delivery systems and use in controlling Plutella xylostella (L.) (Lepidoptera: Plutellidae). RSC Adv 2018; 8:15687-15697. [PMID: 35539448 PMCID: PMC9080111 DOI: 10.1039/c8ra01913d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/12/2018] [Indexed: 12/15/2022] Open
Abstract
Colloidal delivery systems have been widely used as carriers for controlled delivery of pesticides to improve the efficacy and photostability of natural and semi-synthetic pesticides. In this study, we have synthesized emamectin benzoate nanoformulations (EB + NFs) depending on polymeric nanocapsules (PNC) and two types of the nanosilica, mesoporous nanosilica (MCM-48) and silicon dioxide nanoparticles (SNPs) as carriers for the emamectin benzoate (EB). The fabricated nanoformulations were characterized by using X-ray diffraction analysis, Fourier transform infrared spectroscopy, particle size, zeta potential, morphology, absolute recovery (AR), entrapment efficiency (EE), UV stability and release kinetics. The obtained results showed that the carriers had a remarkable loading ability for EB and improved the EB photostability. The EE% of nanoformulations were 92.84%, 87.45% and 71.19% for emamectin benzoate polymeric nanocapsules (EB + PNC), emamectin benzoate SNPs (EB + SNPs) and emamectin benzoate MCM-48 (EB + MCM-48) respectively. The insecticidal activity of EB + NFs against Plutella xylostella showed that the EB + SNPs was more effective than other EB + NFs and EB alone. The LC50 values were 0.18, 4.03, 8.49 and 11.06 mg L−1 for EB + SNPs, EB + MCM-48, EB + PNC and EB respectively. The obtained results suggest the colloidal delivery systems that used in this study could improve the efficacy and photostability for EB, and they are able to overcome the disadvantage of the natural and semi-synthetic pesticides such as environmental sensitivity and to increase the efficacy of pesticides, which eventually leads to reduce the dosage of pesticides needed, reducing the number of applications required in comparison to conventional formulations. Colloidal delivery systems have been widely used as carriers for controlled delivery of pesticides to improve the efficacy and photostability of natural and semi-synthetic pesticides.![]()
Collapse
Affiliation(s)
- Ali Shoaib
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects
- Ministry of Agriculture
- Institute of Insect Sciences
- Zhejiang University
- Hangzhou 310058
| | - Muhammad Waqas
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects
- Ministry of Agriculture
- Institute of Insect Sciences
- Zhejiang University
- Hangzhou 310058
| | - Asem Elabasy
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects
- Ministry of Agriculture
- Institute of Insect Sciences
- Zhejiang University
- Hangzhou 310058
| | - Xinlai Cheng
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects
- Ministry of Agriculture
- Institute of Insect Sciences
- Zhejiang University
- Hangzhou 310058
| | - Qianqian Zhang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects
- Ministry of Agriculture
- Institute of Insect Sciences
- Zhejiang University
- Hangzhou 310058
| | - Zuhua Shi
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects
- Ministry of Agriculture
- Institute of Insect Sciences
- Zhejiang University
- Hangzhou 310058
| |
Collapse
|
28
|
Bramosanti M, Chronopoulou L, Grillo F, Valletta A, Palocci C. Microfluidic-assisted nanoprecipitation of antiviral-loaded polymeric nanoparticles. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.04.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Liu Z, Qie R, Li W, Hong N, Li Y, Li C, Wang R, Shi Y, Guo X, Jia X. Preparation of avermectin microcapsules with anti-photodegradation and slow-release by the assembly of lignin derivatives. NEW J CHEM 2017. [DOI: 10.1039/c6nj03795j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile, environmentally friendly, and low-cost strategy for affording stability and the slow-release of avermectin based on self-assembly of lignin derivatives is described.
Collapse
|
30
|
Khandelwal N, Barbole RS, Banerjee SS, Chate GP, Biradar AV, Khandare JJ, Giri AP. Budding trends in integrated pest management using advanced micro- and nano-materials: Challenges and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 184:157-169. [PMID: 27697374 DOI: 10.1016/j.jenvman.2016.09.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
One of the most vital supports to sustain human life on the planet earth is the agriculture system that has been constantly challenged in terms of yield. Crop losses due to insect pest attack even after excessive use of chemical pesticides, are major concerns for humanity and environment protection. By the virtue of unique properties possessed by micro and nano-structures, their implementation in Agri-biotechnology is largely anticipated. Hence, traditional pest management strategies are now forestalling the potential of micro and nanotechnology as an effective and viable approach to alleviate problems pertaining to pest control. These technological innovations hold promise to contribute enhanced productivity by providing novel agrochemical agents and delivery systems. Application of these systems engages to achieve: i) control release of agrochemicals, ii) site-targeted delivery of active ingredients to manage specific pests, iii) reduced pesticide use, iv) detection of chemical residues, v) pesticide degradation, vi) nucleic acid delivery and vii) to mitigate post-harvest damage. Applications of micro and nano-technology are still marginal owing to the perception of low economic returns, stringent regulatory issues involving safety assessment and public awareness over their uses. In this review, we highlight the potential application of micro and nano-materials with a major focus on effective pest management strategies including safe handling of pesticides.
Collapse
Affiliation(s)
- Neha Khandelwal
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Ranjit S Barbole
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Shashwat S Banerjee
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India
| | - Govind P Chate
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India
| | - Ankush V Biradar
- Inorganic Material and Catalysis Division, CSIR-Central Salt and Marine Chemical Research Institute, Bhavnagar 364002, Gujarat, India
| | - Jayant J Khandare
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India; Maharashtra Institute of Pharmacy, MIT Campus, Pune 411038, Maharashtra, India.
| | - Ashok P Giri
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.
| |
Collapse
|
31
|
Quaternized Chitosan-Capped Mesoporous Silica Nanoparticles as Nanocarriers for Controlled Pesticide Release. NANOMATERIALS 2016; 6:nano6070126. [PMID: 28335254 PMCID: PMC5224598 DOI: 10.3390/nano6070126] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 01/04/2023]
Abstract
Nanotechnology-based pesticide formulations would ensure effective utilization of agricultural inputs. In the present work, mesoporous silica nanoparticles (MSNs) with particle diameters of ~110 nm and pore sizes of ~3.7 nm were synthesized via a liquid crystal templating mechanism. A water-soluble chitosan (CS) derivative (N-(2-hydroxyl)propyl-3-trimethyl ammonium CS chloride, HTCC) was successfully capped on the surface of pyraclostrobin-loaded MSNs. The physicochemical and structural analyses showed that the electrostatic interactions and hydrogen bonding were the major forces responsible for the formation of HTCC-capped MSNs. HTCC coating greatly improved the loading efficiency (LC) (to 40.3%) compared to using bare MSNs as a single encapsulant (26.7%). The microstructure of the nanoparticles was revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The pyraclostrobin-loaded nanoparticles showed an initial burst and subsequent sustained release behavior. HTCC-capped MSNs released faster than bare MSNs in the initial stage. Pyraclostrobin-loaded HTCC-capped MSNs with half doses of pyraclostrobin technical demonstrated almost the same fungicidal activity against Phomopsis asparagi (Sacc.), which obviously reduced the applied pesticide and enhanced the utilization efficiency. Therefore, HTCC-decorated MSNs demonstrated great potential as nanocarriers in agrochemical applications.
Collapse
|
32
|
Cao L, Zhang H, Cao C, Zhang J, Li F, Huang Q. Quaternized Chitosan-Capped Mesoporous Silica Nanoparticles as Nanocarriers for Controlled Pesticide Release. NANOMATERIALS (BASEL, SWITZERLAND) 2016. [PMID: 28335254 DOI: 10.1039/c4ay01203h] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nanotechnology-based pesticide formulations would ensure effective utilization of agricultural inputs. In the present work, mesoporous silica nanoparticles (MSNs) with particle diameters of ~110 nm and pore sizes of ~3.7 nm were synthesized via a liquid crystal templating mechanism. A water-soluble chitosan (CS) derivative (N-(2-hydroxyl)propyl-3-trimethyl ammonium CS chloride, HTCC) was successfully capped on the surface of pyraclostrobin-loaded MSNs. The physicochemical and structural analyses showed that the electrostatic interactions and hydrogen bonding were the major forces responsible for the formation of HTCC-capped MSNs. HTCC coating greatly improved the loading efficiency (LC) (to 40.3%) compared to using bare MSNs as a single encapsulant (26.7%). The microstructure of the nanoparticles was revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The pyraclostrobin-loaded nanoparticles showed an initial burst and subsequent sustained release behavior. HTCC-capped MSNs released faster than bare MSNs in the initial stage. Pyraclostrobin-loaded HTCC-capped MSNs with half doses of pyraclostrobin technical demonstrated almost the same fungicidal activity against Phomopsis asparagi (Sacc.), which obviously reduced the applied pesticide and enhanced the utilization efficiency. Therefore, HTCC-decorated MSNs demonstrated great potential as nanocarriers in agrochemical applications.
Collapse
Affiliation(s)
- Lidong Cao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Huirong Zhang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Chong Cao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Jiakun Zhang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Fengmin Li
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Qiliang Huang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
33
|
Nuruzzaman M, Rahman MM, Liu Y, Naidu R. Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1447-83. [PMID: 26730488 DOI: 10.1021/acs.jafc.5b05214] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The application of nanotechnology in pesticide delivery is relatively new and in the early stages of development. This technology aims to reduce the indiscriminate use of conventional pesticides and ensure their safe application. This critical review investigated the potential of nanotechnology, especially the nanoencapsulation process for pesticide delivery. In-depth investigation of various nanoencapsulation materials and techniques, efficacy of application, and current research trends are also presented. The focus of ongoing research was on the development of a nanoencapsulated pesticide formulation that has slow releasing properties with enhanced solubility, permeability, and stability. These properties are mainly achieved through either protecting the encapsulated active ingredients from premature degradation or increasing their pest control efficacy for a longer period. Nanoencapsulated pesticide formulation is able to reduce the dosage of pesticides and human exposure to them, which is environmentally friendly for crop protection. However, lack of knowledge of the mechanism of synthesis and lack of a cost-benefit analysis of nanoencapsulation materials hindered their application in pesticide delivery. Further investigation of these materials' behavior and their ultimate fate in the environment will help the establishment of a regulatory framework for their commercialization. The review provides fundamental and critical information for researchers and engineers in the field of nanotechnology and especially the use of nanoencapsulation techniques to deliver pesticides.
Collapse
Affiliation(s)
- Md Nuruzzaman
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Technology, The University of Newcastle , , University Drive, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle , Callaghan, NSW 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Technology, The University of Newcastle , , University Drive, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle , Callaghan, NSW 2308, Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Technology, The University of Newcastle , , University Drive, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle , Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Technology, The University of Newcastle , , University Drive, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle , Callaghan, NSW 2308, Australia
| |
Collapse
|
34
|
Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA. Myconanoparticles: synthesis and their role in phytopathogens management. BIOTECHNOL BIOTEC EQ 2015; 29:221-236. [PMID: 26019636 PMCID: PMC4433920 DOI: 10.1080/13102818.2015.1008194] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/27/2014] [Indexed: 01/22/2023] Open
Abstract
Nanotechnology can offer green and eco-friendly alternatives for plant disease management. Apart from being eco-friendly, fungi are used as bio-manufacturing units, which will provide an added benefit in being easy to use, as compared to other microbes. The non-pathogenic nature of some fungal species in combination with the simplicity of production and handling will improve the mass production of silver nanoparticles. Recently, a diverse range of fungi have been screened for their ability to create silver nanoparticles. Mycosynthesis of gold, silver, gold-silver alloy, selenium, tellurium, platinum, palladium, silica, titania, zirconia, quantum dots, usnic acid, magnetite, cadmium telluride and uraninite nanoparticles has also been reported by various researchers. Nanotechnological application in plant pathology is still in the early stages. For example, nanofungicides, nanopesticides and nanoherbicides are being used extensively in agriculture practices. Remote activation and monitoring of intelligent nano-delivery systems can assist agricultural growers of the future to minimize fungicides and pesticides use. Nanoparticle-mediated gene transfer would be useful for improvement of crops resistant to pathogens and pest. This review critically assesses the role of fungi in the synthesis of nanoparticles, the mechanism involved in the synthesis, the effect of different factors on the reduction of metal ions in developing low-cost techniques for the synthesis and recovery of nanoparticles. Moreover, the application of nanoparticles in plant disease control, antimicrobial mechanisms, and nanotoxicity on plant ecosystem and soil microbial communities has also been discussed in detail.
Collapse
Affiliation(s)
- Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah, Saudi Arabia
| | - Hassan Almoammar
- King Abdulaziz City for Science and Technology (KACST), Saudi Arabia
| | - Mahindra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati-444-602, India
| | - Ernest Said-Galiev
- A.N. Nesmeyanov Institute of Organoelement compounds (INEOS) of Russian Academy of Sciences, Moscow, Russia
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, Egypt
- Unit of Excellence in Nano-Molecular Plant Pathology Research Institute, Giza, Egypt
| |
Collapse
|
35
|
Sheng WB, Li W, Zhang GX, Tong YB, Liu ZY, Jia X. Study on the UV-shielding and controlled-release properties of a polydopamine coating for avermectin. NEW J CHEM 2015. [DOI: 10.1039/c4nj01744g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dopamine chemistry provides a simple and friendly method for controlling release and delaying the photodegradation of avermectin.
Collapse
Affiliation(s)
- Wen-bo Sheng
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang bingtuan
- Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region
- Shihezi University
- Shihezi 832003
- People's Republic of China
| | - Wei Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang bingtuan
- Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region
- Shihezi University
- Shihezi 832003
- People's Republic of China
| | - Guo-xiang Zhang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang bingtuan
- Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region
- Shihezi University
- Shihezi 832003
- People's Republic of China
| | - Yan-bin Tong
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang bingtuan
- Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region
- Shihezi University
- Shihezi 832003
- People's Republic of China
| | - Zhi-yong Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang bingtuan
- Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region
- Shihezi University
- Shihezi 832003
- People's Republic of China
| | - Xin Jia
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang bingtuan
- Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region
- Shihezi University
- Shihezi 832003
- People's Republic of China
| |
Collapse
|
36
|
Wibowo D, Zhao CX, Peters BC, Middelberg APJ. Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12504-11. [PMID: 25479362 DOI: 10.1021/jf504455x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A pesticide delivery system made of biocompatible components and having sustained release properties is highly desirable for agricultural applications. In this study, we report a new biocompatible oil-core silica-shell nanocapsule for sustained release of fipronil insecticide. Silica nanocapsules were prepared by a recently reported emulsion and biomimetic dual-templating approach under benign conditions and without using any toxic chemicals. The loading of fipronil was achieved by direct dissolution in the oil core prior to biomimetic growth of a layer of silica shell surrounding the core, with encapsulation efficiency as high as 73%. Sustained release of fipronil in vitro was tunable through control of the silica-shell thickness (i.e., 8-44 nm). In vivo laboratory tests showed that the insecticidal effect of the fipronil-encapsulated silica nanocapsules against economically important subterranean termites could be controlled by tuning the shell thickness. These studies demonstrated the effectiveness and tunability of an environmentally friendly sustained release system for insecticide, which has great potential for broader agricultural applications with minimal environmental risks.
Collapse
Affiliation(s)
- David Wibowo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia, QLD 4072, Australia
| | | | | | | |
Collapse
|
37
|
Jia X, Sheng WB, Li W, Tong YB, Liu ZY, Zhou F. Adhesive polydopamine coated avermectin microcapsules for prolonging foliar pesticide retention. ACS APPLIED MATERIALS & INTERFACES 2014; 6:19552-8. [PMID: 25390545 DOI: 10.1021/am506458t] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this work, we report a conceptual strategy for prolonging foliar pesticide retention by using an adhesive polydopamine (PDA) microcapsule to encapsulate avermectin, thereby minimizing its volatilization and improving its residence time on crop surfaces. Polydopamine coated avermectin (Av@PDA) microcapsules were prepared by emulsion interfacial-polymerization and characterized by Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, field-emission scanning electron microscope, and transmission electron microscopy. The in situ synthesis route confers Av@PDA microcapsules with remarkable avermectin loading ability of up to 66.5% (w/w). Kinetic study of avermectin release demonstrated that Av@PDA microcapsules exhibit sustained- and controlled-release properties. The adhesive property of Av@PDA microcapsules on different surfaces was verified by a comparative study between Av@PDA and passivated Av@SiO2 and Av@PDA@SiO2 capsules with silica shell. Moreover, PDA shell could effectively shield UV irradiation and so protect avermectin from photodegradation, making it more applicable for foliar spraying. Meanwhile, it is determinated that Av@PDA microcapsules have good mechanical stability property.
Collapse
Affiliation(s)
- Xin Jia
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000, People's Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
Xu L, Cao LD, Li FM, Wang XJ, Huang QL. Utilization of Chitosan-Lactide Copolymer Nanoparticles as Controlled Release Pesticide Carrier for Pyraclostrobin AgainstColletotrichum gossypiiSouthw. J DISPER SCI TECHNOL 2014. [DOI: 10.1080/01932691.2013.800455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
|
40
|
Wan MM, Zhu HY, Qian WJ, Tao SQ, Wang Y, Zhu JH. Fabricating a novel porous releaser of heparin. RSC Adv 2014. [DOI: 10.1039/c4ra09262g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reduced graphene oxide (rGO) could adsorb heparin of 112 mg g−1 and released 80% of them within 30 days.
Collapse
Affiliation(s)
- Mi Mi Wan
- Key Laboratory of Mesoscopic Chemistry of MOE
- College of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093, China
| | - Hao Yue Zhu
- Department of Chemistry
- The Pennsylvania State University
- University Park
- , USA
| | - Wen Juan Qian
- Key Laboratory of Mesoscopic Chemistry of MOE
- College of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093, China
| | - Si Qi Tao
- College of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing 210093, China
| | - Ying Wang
- College of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing 210093, China
| | - Jian Hua Zhu
- Key Laboratory of Mesoscopic Chemistry of MOE
- College of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093, China
| |
Collapse
|
41
|
Qian WJ, Wan MM, Lin WG, Zhu JH. Fabricating a sustained releaser of heparin using SBA-15 mesoporous silica. J Mater Chem B 2013; 2:92-101. [PMID: 32261302 DOI: 10.1039/c3tb21092h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sustained release of heparin in sufficient amounts and over long time is a challenge to drive the development of functional materials. In this paper SBA-15 mesoporous silica is selected in the search for a favorable morphology and optimized surface state for the sustained release of heparin. In situ carbonization of the template in the as-synthesized sample enables SBA-15 to possess narrowed channels with rougher surfaces, while modification with (aminopropyl)triethoxysilane (APTES) through a one-pot synthesis offers SBA-15 with positive charges to attract heparin through electro-static interactions. The structure of modified SBA-15 samples is assessed with XRD (powder X-ray diffraction analysis), nitrogen adsorption-desorption and electron microscopy techniques, and their performance is evaluated in adsorption and release of heparin. These modifications improve the heparin adsorption in SBA-15 and thus promote its sustained release, prolonging the release-equilibrium time up to 60 days. Among them, the SBA-15 sample modified with APTES can trap three times as much heparin as the parent SBA-15, and the release ratio is elevated to 80% (that of SBA-15 is 38%), realizing the best performance of controlling heparin release to date.
Collapse
Affiliation(s)
- Wen Juan Qian
- School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, China.
| | | | | | | |
Collapse
|
42
|
Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery. JOURNAL OF POLYMER RESEARCH 2013. [DOI: 10.1007/s10965-013-0107-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Chen R, Qu H, Agrawal A, Guo S, Ducheyne P. Controlled release of small molecules from silica xerogel with limited nanoporosity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:137-146. [PMID: 23053812 DOI: 10.1007/s10856-012-4783-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/26/2012] [Indexed: 06/01/2023]
Abstract
Conventional sol-gel processing requires several distinct steps involving hydrolysis, condensation and drying to obtain a highly porous, glassy solid material. With the goal of achieving controlled release of small molecules, herein we focus on the acceleration of the condensation and drying steps by casting the hydrolyzed sol on a large open surface to achieve a denser 100 % silica xerogel structure. Thus, cast xerogel with a more limited porosity was prepared. The effect of synthesis parameters during sol-gel synthesis on the release kinetics of bupivacaine, vancomycin and cephalexin was investigated. The release kinetics fitted well with the Higuchi model, suggesting a diffusional release mechanism. Combining the release and nanostructure data, the formation mechanism of cast xerogel is described. Without introducing additional precursors or additives into sol-gel systems, sol-gel casting is an easy technique that further expands the applicability of sol-gel materials as excellent carriers for the controlled release of a variety of drugs.
Collapse
Affiliation(s)
- Rong Chen
- Department of Bioengineering, Center for Bioactive Materials and Tissue Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
44
|
Josefsen LB, Boyle RW. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012; 2:916-66. [PMID: 23082103 PMCID: PMC3475217 DOI: 10.7150/thno.4571] [Citation(s) in RCA: 385] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/10/2012] [Indexed: 02/07/2023] Open
Abstract
Porphyrinic molecules have a unique theranostic role in disease therapy; they have been used to image, detect and treat different forms of diseased tissue including age-related macular degeneration and a number of different cancer types. Current focus is on the clinical imaging of tumour tissue; targeted delivery of photosensitisers and the potential of photosensitisers in multimodal biomedical theranostic nanoplatforms. The roles of porphyrinic molecules in imaging and pdt, along with research into improving their selective uptake in diseased tissue and their utility in theranostic applications are highlighted in this Review.
Collapse
|
45
|
Zhao D, Zhang Y, Lv L, Li J. Preparation and release of avermectin-loaded cellulose acetate ultrafinefibers. POLYM ENG SCI 2012. [DOI: 10.1002/pen.23296] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Wan MM, Yang JY, Qiu Y, Zhou Y, Guan CX, Hou Q, Lin WG, Zhu JH. Sustained release of heparin on enlarged-pore and functionalized MCM-41. ACS APPLIED MATERIALS & INTERFACES 2012; 4:4113-22. [PMID: 22850329 DOI: 10.1021/am300878z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mesoporous silica MCM-41 and SBA-15 were chosen to study the adsorption and release of bulky biomolecule heparin, in order to develop new heparin controlled delivery system and expand the application of mesoporous materials in life science. To explore how the structure of support such as pore size and surface state affects the accommodation and release of heparin, we used decane as swelling agent to enlarge pores of MCM-41, introduced amino groups for improving the biocompatibility of support, and controllably retained templates in the as-synthesized sample. The influence of modification on the structure of samples was investigated by XRD and N(2) adsorption-desorption, whereas their performance of adsorbing and releasing heparin was assessed with that of toluidine blue method. Both enlarged pore and organic modification significantly promoted the adsorption and prolonged the release of heparin in MCM-41, and the release was characterized with a three-stage release model. The mechanism of heparin release from mesoporous material was studied by fitting the release profiles to the theoretical equation. As expected, some mesoporous composites could release heparin in the long term with tuned dosage.
Collapse
Affiliation(s)
- Mi Mi Wan
- Key Laboratory of Mesoscopic Chemistry of MOE, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Tan WM, Hou N, Pang S, Zhu XF, Li ZH, Wen LX, Duan LS. Improved biological effects of uniconazole using porous hollow silica nanoparticles as carriers. PEST MANAGEMENT SCIENCE 2012; 68:437-443. [PMID: 21997963 DOI: 10.1002/ps.2288] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 04/12/2011] [Accepted: 08/23/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND The aim of this work is to prepare a controlled-release formulation of uniconazole using porous hollow silica nanoparticles (PHSNs) as carrier, and to investigate the biological effects on rice growth. RESULTS PHSNs with a shell thickness of ~15 nm and a particle size of 80-100 nm were synthesised through a sol-gel route using nanosized calcium carbonate particles as templates. Simple immersing (SI) and supercritical fluid drug loading (SFDL) technologies were employed to load uniconazole into PHSNs with loading efficiencies of ~22 and ~26% respectively. The prepared uniconazole-loaded PHSNs (UCZ-PHSNs) by SI and SFDL both demonstrated sustained release properties, and the latter showed better controlled release ability with a slower release rate. Compared with free uniconazole, UCZ-PHSNs exhibited a weaker growth retardation effect in the early stage but more significant retardation ability in later stages for agar-cultured rice seedlings. For the rice that grew in clay, UCZ-PHSNs demonstrated a weaker plant height retardation effect than free uniconazole at the early jointing stage by foliar spraying, but exhibited a stronger retardation capacity than free uniconazole by being applied into soil before seedling transplantation. CONCLUSION The results indicated that the prepared UCZ-PHSNs possessed good controlled-release properties and had improved retardation effects on rice growth. It is recommended that UCZ-PHSNs be applied into soil before seedling transplantation rather than administered by foliar spraying at the early jointing stage.
Collapse
Affiliation(s)
- Wei-Ming Tan
- Engineering Research Centre of Plant Growth Regulators, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
48
|
Li M, Huang Q, Wu Y. A novel chitosan-poly(lactide) copolymer and its submicron particles as imidacloprid carriers. PEST MANAGEMENT SCIENCE 2011; 67:831-6. [PMID: 21370387 DOI: 10.1002/ps.2120] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/11/2010] [Accepted: 12/23/2010] [Indexed: 05/24/2023]
Abstract
BACKGROUND The aim of the present work was to synthesise novel amphiphilic chitosan-co-(D,L-lactide) (chitosan-PLA) copolymers and to study the formation of pesticide-loaded polymeric submicron particles. These copolymeric submicron particle systems are expected to be potential candidates for applications in pesticide delivery. RESULTS The chemical structures of the copolymers were confirmed by Fourier transform infrared spectroscopy (FT-IR), (1) H nuclear magnetic resonance ((1) H NMR) and thermogravimetric analysis (TGA). Imidacloprid as a lipophilic model pesticide can be incorporated into chitosan-PLA submicron particles by nanoprecipitation and the emulsion/solvent evaporation method. Size, the size distribution, the imidacloprid loading content (LC) and the imidacloprid release behaviour were investigated. CONCLUSION Conjugation of PLA to chitosan was shown to be an available method for the preparation of submicron particles for lipophilic pesticide delivery. The imidacloprid-loaded submicron particles showed a sustained release process. As the mass ratio of copolymer to imidacloprid increased, the submicron particles size and LC decreased. The chitosan-PLA submicron particles could be useful as pesticide carriers for imidacloprid delivery systems.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Pesticide Chemistry and Application, MOA, Institute of Plant Protection, CAAS, Beijing, China
| | | | | |
Collapse
|
49
|
Xu H, Jiang Q, Reddy N, Yang Y. Hollow nanoparticles from zein for potential medical applications. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11163a] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Kato N, Ishii T, Koumoto S. Synthesis of monodisperse mesoporous silica hollow microcapsules and their release of loaded materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:14334-14344. [PMID: 20666499 DOI: 10.1021/la1024636] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Monodisperse mesoporous silica hollow capsules (MSHCs) with sizes ranging from 570 to 75 nm were synthesized using the sol-gel method combined with the template-assisted method. Monodisperse polystyrene (PS) particles were used as templates for the hollow structure of the MSHCs, and cylindrical micelles of cationic surfactant were used to create mesopores across the shell of the MSHC. To obtain MSHCs with a degree of polydispersity in diameter comparable to that of the PS templates and spherical in shape with uniform shell thicknesses, the conditions for the synthesis were systematically examined. It was found that the ranges of the reaction conditions to obtain such MSHCs had to be narrow because (1) the colloidal stability of the particles must be maintained before and after the sol-gel reaction and (2) the rate of the silica formation during the reaction must be regulated to attain sufficient shell thickness to retain the hollow structure and to achieve smooth surfaces. The sustained release of dye molecules loaded in the MSHCs was confirmed, indicating that our MSHC is a candidate for use as a drug carrier in drug delivery systems or as a container for microreactors.
Collapse
Affiliation(s)
- Noritaka Kato
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan.
| | | | | |
Collapse
|