1
|
Ardón-Muñoz LG, Bolliger JL. Oxidative cyclization leading to charged sulfur-containing tricyclic heteroarenes. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2173757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
2
|
Ardón-Muñoz LG, Bolliger JL. Synthesis of sulfur heterocycles by C–H bond functionalization of disulfide intermediates. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2171040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
3
|
Ardon-Munoz LG, Bolliger JL. Oxidative Cyclization of 4‐(2‐Mercaptophenyl)‐substituted 4H‐1,2,4‐Triazolium Species to Tricyclic Benzothiazolium Salts. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jeanne Lucille Bolliger
- Oklahoma State University The College of Arts and Sciences Chemistry 107 Physical Sciences 74078 Stillwater UNITED STATES
| |
Collapse
|
4
|
Ardón-Muñoz LG, Bolliger JL. Synthesis of Benzo[4,5]thiazolo[2,3- c][1,2,4]triazole Derivatives via C-H Bond Functionalization of Disulfide Intermediates. Molecules 2022; 27:1464. [PMID: 35268564 PMCID: PMC8911890 DOI: 10.3390/molecules27051464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/18/2022] Open
Abstract
Many nitrogen- and sulfur-containing heterocyclic compounds exhibit biological activity. Among these heterocycles are benzo[4,5]thiazolo[2,3-c][1,2,4]triazoles for which two main synthetic approaches exist. Here we report a new synthetic protocol that allows the preparation of these tricyclic compounds via the oxidation of a mercaptophenyl moiety to its corresponding disulfide. Subsequent C-H bond functionalization is thought to enable an intramolecular ring closure, thus forming the desired benzo[4,5]thiazolo[2,3-c][1,2,4]triazole. This method combines a high functional group tolerance with short reaction times and good to excellent yields.
Collapse
Affiliation(s)
| | - Jeanne L. Bolliger
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078-3071, USA;
| |
Collapse
|
5
|
Sun SX, Yan JH, Zuo JT, Wang XB, Chen M, Lu AM, Yang CL, Li GH. Design, synthesis, antifungal evaluation, and molecular docking of novel 1,2,4-triazole derivatives containing oxime ether and cyclopropyl moieties as potential sterol demethylase inhibitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj03578a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of novel triazole derivatives containing oxime ether and cyclopropyl moieties were designed and synthesized. Some compounds exhibited remarkable antifungal activities. The molecular docking of compound 5k with FgCYP51 was investigated.
Collapse
Affiliation(s)
- Sheng-Xin Sun
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jing-Hua Yan
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jiang-Tao Zuo
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xiao-Bin Wang
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Ai-Min Lu
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chun-Long Yang
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Guo-Hua Li
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
6
|
Kang D, Doudrick K, Park N, Choi Y, Kim K, Jeon J. Identification of transformation products to characterize the ability of a natural wetland to degrade synthetic organic pollutants. WATER RESEARCH 2020; 187:116425. [PMID: 32979581 DOI: 10.1016/j.watres.2020.116425] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/05/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Natural wetlands have been recognized as a natural reactor for degradation and elimination of environmental pollutants. The Upo Wetland, the largest inland wetland in Korea, is mainly surrounded by agricultural lands and it is susceptible to contamination from excess nutrient loads and synthetic organic contaminants (SOCs) (e.g., pesticides). The aim of this study was to identify major SOCs in the wetland and evaluate their degradation. We used high resolution mass spectrometry (HRMS) with a two-step analysis approach (i.e., 1st analysis for target measurement along with suspect and non-target screening (SNTS) and 2nd analysis for complimentary suspect screening) to identify and quantify the transformation products (TPs) of the identified parent SOCs. Quantitative analysis of 30 targets, mainly including pesticides, showed that fungicides were the major SOCs detected in the wetland, accounting for about 50% of the composition ratio of the total SOCs quantified. Orysastrobin occurred at the highest mean concentration (>700 ng/L), followed by two other fungicides, carbendazim and tricyclazole. The first analysis (SNTS) tentatively identified 39 TPs (30 by suspect, 9 by non-target screening) of 14 parent pesticides. Additionally, the second analysis (complimentary suspect screening) identified 9 more TPs. Among the 48 total TPs identified, 7 were confirmed with reference standards. The identification of the remaining TPs had a high confidence level (e.g., level 2 or 3). Regarding transport though the wetland, most TPs showed greater peak area ratios (i.e., the relative portion of chromatographic area of the TPs to the parent compound) at the outlet point of the wetland compared to the inlet point. The risk quotient, which was calculated using the concentrations of parent compounds, decreased toward the outlet, demonstrating the degradation capacity of the wetland. The estimates for biodegradability, hydrophobicity, and toxicity by an in-silico quantitative structure-activity relationship (QSAR) model indicated a lower half-life, lower logDOW, and greater effect concentration for most TPs compared to the parent compounds. Based on these results, we conclude that natural wetlands play a role as an eco-friendly reactor for degrading SOCs to form numerous TPs that are lower risk than the parent compounds.
Collapse
Affiliation(s)
- Daeho Kang
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Korea
| | - Kyle Doudrick
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, USA
| | - Naree Park
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Korea
| | - Younghun Choi
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Korea
| | - Kyunghyun Kim
- Watershed and Total Load Management Research Division, National Institute of Environmental Research, Incheon, 22689, Korea
| | - Junho Jeon
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Korea; School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Korea
| |
Collapse
|
7
|
Meng Z, Chen X, Guan L, Xu Z, Zhang Q, Song Y, Liu F, Fan T. Dissipation kinetics and risk assessments of tricyclazole during Oryza sativa L. growing, processing and storage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35249-35256. [PMID: 30341752 DOI: 10.1007/s11356-018-3445-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Because of the increase of people's attention to food safety, monitoring the residue of pesticide in rice is becoming more and more important. Commercial and home processing techniques have been used to transform paddy rice into rice products for human or animal consumption, which may reduce the pesticide content in rice. The degradation of tricyclazole during different stages of commercial and home processing and storage was assessed in this paper. Many researches studying the occurrence and distribution of pesticide residues during rice cropping and processing have been reported. Rice samples were extracted with acetonitrile, the extracts were enriched, and then residues were analyzed by liquid chromatography/tandem mass spectrometry method. The dissipation dynamics of tricyclazole in rice plant, soil, and paddy water fitted the first-order kinetic equations. The dissipation half-lives of tricyclazole in the rice plant, water, and soil at dosage of 300~450 g a.i. hm -2 were 4.84~5.16, 4.64~4.85, and 3.57~3.82 days, respectively. The residue levels of tricyclazole gradually reduced with different processing procedures. What is more, decladding process could effectively remove the residues of tricyclazole in raw rice, and washing process could further remove the residues of tricyclazole in polished rice. Degradation dynamic equations of tricyclazole in the raw rice and polished rice were based on the first-order reaction dynamic equations, and the half-lives of the degradation of tricyclazole was 43.32~58.24 days and 46.83~56.35 days in raw rice and polished rice. These results provide information regarding the fate of tricyclazole in the rice food chain, while it provides a theoretical basis for systematic evaluation of the potential residual risk of tricyclazole.
Collapse
Affiliation(s)
- Zhiyuan Meng
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Xiaojun Chen
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Lingjun Guan
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Zhiying Xu
- Yangzhou Polytechnic University, Yangzhou, 225001, Jiangsu, People's Republic of China
| | - Qingxia Zhang
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yueyi Song
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Fang Liu
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Tianle Fan
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| |
Collapse
|
8
|
CuO Nanoparticles as An Efficient Heterogeneous Catalyst for the 1,3-Dipolar Cycloaddition of Dicarbonyl Compounds to Azides. ChemistrySelect 2018. [DOI: 10.1002/slct.201800816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Kumar N, Mukherjee I, Sarkar B, Paul RK. Degradation of tricyclazole: Effect of moisture, soil type, elevated carbon dioxide and Blue Green Algae (BGA). JOURNAL OF HAZARDOUS MATERIALS 2017; 321:517-527. [PMID: 27676078 DOI: 10.1016/j.jhazmat.2016.08.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/06/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
Pesticide persistence and degradation in soil are influenced by factors like soil characteristics, light, moisture etc. Persistence of tricyclazole was studied under different soil moisture regimes viz., dry, field capacity and submerged in two different soil types viz., Inceptisol and Ultisol from Delhi and Karnataka, respectively. Tricyclazole dissipated faster in submerged (t1/2 160.22-177.05d) followed by field capacity (t1/2 167.17-188.07d) and dry (t1/2 300.91-334.35d) in both the soil types. Half-life of tricyclazole in Delhi field capacity soil amended with Blue Green Algae (BGA), was 150.5d as compared to 167.1d in unamended soil. In Karnataka soil amended with BGA the half-lives were 177.0d compared to 188.0d in unamended soil, indicating that BGA amendment enhanced the rate of dissipation of in both the selected soils. Tricyclazole was found to be stable in water over a pH range of 3-9, the half life in paddy field was 60.20d and 5.47d in paddy soil and paddy water, respectively. Statistical analysis and Duncan's Multiple Range Test (DMRT) revealed significant effect of moisture regime, organic matter and atmospheric CO2 level on dissipation of tricyclazole from soil and pH of water (at 95% confidence level p<0.0001).
Collapse
Affiliation(s)
- Naveen Kumar
- Division of Agricultural Chemicals, ICAR-IARI, New Delhi, 110012, India.
| | - Irani Mukherjee
- Division of Agricultural Chemicals, ICAR-IARI, New Delhi, 110012, India.
| | - Bipasa Sarkar
- Division of Agricultural Chemicals, ICAR-IARI, New Delhi, 110012, India.
| | | |
Collapse
|