1
|
Rong X, Fan M. Ecoepidemic modeling and dynamics of alveolar echinococcosis transmission. Math Biosci 2024; 377:109304. [PMID: 39368545 DOI: 10.1016/j.mbs.2024.109304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Alveolar echinococcosis, transmitted between definitive hosts and intermediate hosts via predation, threatens the health of humans and causes great economic losses in western China. In order to explore the transmission mechanism of this disease, an eco-epidemiological lifecycle model is formulated to illustrate interactions between two hosts. The basic and demographic reproduction numbers are developed to characterize the stability of the disease-free and endemic equilibria as well as bifurcation dynamics. The existence of forward bifurcation and Hopf bifurcation are confirmed and are used to explain the threshold transmission dynamics. Numerical simulations and bifurcation diagrams are also presented to depict rich dynamics of the model. Numerical analysis suggests that improving the control rate of voles will reduce the risk of transmission, while the high predation rate of foxes may also lead to a lower transmission risk, which is different from the predictions of previous studies. The evaluation of three control measures on voles implies that, when the fox's predation rate is low (high), the chemical (integrated) control will be more effective.
Collapse
Affiliation(s)
- Xinmiao Rong
- College of Mathematical Sciences, Harbin Engineering University, 145 Nantong Street, Harbin, Heilongjiang, 150001, China
| | - Meng Fan
- School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, China.
| |
Collapse
|
2
|
Sidhu A, Singla N. Antifertility effects of quinestrol in male lesser bandicoot rat, Bandicota bengalensis, and potential in managing rodent population under field conditions. Integr Zool 2024; 19:108-126. [PMID: 37231968 DOI: 10.1111/1749-4877.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Integrating fertility control techniques using steroid hormones after lethal control can help reduce post control rebuildup of rodent populations. The current study is the first to assess the antifertility effects of quinestrol in male lesser bandicoot rat, Bandicota bengalensis which is the predominant rodent pest species in Southeast Asia. Rats in different groups were fed bait containing 0.00%, 0.01%, 0.02%, and 0.03% quinestrol for 10 days in laboratory and evaluated immediately, and 15, 30, and 60 days after treatment discontinuation for effect on reproduction and other antifertility parameters. Effect of 0.03% quinestrol treatment for 15 days was also observed in managing rodent populations in groundnut crop fields. Treatment resulted in average consumption of 19.53 ± 1.80, 67.63 ± 5.50, and 246.67 ± 1.78 mg/kg bwt active ingredient by three treated groups of rats, respectively. No reproduction was observed in female rats mated with male rats treated with 0.03% quinestrol, even 30 days after cessation of treatment. Post-mortem examination showed a significant (P < 0.0001) effect of treatment on organ weights (testis, cauda epididymis, seminal vesicles, and prostate gland) and different sperm parameters (sperm motility, sperm viability, sperm count, and sperm abnormality) in the cauda epididymal fluid with partial reversibility after 60 days. A significant (P < 0.0001) effect of quinestrol on the histomorphology of testis and cauda epididymis was observed, suggesting its effect on spermatogenesis. Affected cell association and cell count in seminiferous tubules did not fully recover within 60 days of stopping treatment. Evaluation of the effects of quinestrol treatment in groundnut fields showed greater reductions in rodent activity in fields treated with 2% zinc phosphide followed by 0.03% quinestrol treatment as compared to fields treated with 2% zinc phosphide alone. Research concludes that quinestrol has the potential to reduce fecundity and post control rebuildup of B. bengalensis populations, but long-term studies of the effectiveness of quinestrol under large-scale field conditions are needed to use it as part of an integrated pest control program for rodents.
Collapse
Affiliation(s)
- Ajooni Sidhu
- Department of Zoology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Neena Singla
- Department of Zoology, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
3
|
Liu J, Tu F, Liu M, Wang J, Zhang Z. Antifertility effects of EP-1 (quinestrol and levonorgestrel) on Pacific rats (Rattus exulans). Integr Zool 2024; 19:127-142. [PMID: 37884475 DOI: 10.1111/1749-4877.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Pest rodents pose a serious threat to island biodiversity. Fertility control could be an alternative approach to control the impact of rodents on these islands. In this study, we examined the antifertility effects of EP-1 baits containing quinestrol (E) and levonorgestrel (P) using a dose of 50 ppm E and P at three different ratios (E:P ratio = 1:2, 1:1, and 2:1) on Pacific rats (Rattus exulans) in the Xisha Islands, Hainan, China. Compared to the control group, all animals in EP-1 treatment groups showed significantly decreased food intake and body weight. In treated males, there were obvious abnormalities in testis structure and a significant decrease of relative seminal vesicle weight, but no significant effect on relative uterine and ovarian weights (g kg-1 body weight), or ovarian structure in females. Adding 8% sucrose to the original 50-ppm baits (E:P ratio = 1:1) significantly increased bait palatability for males and females. This dose induced uterine edema and abnormalities of ovarian structure in females but had no significant negative effect on the relative testis, epididymis, and seminal vesicle weights (g kg-1 body weight) or sperm density in males. In summary, 50-ppm EP-1 (1:1) baits have the potential to disrupt the fertility of females, and 8% sucrose addition to the EP-1 baits (E:P ratio = 1:1) could improve bait palatability. This dose disrupted the testis structure in males. Future studies are needed to improve bait acceptance and assess the antifertility effects of EP-1 (1:1) on Pacific rats in captive breeding trials and under field conditions.
Collapse
Affiliation(s)
- Jing Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Feiyun Tu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Ming Liu
- Secretariat Office, International Society of Zoological Science and Society and Journal Office, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jichao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Massei G, Jacob J, Hinds LA. Developing fertility control for rodents: a framework for researchers and practitioners. Integr Zool 2024; 19:87-107. [PMID: 37277987 DOI: 10.1111/1749-4877.12727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fertility control is often heralded as a humane and effective technique for management of overabundant wildlife, including rodents. The intention is to reduce the use of lethal and inhumane methods, increase farm productivity and food security as well as reduce disease transmission, particularly of zoonoses. We developed a framework to guide researchers and stakeholders planning to assess the effectiveness of a potential contraceptive agent for a particular species. Our guidelines describe the overarching research questions which must be sequentially addressed to ensure adequate data are collected so that a contraceptive can be registered for use in broad-scale rodent management. The framework indicates that studies should be undertaken iteratively and, at times, in parallel, with initial research being conducted on (1) laboratory-based captive assessments of contraceptive effects in individuals; (2) simulation of contraceptive delivery using bait markers and/or surgical sterilization of different proportions of a field-based or enclosure population to determine how population dynamics are affected; (3) development of mathematical models which predict the outcomes of different fertility control scenarios; and (4) implementation of large-scale, replicated trials to validate contraceptive efficacy under various management-scale field situations. In some circumstances, fertility control may be most effective when integrated with other methods (e.g. some culling). Assessment of non-target effects, direct and indirect, and the environmental fate of the contraceptive must also be determined. Developing fertility control for a species is a resource-intensive commitment but will likely be less costly than the ongoing environmental and economic impacts by rodents and rodenticides in many contexts.
Collapse
Affiliation(s)
- Giovanna Massei
- Botstiber Institute for Wildlife Fertility Control, Department of Environment and Geography, University of York, Heslington, York, UK
| | - Jens Jacob
- Rodent Research, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute (JKI) Federal Research Institute for Cultivated Plants, Münster, Germany
| | - Lyn A Hinds
- CSIRO Health and Biosecurity, Canberra, ACT, Australia
| |
Collapse
|
5
|
Liu M, Ren D, Wan X, Shen X, Zhao C, Xingan, Wang Y, Bu F, Liu W, Zhang Z, Gao Y, Si X, Bai D, Yuan S, Zheng F, Wan X, Fu H, Wu X, Zheng A, Liu Q, Zhang Z. Synergistic effects of EP-1 and ivermectin mixture (iEP-1) to control rodents and their ectoparasites. PEST MANAGEMENT SCIENCE 2023; 79:607-615. [PMID: 36214760 DOI: 10.1002/ps.7226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Ectoparasites of rodents play significant roles in disease transmission to humans. Conventional poisoning potentially reduces the population densities of rodents, however, they may increase the ectoparasite loads on the surviving hosts. EP-1 has been shown to have anti-fertility effects on many rodent species, while ivermectin is effective in controlling ectoparasites. In this study, we examined the combined effects of EP-1 and ivermectin mixture (iEP-1) baits on rodents and their corresponding flea/tick loads. RESULTS In males, the weight of testis, epididymis, and seminiferous vesicle were reduced to less than 33%, 25%, and 17%, respectively, compared to the control group following administration of iEP-1 for 7 days. The weight of the uterus increased by approximately 75%. After 5 days of iEP-1 intake, all ticks were killed, whereas 94% of fleas on mice died after 3 days of bait intake. In the field test near Beijing, the flea index was reduced by more than 90% after 7 days of iEP-1 bait delivery. In a field test in Inner Mongolia, the weights of testis, epididymis, and seminiferous vesicle were significantly reduced by 27%, 32%, and 57%, respectively, 2 weeks after iEP-1 bait delivery. Approximately 36% rodents exhibited obvious uterine oedema accompanied by a weight increase of about 150%. The flea index was reduced by over 90%. CONCLUSION Our results indicated that iEP-1 is a promising treatment for reducing the abundance of both small rodents and their ectoparasites; this will be effective for managing rodent damage and transmission of rodent-borne diseases associated with fleas and ticks. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dongsheng Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xinrong Wan
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaona Shen
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chaoyue Zhao
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xingan
- Inner Mongolia Agriculture University, Hohhot, Inner Mongolia, China
| | - Yujie Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fan Bu
- Center of Disease Control & Prevention of Inner Mongolia, Hohhot, Inner Mongolia, China
| | - Wei Liu
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhongbing Zhang
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Yulong Gao
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Xiaoyan Si
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Defeng Bai
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Ordos Municipal Center for Disease Control and Prevention, Ordos, China
| | - Shuai Yuan
- Center of Disease Control & Prevention of Inner Mongolia, Hohhot, Inner Mongolia, China
| | - Feng Zheng
- International Society of Zoological Sciences, Beijing, China
| | - Xinru Wan
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heping Fu
- Center of Disease Control & Prevention of Inner Mongolia, Hohhot, Inner Mongolia, China
| | - Xiaodong Wu
- Center of Disease Control & Prevention of Inner Mongolia, Hohhot, Inner Mongolia, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Ordos Municipal Center for Disease Control and Prevention, Ordos, China
| |
Collapse
|
6
|
Massei G. Fertility Control for Wildlife: A European Perspective. Animals (Basel) 2023; 13:428. [PMID: 36766317 PMCID: PMC9913817 DOI: 10.3390/ani13030428] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Trends of human population growth and landscape development in Europe show that wildlife impacts are escalating. Lethal methods, traditionally employed to mitigate these impacts, are often ineffective, environmentally hazardous and face increasing public opposition. Fertility control is advocated as a humane tool to mitigate these impacts. This review describes mammalian and avian wildlife contraceptives' effect on reproduction of individuals and populations, delivery methods, potential costs and feasibility of using fertility control in European contexts. These contexts include small, isolated wildlife populations and situations in which lethal control is either illegal or socially unacceptable, such as urban settings, national parks and areas where rewilding occurs. The review highlights knowledge gaps, such as impact of fertility control on recruitment, social and spatial behaviour and on target and non-target species, provides a decision framework to assist decisions about the potential use of wildlife fertility control, and suggests eight reasons for Europe to invest in this area. Although developing and registering contraceptives in Europe will have substantial costs, these are relatively small when compared to wildlife's economic and environmental impact. Developing safe and effective contraceptives will be essential if European countries want to meet public demand for methods to promote human-wildlife coexistence.
Collapse
Affiliation(s)
- Giovanna Massei
- Botstiber Institute for Wildlife Fertility Control Europe, Department of Environment and Geography, University of York, 290 Wentworth Way, Heslington, York YO10 5NG, UK
| |
Collapse
|
7
|
Hinds LA, Belmain SR. Fertility control of rodent pests: recent developments from lab to field. Integr Zool 2022; 17:960-963. [PMID: 34936731 DOI: 10.1111/1749-4877.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lyn A Hinds
- CSIRO Health and Biosecurity, Canberra, ACT, Australia
| | | |
Collapse
|
8
|
IMAKANDO CI, FERNÁNDEZ‐GRANDON GM, SINGLETON GR, BELMAIN SR. Impact of fertility versus mortality control on the demographics of Mastomys natalensis in maize fields. Integr Zool 2022; 17:1028-1040. [PMID: 34496452 PMCID: PMC9786540 DOI: 10.1111/1749-4877.12580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The multimammate mouse, Mastomys natalensis, is the most common rodent pest species in sub-Saharan Africa. Currently, rodenticides are the preferred method used to reduce the population of rodent pests, but this method poses direct and indirect risks to humans and other non-target species. Fertility control is a promising alternative that has been argued to be a more sustainable and humane method for controlling rodent pests. In this study, we compared the effectiveness of fertility control bait EP-1 (quinestrol (E) and levonorgestrel (P), 10 ppm) and an anticoagulant rodenticide bait (bromadiolone, 50 ppm) on the population dynamics of M. natalensis in maize fields in Zambia during 2 cropping seasons. M. natalensis was the most abundant species in maize fields (77% of total captures). Fertility control reduced the number of juveniles and suppressed population growth of M. natalensis at the end of the 2019-2020 cropping season. The population density initially decreased after rodenticide treatment, but the population rapidly recovered through immigration. None of the treatments influenced maize damage by rodents at germination (F2,67 = 1.626, P = 0.204). Applying the treatments during the maize seeding time was effective at suppressing population growth at the end of the cropping season than application the month before maize seeding. This research indicates that a single-dose delivery of EP-1 and rodenticide have comparable effects on the population dynamics of M. natalensis. These findings are important in developing fertility control protocols for rodent pest populations to reduce maize crop damage and improve yields.
Collapse
Affiliation(s)
- Christopher I. IMAKANDO
- Natural Resources InstituteUniversity of GreenwichChatham MaritimeKentUK
- Department of Zoology and Aquatic SciencesCopperbelt UniversityKitweZambia
| | | | - Grant R. SINGLETON
- Natural Resources InstituteUniversity of GreenwichChatham MaritimeKentUK
| | - Steven R. BELMAIN
- Natural Resources InstituteUniversity of GreenwichChatham MaritimeKentUK
| |
Collapse
|
9
|
Structural changes in vegetation coincident with reseeding Elymus nutans can increase perceived predation risk of plateau pikas (Ochotona curzoniae). Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Kang Y, Tan Y, Wang C, Yao B, An K, Liu M, Su J. Antifertility effects of levonorgestrel, quinestrol and their mixture (EP-1) on plateau zokor in the Qinghai-Tibetan Plateau. Integr Zool 2022; 17:1002-1016. [PMID: 35271766 DOI: 10.1111/1749-4877.12642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The plateau zokor (Eospalax baileyi Thomas, 1911) is a key species in the Qinghai-Tibetan Plateau ecosystem, and fertility control could be an ideal approach to manage populations of this subterranean species. In this laboratory study, we explored the effects of the mixture of levonorgestrel and quinestrol (EP-1, 1:2), quinestrol (E), and levonorgestrel (P) on the reproductive status of plateau zokors. Groups of five animals of each sex were treated with different concentrations of EP-1 (1, 5, and 10 mg/kg), E (0.33, 3.3, and 6.6 mg/kg), and P (0.67, 3.35, and 6.7 mg/kg) by oral gavage over 7 successive days and killed on day 15. Body mass reduction was observed in the EP-1 and E groups. EP-1 and E significantly reduced the weight of testis and epididymis at 10 and 3.3 mg/kg, respectively. Sperm count and motility were significantly reduced by 5 mg/kg EP-1 and 0.33 mg/kg E. The levels of serum testosterone, estradiol, luteinizing hormone, and follicle stimulating hormone were significantly reduced by 5 mg/kg EP-1 and 3.3 mg/kg E. EP-1 and E significantly reduced the uterine and ovarian weights at 10 and 3.3 mg/kg, respectively. In the plateau zokors, treatment with P had no influence on the reproductive status. These data demonstrate that EP-1 and E have an inhibitory effect on a range of reproductive parameters in the plateau zokors. Further assessment is required to determine the effects on breeding and recruitment in enclosure or field experiments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yunkun Kang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China.,Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China.,Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chan Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China.,Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baohui Yao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China.,Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Kang An
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China.,Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ming Liu
- International Society of Zoological Sciences, Beijing, 100101, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China.,Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
11
|
Zhu H, Zhong L, Li J, Wang S, Qu J. Differential Expression of Metabolism-Related Genes in Plateau Pika ( Ochotona curzoniae) at Different Altitudes on the Qinghai-Tibet Plateau. Front Genet 2022; 12:784811. [PMID: 35126457 PMCID: PMC8811202 DOI: 10.3389/fgene.2021.784811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
According to life history theory, animals living in extreme environments have evolved specific behavioral and physiological strategies for survival. However, the genetic mechanisms underpinning these strategies are unclear. As the highest geographical unit on Earth, the Qinghai-Tibet Plateau is characterized by an extreme environment and climate. During long-term evolutionary processes, animals that inhabit the plateau have evolved specialized morphological and physiological traits. The plateau pika (Ochotona curzoniae), one of the native small mammals that evolved on the Qinghai-Tibet Plateau, has adapted well to this cold and hypoxic environment. To explore the genetic mechanisms underlying the physiological adaptations of plateau pika to extremely cold ambient temperatures, we measured the differences in resting metabolic rate (RMR) and metabolism-related gene expression in individuals inhabiting three distinct altitudes (i.e., 3,321, 3,663, and 4,194 m). Results showed that the body mass and RMR of plateau pika at high- and medium-altitudes were significantly higher than those at the low-altitude. The expression levels of peroxisome proliferator-activated receptor α (pparα), peroxisome proliferator-activated receptor-γ coactivator-1α (pgc-1α), and the PR domain-containing 16 (PRDM16) in white (WAT) and brown (BAT) adipose tissues of plateau pika from high- and medium-altitudes were significantly higher than in pika from the low-altitude region. The enhanced expression levels of pgc-1α and pparα genes in the WAT of pika at high-altitude showed that WAT underwent "browning" and increased thermogenic properties. An increase in the expression of uncoupling protein 1 (UCP1) in the BAT of pika at high altitude indicated that BAT increased their thermogenic properties. The gene expression levels of pparα and pgc-1α in skeletal muscles were significantly higher in high-altitude pika. Simultaneously, the expression of the sarcolipin (SLN) gene in skeletal muscles significantly increased in high-altitude pika. Our results suggest that plateau pika adapted to an extremely cold environment via browning WAT, thereby activating BAT and enhancing SLN expression to increase non-shivering thermogenesis. This study demonstrates that plateau pika can increase thermogenic gene expression and energy metabolism to adapt to the extreme environments on the plateau.
Collapse
Affiliation(s)
- Hongjuan Zhu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Zhong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Jing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Suqin Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
12
|
Stuart AM, Herawati N'A, Risnelli, Sudarmaji, Liu M, Zhang Z, Li H, Singleton GR, Hinds LA. Reproductive responses of rice field rats (Rattus argentiventer) following treatment with the contraceptive hormones, quinestrol and levonorgestrol. Integr Zool 2021; 17:1017-1027. [PMID: 34695302 DOI: 10.1111/1749-4877.12598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rice field rat, Rattus argentiventer, is a significant pest of rice in Southeast Asia. Fertility control methods have the potential to provide safe and effective alternatives to control methods that often include indiscriminate use of rodenticides or electric barriers. The aim of this laboratory study was to assess uptake of bait coated with different concentrations of the contraceptive hormones, quinestrol (E) and levonorgestrel (P), delivered alone and in combination (i.e. EP-1) and determine the short-term effects on reproductive parameters of adult male and female R. argentiventer. In Experiment 1, 2 concentrations of E, P, and EP-1 (10, 20 ppm) were fed to groups of wild-caught rats for 7 days. In females, both E and EP-1 induced uterine edema. In males, EP-1 reduced epididymis and seminal vesicle weights and lowered sperm motility. However, these responses were inconsistent due to low bait acceptance, especially with increasing concentrations. In Experiment 2, EP-1 (0, 20, 50, 100 ppm) was administered by oral gavage daily for 7 days to male R. argentiventer. There were significant reductions in epididymal and seminal vesicle weights for all oral doses of EP-1, in sperm counts for the 50 ppm dose, and in sperm motility for the 20 and 50 ppm doses compared to the control group. To select the optimum dose of EP-1, we must address the poor acceptance of contraceptive-coated baits by rice field rats. Further research is required to improve the palatability of EP-1 and to test its uptake under field conditions.
Collapse
Affiliation(s)
- Alexander M Stuart
- International Rice Research Institute - Indonesia Office, Bogor, Indonesia.,Pesticide Action Network UK, Brighton, UK
| | - Nur 'Aini Herawati
- Indonesian Center for Rice Research, Sukamandi, Indonesia.,Indonesian Legume and Tuber Crops Research Institute, Malang, Indonesia
| | - Risnelli
- International Rice Research Institute - Indonesia Office, Bogor, Indonesia
| | - Sudarmaji
- Assessment Institute for Agricultural Technology, Yogyakarta, Indonesia
| | - Ming Liu
- International Society of Zoological Sciences, Beijing, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Hongjun Li
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Grant R Singleton
- International Rice Research Institute, Los Banos, Philippines.,Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, UK
| | - Lyn A Hinds
- CSIRO Health and Biosecurity, Canberra, ACT, Australia
| |
Collapse
|
13
|
Jacoblinnert K, Jacob J, Zhang Z, Hinds LA. The status of fertility control for rodents-recent achievements and future directions. Integr Zool 2021; 17:964-980. [PMID: 34549512 DOI: 10.1111/1749-4877.12588] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Management of overabundant rodents at a landscape scale is complex but often required to sustainably reduce rodent abundance below damage thresholds. Current conventional techniques such as poisoning are not species specific, with some approaches becoming increasingly unacceptable to the general public. Fertility control, first proposed for vertebrate pest management over 5 decades ago, has gained public acceptance because it is perceived as a potentially more species-specific and humane approach compared with many lethal methods. An ideal fertility control agent needs to induce infertility across one or more breeding seasons, be easily delivered to an appropriate proportion of the population, be species specific with minimal side-effects (behavioral or social structure changes), and be environmentally benign and cost effective. To date, effective fertility control of rodents has not been demonstrated at landscape scales and very few products have achieved registration. Reproductive targets for fertility control include disrupting the hormonal feedback associated with the hypothalamic-pituitary-gonadal axis, gonad function, fertilization, and/or early implantation. We review progress on the oral delivery of various agents for which laboratory studies have demonstrated efficacy in females and/or males and synthesize progress with the development and/or use of synthetic steroids, plant extracts, ovarian specific peptides, and immunocontraceptive vaccines. There are promising results for field application of synthetic steroids (levonorgestrel, quinestrol), chemosterilants (4-vinylcyclohexene diepoxide), and some plant extracts (triptolide). For most fertility control agents, more research is essential to enable their efficient and cost-effective delivery such that rodent impacts at a population level are mitigated and food security is improved.
Collapse
Affiliation(s)
- Kyra Jacoblinnert
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany.,Department of Behavioral Biology, University Osnabrück, Osnabrück, Germany
| | - Jens Jacob
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lyn A Hinds
- CSIRO Health and Biosecurity, Canberra, ACT, Australia
| |
Collapse
|
14
|
Fu H, Zhang L, Fan C, Liu C, Li W, Cheng Q, Zhao X, Jia S, Zhang Y. Environment and host species identity shape gut microbiota diversity in sympatric herbivorous mammals. Microb Biotechnol 2021; 14:1300-1315. [PMID: 33369229 PMCID: PMC8313255 DOI: 10.1111/1751-7915.13687] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/07/2020] [Indexed: 02/01/2023] Open
Abstract
The previous studies have reported that the mammalian gut microbiota is a physiological consequence; nonetheless, the factors influencing its composition and function remain unclear. In this study, to evaluate the contributions of the host and environment to the gut microbiota, we conducted a sequencing analysis of 16S rDNA and shotgun metagenomic DNA from plateau pikas and yaks, two sympatric herbivorous mammals, and further compared the sequences in summer and winter. The results revealed that both pikas and yaks harboured considerably more distinct communities between summer and winter. We detected the over-representation of Verrucomicrobia and Proteobacteria in pikas, and Archaea and Bacteroidetes in yaks. Firmicutes and Actinobacteria, associated with energy-efficient acquisition, significantly enriched in winter. The diversity of the microbial community was determined by the interactive effects between the host and season. Metagenomic analysis revealed that methane-metabolism-related pathway of yaks was significantly enriched in summer, while some pathogenic pathways were more abundant in pikas. Both pikas and yaks had a higher capacity for lipid degradation in winter. Pika and yak shared more OTUs when food shortage occurred in winter, and this caused a convergence in gut microbial composition and function. From winter to summer, the network module number increased from one to five in pikas, which was different in yaks. Our study demonstrates that the host is a dominant factor in shaping the microbial communities and that seasonality promotes divergence or convergence based on dietary quality across host species identity.
Collapse
Affiliation(s)
- Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Xinquan Zhao
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| | - Shangang Jia
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| |
Collapse
|
15
|
Selemani M, Makundi RH, Massawe AW, Mhamphi G, Mulungu LS, Belmain SR. Impact of contraceptive hormones on the reproductive potential of male and female commensal black rats (Rattus rattus). Integr Zool 2021; 17:991-1001. [PMID: 34047451 DOI: 10.1111/1749-4877.12563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The black rat is considered one of the world's top pests. With increased restrictions on rodenticides, new alternatives to manage rats are urgently needed. Research on the use of contraceptive hormones, levonorgestrel (LE), and quinestrol (QU), have been evaluated against some rodent species, and this research is the first study to assess these on black rats. Hormones were incorporated into rodent bait at 10 and 50 ppm concentrations singly and in combination (EP-1). Groups of 10 animals of each sex were fed the baits over 7 days. Lower bait consumption was observed with slight body mass reductions. On dissection, it was observed that the uterus was in a state of edema and male reproductive organs weighed less with reduced sperm counts/motility. The 2 most promising baits, 50 ppm QU and EP-1, were used to assess impact on pregnancy and litter size. Pregnancy was reduced from 70% success when both males and females consumed untreated bait, down to 30% when males had consumed contraceptive bait but females had not, and down to 0% when females had consumed contraceptive bait, regardless of whether they had paired with a treated or untreated male. Litter size in the untreated pairs was 8 pups, but only 4 pups in those cases where the male only had consumed the contraceptive. Further studies should investigate how long the effect lasts and its reversibility. Field studies at the population level may also shed light on the practicality of using contraceptive baits for black rats in different habitats.
Collapse
Affiliation(s)
- Mwajabu Selemani
- Department of Wildlife Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Rhodes H Makundi
- Pest Management Centre, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Apia W Massawe
- Pest Management Centre, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Ginethon Mhamphi
- Pest Management Centre, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Loth S Mulungu
- Pest Management Centre, Sokoine University of Agriculture, Morogoro, Tanzania
| | | |
Collapse
|
16
|
Schai-Braun SC, Steiger P, Ruf T, Arnold W, Hackländer K. Maternal effects on reproduction in the precocial European hare (Lepus europaeus). PLoS One 2021; 16:e0247174. [PMID: 33596263 PMCID: PMC7888652 DOI: 10.1371/journal.pone.0247174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
In female mammals, reproduction, and in particular lactation, is the energetically most exigent life-history phase. Reproduction is strongly controlled by body reserves and food availability, so females with better body condition or food supply are believed to have higher reproductive output. Additionally, the growth and mortality of young mammals depends on their postnatal development. Therefore, the degree of precociality affects energetic demands for both mothers and young. To study the reproductive performance of the precocial European hare (Lepus europaeus), we analysed relationships between six predictor variables describing maternal and environmental effects and nine response variables relating to reproduction from 217 captive females. We compared the data with those of precocial and altricial mammal species from an extensive literature search. For hares, we found: (1) Heavier females had heavier litters at birth. (2) In summer and spring, total litter mass was larger than in winter. (3) At the end of lactation, the litters of multiparous females were heavier than those of primiparous females. (4) Both older females and females giving birth for the first time had relatively high leveret mortality during lactation. Comparing our results with the literature for other mammals revealed that the body condition (i.e., body mass) of females before birth is predictive of reproductive parameters in both precocial and altricial species. In the precocial hare, female body condition is no longer predictive of reproductive parameters at the end of lactation, whereas in altricial species, female body condition remains predictive of reproduction (litter mass at the end of lactation, offspring mortality) until the end of lactation. We conclude that these effects are caused by precocial offspring feeding on solid food soon after birth and, thus, being less dependent on the mother's body condition during lactation than altricial offspring. In line with this, precociality might have evolved as a way of buffering offspring against maternal effects.
Collapse
Affiliation(s)
- Stéphanie C. Schai-Braun
- Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Steiger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Ruf
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Walter Arnold
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Klaus Hackländer
- Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, Vienna, Austria
- Deutsche Wildtier Stiftung—German Wildlife Foundation, Hamburg, Germany
| |
Collapse
|
17
|
Wei W, Zhen Q, Tang Z, Oosthuizen MK. Risk assessment in the plateau pika (Ochotona curzoniae): intensity of behavioral response differs with predator species. BMC Ecol 2020; 20:41. [PMID: 32680498 PMCID: PMC7368780 DOI: 10.1186/s12898-020-00309-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
Background The ability of a prey species to assess the risk that a predator poses can have important fitness advantages for the prey species. To better understand predator–prey interactions, more species need to be observed to determine how prey behavioral responses differ in intensity when approached by different types of predators. The plateau pika (Ochotona curzoniae) is preyed upon by all predators occurring in its distribution area. Therefore, it is an ideal species to study anti-predator behavior. In this study, we investigated the intensity of anti-predator behavior of pikas in response to visual cues by using four predator species models in Maqu County on the eastern Qinghai-Tibetan Plateau. Results The behavioral response metrics, such as Flight Initiation Distance (FID), the hiding time and the percentage of vigilance were significantly different when exposed to a Tibetan fox, a wolf, a Saker falcon and a large-billed crow, respectively. Pikas showed a stronger response to Saker falcons compared to any of the other predators. Conclusions Our results showed that pikas alter their behavioral (such as FID, the hiding time and the vigilance) response intensity to optimally balance the benefits when exposed to different taxidermy predator species models. We conclude that pikas are able to assess their actual risk of predation and show a threat-sensitive behavioral response.
Collapse
Affiliation(s)
- Wanrong Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of life Sciences, China West Normal University, Nanchong, 637009, China. .,State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730200, China.
| | - Qiaoyan Zhen
- China West Normal University, Nanchong, 637009, China
| | - Zhongmin Tang
- Gannan Grassland Workstation in Gansu Province, Hezuo, 747000, China
| | - Maria K Oosthuizen
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.,Mammal Research Institute, University of Pretoria, Hatfield, 0028, South Africa
| |
Collapse
|
18
|
HE Y, Hu S, Ge D, Yang Q, Connor T, Zhou C. Evolutionary history of Spalacidae inferred from fossil occurrences and molecular phylogeny. Mamm Rev 2019. [DOI: 10.1111/mam.12170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ya HE
- Key Laboratory of Southwest China Wildlife Resources Conservation Institute of Ecology Institute of Rare Animals and Plants of School of Life Sciences China West Normal University Nanchong Sichuan 637009China
- Natural History Research Center Shanghai Natural History Museum Shanghai Science & Technology Museum Shanghai 200041China
| | - Shuzhan Hu
- Key Laboratory of Southwest China Wildlife Resources Conservation Institute of Ecology Institute of Rare Animals and Plants of School of Life Sciences China West Normal University Nanchong Sichuan 637009China
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing 100101China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing 100101China
| | - Thomas Connor
- Department of Fisheries and Wildlife Michigan State University East Lansing Michigan48823USA
| | - Caiquan Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation Institute of Ecology Institute of Rare Animals and Plants of School of Life Sciences China West Normal University Nanchong Sichuan 637009China
| |
Collapse
|
19
|
Su Q, Chen Y, Qin J, Li H, Liu M, Zhang Z, Liu Q. Ratio-dependent effects of quinestrol and levonorgestrel compounds (EP-1) on reproductive parameters of adult male Swiss mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:181-186. [PMID: 31519253 DOI: 10.1016/j.pestbp.2019.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Fertility control is considered as the second-generation pest rodent management strategy. Most previous studies have focused on the dosage-dependent effects of quinestrol and levonorgestrel compounds (EP-1) at a ratio of 1:2, but the ratio-dependent effects of EP-1 have not been fully investigated, especially in male rodents. To test the ratio-dependent antifertility effects of EP-1 with different ratios (1:2, 1:1, and 2:1) on male Swiss outbred strain of laboratory mice, forty male mice were randomly assigned into four groups (n = 10). Mice in the three treatment groups were provided one of the three EP-1 mixture compounds for 3 successive days via gavage at a dosage of 50 mg/kg(body weight), and then all mice were sacrificed 15 days after the gavage treatment. Reproductive organ weights, sperm density and motility, levels of testosterone (T), estradiol (E2), luteinizing hormone (LH), and follicle stimulating hormone (FSH) in serum and/or testis, and androgen receptor (AR), estrogen receptor α (ERα), estrogen receptor β (ERβ), luteinizing hormone receptor (LHR), and aromatase in testis were determined. Each of the ratios of quinestrol and levonorgestrel significantly decreased the density and motility of sperm and induced atrophy of the epididymis and seminal vesicle. The combination of compounds also significantly reduced serum T and LH levels, increased testicular T levels and decreased testicular estradiol ERβ and aromatase levels. EP-1 delivered at a ratio of 1:1 induced the most significant effects on the reproductive parameters assessed and shows the potential for use in fertility control of male rodents.
Collapse
Affiliation(s)
- Qianqian Su
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, 510260 Guangzhou, China
| | - Yi Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, 510260 Guangzhou, China
| | - Jiao Qin
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, 510260 Guangzhou, China
| | - Hongjun Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Ming Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Quansheng Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, 510260 Guangzhou, China.
| |
Collapse
|
20
|
Liu M, Luo R, Wang H, Cao G, Wang Y. Recovery of fertility in quinestrol-treated or diethylstilbestrol-treated mice: Implications for rodent management. Integr Zool 2017; 12:250-259. [PMID: 27611741 DOI: 10.1111/1749-4877.12236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fertility control is an alternative strategy to traditional culling for the management of rodent pests. Previous studies have demonstrated that quinestrol is a potential contraceptive for male rodents, but the recovery of fertility in quinestrol-treated rodents has not been evaluated. This study used C57BL/6J mice to evaluate the recovery rate of male fertility after the administration of quinestrol. Diethylstilbestrol (DES), a non-steroid estrogenic compound, was used for comparison. Different groups of mice were treated with 1 mg/kg quinestrol, 1 mg/kg DES, or castor oil separately for 7 days. These mice were then killed on days 8, 22 and 50 respectively. Our results indicated that the weight of epididymides and seminal vesicles decreased significantly on days 8 and 22 in quinestrol/DES-treated mice, with extensive histological changes in the seminiferous tubules. Sperm concentrations in the cauda epididymal fluid were significantly reduced on days 8 and 22 in both quinestrol and DES treatment groups and on day 50 for the DES, but not the quinestrol group. Further analysis revealed that DES-treated mice exhibited a higher proportion of abnormal sperm accumulation in the epididymis, indicating that the normal sperm transportation to the cauda epididymis was blocked. Our results indicate that the anti-fertility effects on male mice given quinestrol were of shorter duration than for those receiving DES at the dose of 1 mg/kg body weight.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rongcan Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Guangming Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yanling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Xiong M, Shao X, Long Y, Bu H, Zhang D, Wang D, Li S, Wang R, Yao M. Molecular analysis of vertebrates and plants in scats of leopard cats (Prionailurus bengalensis) in southwest China. J Mammal 2016. [DOI: 10.1093/jmammal/gyw061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Understanding the diets of carnivores is essential for resolving food web interactions and the population dynamics of both prey and predators and for designing effective strategies for species and ecosystem conservation. As effective predators, wild felids play important roles in various ecosystems, but relatively little is known about the dietary habits of many species, primarily owing to their elusive behavior. We used a DNA-based method to analyze the vertebrates and plants constituting the diet of leopard cats (Prionailurus bengalensis) in the temperate forests of the mountains of southwest China, a global biodiversity hotspot. DNA extracted from leopard cat scats was amplified with primers targeting either the vertebrate mitochondrial 12S rRNA gene (N = 25 scats) or the psbCL region of the chloroplast genome of vascular plants (N = 42 scats). The polymerase chain reaction products were sequenced and prey taxa were assigned based on sequence similarity. We identified a total of 16 taxa of vertebrate prey, with pikas (in 76% of the scats) and rodents (40%) predominating. Plant material belonging to 12 taxa was found in 76% of the samples, and the genus Solanum and subfamily Rosoideae were the most frequently detected plant taxa. The frequency of occurrence of identified plant taxa differed between the spring–summer and fall–winter months. Thus, the leopard cats in our study area have a diversified diet and are highly flexible in adapting their foraging behavior to the locally available prey. Our data suggest that preserving their natural prey base dominated by pikas and rodents may be vital for the subsistence of local populations. The high species resolution and detection sensitivity of the DNA-based method we used in this study make it a powerful and efficient tool for fine-scale analysis of complex diets.
Collapse
Affiliation(s)
- Mengyin Xiong
- School of Life Sciences, Peking University, R. 640, Beijing 100871, China
| | - Xinning Shao
- School of Life Sciences, Peking University, R. 640, Beijing 100871, China
| | - Ying Long
- School of Life Sciences, Peking University, R. 640, Beijing 100871, China
| | - Hongliang Bu
- School of Life Sciences, Peking University, R. 640, Beijing 100871, China
| | - Dan Zhang
- School of Life Sciences, Peking University, R. 640, Beijing 100871, China
| | - Dajun Wang
- School of Life Sciences, Peking University, R. 640, Beijing 100871, China
| | - Sheng Li
- School of Life Sciences, Peking University, R. 640, Beijing 100871, China
| | - Rongjiang Wang
- School of Life Sciences, Peking University, R. 640, Beijing 100871, China
| | - Meng Yao
- School of Life Sciences, Peking University, R. 640, Beijing 100871, China
| |
Collapse
|
22
|
Liu M, Cao G, Zhang Y, Qu J, Li W, Wan X, Li YX, Zhang Z, Wang YL, Gao F. Changes in the morphology and protein expression of germ cells and Sertoli cells in plateau pikas testes during non-breeding season. Sci Rep 2016; 6:22697. [PMID: 26939551 PMCID: PMC4778026 DOI: 10.1038/srep22697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/18/2016] [Indexed: 11/09/2022] Open
Abstract
Plateau pikas are seasonally breeding small herbivores that inhabit the meadow ecosystem of the Qinghai-Tibetan Plateau. Testis regression in plateau pikas begins in early June, and the male pikas are completely infertile, with a dramatically reduced testis size, in late July. In this study, a decreased germ cell number in the testes was first noted in early June. By late June, only Sertoli cells and a small number of spermatogonia remained. Interestingly, large gonocyte-like germ cells were observed in early July. In late July, the number of gonocyte-like cells per tubule increased significantly, and most of the Sertoli cell nuclei moved to and clustered in the center of the seminiferous tubules. The gonocyte-like germ cells and Sertoli cells began to express AP-2γ and anti-Mullerian hormone (AMH) proteins, which were detected in the germ cells and Sertoli cells of juvenile pikas but not in adult testes. Simultaneously, LC3 puncta dramatically increased in the seminiferous tubules of the pikas’ testes during the non-breeding season. Our study found that spermatogonia and Sertoli cells in non-breeding adult pikas morphologically resembled those in juvenile pikas and expressed specific markers, indicating that de-differentiation-like transitions may occur during this process.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Guangming Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yanming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Biological Adaptation and Evolution, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai Province, P.R. China
| | - Jiapeng Qu
- Key Laboratory of Qinghai-Tibetan Plateau Biological Adaptation and Evolution, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai Province, P.R. China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xinrong Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yu-Xia Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
23
|
Su QQ, Chen Y, Qin J, Wang TL, Wang DH, Liu QS. Effects of mifepristone and quinestrol on the fertility of female Brandt’s voles (Lasiopodomys brandtii) in different reproductive phases. ANIM BIOL 2016. [DOI: 10.1163/15707563-00002492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mifepristone and quinestrol are effective drugs for controlling rodent fertility, but their inhibitory effectiveness during premating, early pregnancy, and late pregnancy is unknown. In this study, six groups of eight female Brandt’s voles (Lasiopodomys brandtii) were administered with mifepristone, quinestrol, or a control for three days during premating, early pregnancy, or late pregnancy. In the mifepristone-treated groups, the premating females bred, whereas the early and late pregnant females did not. The reproductive rate, litter size, average body mass at birth, and survival rate of pups did not significantly differ between the mifepristone-treated premating group and the control group. By contrast, quinestrol treatment completely inhibited fertility during the three reproductive phases. In addition, fertility was not completely restored in the second pairing. The reproductive rates were higher for mifepristone, both during early and late pregnancy, than for quinestrol, but both were lower than the control. Thus, mifepristone and quinestrol both inhibited the fertility of female Brandt’s voles at different reproductive periods. These results suggest that these two sterilants could be delivered during the reproductive season of the target pest animal.
Collapse
Affiliation(s)
- Qian-Qian Su
- Guangdong Entomological Institute, 510260 Guangzhou, China
| | - Yi Chen
- Guangdong Entomological Institute, 510260 Guangzhou, China
| | - Jiao Qin
- Guangdong Entomological Institute, 510260 Guangzhou, China
| | - Tong-Liang Wang
- College of Life Science, Hainan Normal University, 571158 Haikou, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insect and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Quan-Sheng Liu
- Guangdong Entomological Institute, 510260 Guangzhou, China
- Guangdong Public Laboratory of Wild Animal Conservation and Utilization, 510260 Guangzhou, China
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, 510260 Guangzhou, China
| |
Collapse
|
24
|
Jacob J, Manson P, Barfknecht R, Fredricks T. Common vole (Microtus arvalis) ecology and management: implications for risk assessment of plant protection products. PEST MANAGEMENT SCIENCE 2014; 70:869-78. [PMID: 24293354 DOI: 10.1002/ps.3695] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/25/2013] [Accepted: 11/29/2013] [Indexed: 05/25/2023]
Abstract
Common voles (Microtus arvalis) are common small mammals in some European landscapes. They can be a major rodent pest in European agriculture and they are also a representative generic focal small herbivorous mammal species used in risk assessment for plant protection products. In this paper, common vole population dynamics, habitat and food preferences, pest potential and use of the common vole as a model small wild mammal species in the risk assessment process are reviewed. Common voles are a component of agroecosystems in many parts of Europe, inhabiting agricultural areas (secondary habitats) when the carrying capacity of primary grassland habitats is exceeded. Colonisation of secondary habitats occurs during multiannual outbreaks, when population sizes can exceed 1000 individuals ha(-1) . In such cases, in-crop common vole population control management has been practised to avoid significant crop damage. The species' status as a crop pest, high fecundity, resilience to disturbance and intermittent colonisation of crop habitats are important characteristics that should be reflected in risk assessment. Based on the information provided in the scientific literature, it seems justified to modify elements of the current risk assessment scheme for plant protection products, including the use of realistic food intake rates, reduced assessment factors or the use of alternativee focal rodent species in particular European regions. Some of these adjustments are already being applied in some EU member states. Therefore, it seems reasonable consistently to apply such pragmatic and realistic approaches in risk assessments for plant protection products across the EU.
Collapse
Affiliation(s)
- Jens Jacob
- Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | | | | | | |
Collapse
|
25
|
Massei G, Cowan D. Fertility control to mitigate human–wildlife conflicts: a review. WILDLIFE RESEARCH 2014. [DOI: 10.1071/wr13141] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As human populations grow, conflicts with wildlife increase. Concurrently, concerns about the welfare, safety and environmental impacts of conventional lethal methods of wildlife management restrict the options available for conflict mitigation. In parallel, there is increasing interest in using fertility control to manage wildlife. The present review aimed at analysing trends in research on fertility control for wildlife, illustrating developments in fertility-control technologies and delivery methods of fertility-control agents, summarising the conclusions of empirical and theoretical studies of fertility control applied at the population level and offering criteria to guide decisions regarding the suitability of fertility control to mitigate human–wildlife conflicts. The review highlighted a growing interest in fertility control for wildlife, underpinned by increasing numbers of scientific studies. Most current practical applications of fertility control for wild mammals use injectable single-dose immunocontraceptive vaccines mainly aimed at sterilising females, although many of these vaccines are not yet commercially available. One oral avian contraceptive, nicarbazin, is commercially available in some countries. Potential new methods of remote contraceptive delivery include bacterial ghosts, virus-like particles and genetically modified transmissible and non-transmissible organisms, although none of these have yet progressed to field testing. In parallel, new species-specific delivery systems have been developed. The results of population-level studies of fertility control indicated that this approach may increase survival and affect social and spatial behaviour of treated animals, although the effects are species- and context-specific. The present studies suggested that a substantial initial effort is generally required to reduce population growth if fertility control is the sole wildlife management method. However, several empirical and field studies have demonstrated that fertility control, particularly of isolated populations, can be successfully used to limit population growth and reduce human–wildlife conflicts. In parallel, there is growing recognition of the possible synergy between fertility control and disease vaccination to optimise the maintenance of herd immunity in the management of wildlife diseases. The review provides a decision tree that can be used to determine whether fertility control should be employed to resolve specific human–wildlife conflicts. These criteria encompass public consultation, considerations about animal welfare and feasibility, evaluation of population responses, costs and sustainability.
Collapse
|
26
|
Inclusion of quinestrol and 2,6-di-O-methyl-β-cyclodextrin: Preparation, characterization, and inclusion mode. Carbohydr Polym 2013; 93:753-60. [DOI: 10.1016/j.carbpol.2012.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 11/20/2022]
|