1
|
Paul SK, Mazumder S, Naidu R. Herbicidal weed management practices: History and future prospects of nanotechnology in an eco-friendly crop production system. Heliyon 2024; 10:e26527. [PMID: 38444464 PMCID: PMC10912261 DOI: 10.1016/j.heliyon.2024.e26527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Weed management is an important aspect of crop production, as weeds cause significant losses in terms of yield and quality. Various approaches to weed management are commonly practiced by crop growers. Due to limitations in other control methods, farmers often choose herbicides as a cost-effective, rapid and highly efficient weed control strategy. Although herbicides are highly effective on most weeds, they are not a complete solution for weed management because of the genetic diversity and evolving flexibility of weed communities. The excessive and indiscriminate use of herbicides and their dominance in weed control have triggered the rapid generation of herbicide-resistant weed species. Moreover, environmental losses of active ingredients in the herbicides cause serious damage to the environment and pose a serious threat to living organisms. Scientific advances have enabled nanotechnology to emerge as an innovation with real potential in modern agriculture, adding a new dimension in the preparation of controlled release formulations (CRF) of herbicides. Here the required amount of active ingredients is released over longer periods of time to obtain the desired biological efficacy whilst reducing the harmful effects of these chemicals. Various organic and inorganic carrier materials have been utilised in CRF and researchers have a wide range of options for the synthesis of eco-friendly carrier materials, especially those with less or no toxicity to living organisms. This manuscript addresses the history, progress, and consequences of herbicide application, and discusses potential ways to reduce eco-toxicity due to herbicide application, along with directions for future research areas using the benefits of nanotechnology.
Collapse
Affiliation(s)
- Santosh Kumar Paul
- Global Centre for Environmental Remediation (GCER), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
- CRC for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
- Agronomy Division, Bangladesh Agricultural Research Institute (BARI), Joydebpur, Gazipur 1701, Bangladesh
| | - Santa Mazumder
- Sher-E-Bangla Agricultural University, Dhaka-1207, Bangladesh
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
- CRC for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
2
|
Kiselev EG, Boyandin AN, Zhila NO, Prudnikova SV, Shumilova AA, Baranovskiy SV, Shishatskaya EI, Thomas S, Volova TG. Constructing sustained-release herbicide formulations based on poly-3-hydroxybutyrate and natural materials as a degradable matrix. PEST MANAGEMENT SCIENCE 2020; 76:1772-1785. [PMID: 31785186 DOI: 10.1002/ps.5702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/30/2019] [Accepted: 11/27/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND The purpose of the present study was to develop ecofriendly herbicide formulations. Its main aim was to develop and investigate slow-release formulations of herbicides (metribuzin, tribenuron-methyl, and fenoxaprop-P-ethyl) of different structure, solubility, and specificity, which were loaded into a degradable matrix of poly-3-hydroxybutyrate (P(3HB)) blended with available natural materials (peat, clay, and wood flour). RESULTS Differences in the structure and physicochemical properties of the formulations were studied depending on the type of the matrix. Herbicide release and accumulation in soil were associated with the solubility of the herbicide. Fourier-transform infrared spectroscopy showed that no chemical bonds were formed between the components in the experimental formulations. Degradation of the formulations in agro-transformed soil in laboratory conditions was chiefly influenced by the shape of the specimens (granules or pellets) while the effect of the type of filler (peat, clay, or wood flour) was insignificant. The use of granules enabled more rapid accumulation of the herbicides in soil: their peak concentrations were reached after 3 weeks of incubation while the concentrations of the herbicides released from the pellets were the highest after 5-7 weeks. Loading of the herbicides into the polymer matrix composed of the slowly degraded P(3HB) and natural materials enabled both sustained function of the formulations in soil (lasting between 1.5 and ≥3 months) and stable activity of the otherwise rapidly inactivated herbicides such as tribenuron-methyl and fenoxaprop-P-ethyl. CONCLUSION The experimental herbicide formulations enabled slow release of the active ingredients to soil. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Evgeniy G Kiselev
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Federal Research Center "Krasnoyarsk Science Center SB RAS", Institute of Biophysics SB RAS, Krasnoyarsk, Russia
| | - Anatoly N Boyandin
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Federal Research Center "Krasnoyarsk Science Center SB RAS", Institute of Biophysics SB RAS, Krasnoyarsk, Russia
| | - Natalia O Zhila
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Federal Research Center "Krasnoyarsk Science Center SB RAS", Institute of Biophysics SB RAS, Krasnoyarsk, Russia
| | - Svetlana V Prudnikova
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Anna A Shumilova
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Sergey V Baranovskiy
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Ekaterina I Shishatskaya
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Federal Research Center "Krasnoyarsk Science Center SB RAS", Institute of Biophysics SB RAS, Krasnoyarsk, Russia
| | - Sabu Thomas
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- International and Interuniversity Centre for Nano Science and Nano Technology, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Tatiana G Volova
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Federal Research Center "Krasnoyarsk Science Center SB RAS", Institute of Biophysics SB RAS, Krasnoyarsk, Russia
| |
Collapse
|
3
|
Volova T, Prudnikova S, Boyandin A, Zhila N, Kiselev E, Shumilova A, Baranovskiy S, Demidenko A, Shishatskaya E, Thomas S. Constructing Slow-Release Fungicide Formulations Based on Poly(3-hydroxybutyrate) and Natural Materials as a Degradable Matrix. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9220-9231. [PMID: 31347838 DOI: 10.1021/acs.jafc.9b01634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Slow-release fungicide formulations (azoxystrobin, epoxiconazole, and tebuconazole) shaped as pellets and granules in a matrix of biodegradable poly(3-hydroxybutyrate) and natural fillers (clay, wood flour, and peat) were constructed. Infrared spectroscopy showed no formation of chemical bonds between components in the experimental formulations. The formulations of pesticides had antifungal activity against Fusarium verticillioides in vitro. A study of biodegradation of the experimental fungicide formulations in the soil showed that the degradation process was mainly influenced by the type of formulation without significant influence of the type of filler. More active destruction of the granules led to a more rapid accumulation of fungicides in the soil. The content of fungicides present in the soil as a result of degradation of the formulations and fungicide release was determined by their solubility. Thus, all formulations are able to function in the soil for a long time, ensuring gradual and sustained delivery of fungicides.
Collapse
Affiliation(s)
- Tatiana Volova
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
- Institute of Biophysics Siberian Branch of the Russian Academy of Sciences (SB RAS) , Federal Research Center "Krasnoyarsk Science Center SB RAS" , 50/50 Akademgorodok , Krasnoyarsk 660036 , Russia
| | - Svetlana Prudnikova
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
| | - Anatoly Boyandin
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
- Institute of Biophysics Siberian Branch of the Russian Academy of Sciences (SB RAS) , Federal Research Center "Krasnoyarsk Science Center SB RAS" , 50/50 Akademgorodok , Krasnoyarsk 660036 , Russia
| | - Natalia Zhila
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
- Institute of Biophysics Siberian Branch of the Russian Academy of Sciences (SB RAS) , Federal Research Center "Krasnoyarsk Science Center SB RAS" , 50/50 Akademgorodok , Krasnoyarsk 660036 , Russia
| | - Evgeniy Kiselev
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
- Institute of Biophysics Siberian Branch of the Russian Academy of Sciences (SB RAS) , Federal Research Center "Krasnoyarsk Science Center SB RAS" , 50/50 Akademgorodok , Krasnoyarsk 660036 , Russia
| | - Anna Shumilova
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
| | - Sergey Baranovskiy
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
| | - Aleksey Demidenko
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
- Institute of Biophysics Siberian Branch of the Russian Academy of Sciences (SB RAS) , Federal Research Center "Krasnoyarsk Science Center SB RAS" , 50/50 Akademgorodok , Krasnoyarsk 660036 , Russia
| | - Ekaterina Shishatskaya
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
- Institute of Biophysics Siberian Branch of the Russian Academy of Sciences (SB RAS) , Federal Research Center "Krasnoyarsk Science Center SB RAS" , 50/50 Akademgorodok , Krasnoyarsk 660036 , Russia
| | - Sabu Thomas
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
- International and Inter University Centre for Nanoscience and Nanotechnology , Mahatma Gandhi University , Priyadarshini Hills, Kottayam , Kerala 686560 , India
| |
Collapse
|
4
|
Peters BC, Wibowo D, Yang GZ, Hui Y, Middelberg AP, Zhao CX. Evaluation of baiting fipronil-loaded silica nanocapsules against termite colonies in fields. Heliyon 2019; 5:e02277. [PMID: 31440604 PMCID: PMC6699461 DOI: 10.1016/j.heliyon.2019.e02277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/20/2019] [Accepted: 08/07/2019] [Indexed: 01/22/2023] Open
Abstract
Various pesticide nanocarriers have been developed. However, their pest-control applications remain limited in laboratories. Herein, we developed silica nanocapsules encapsulating fipronil (SNC) and their engineered form, poly(ethyleneimine)-coated SNC (SNC-PEI), based on recombinant catalytic modular protein D4S2 and used them against termite colonies Coptotermes lacteus in fields. To achieve this, an integrated biomolecular bioprocess was developed to produce D4S2 for manufacturing SNC containing fipronil with high encapsulation efficiency of approximately 97% at benign reaction conditions and at scales sufficient for the field applications. PEI coating was achieved via electrostatic interactions to yield SNC-PEI with a slower release of fipronil than SNC without coating. As a proof-of-concept, bait toxicants containing varied fipronil concentrations were formulated and exposed to nine termite mounds, aiming to prolong fipronil release hence allowing sufficient time for termites to relocate the baits into and distribute throughout the colony, and to eliminate that colony. Some baits were relocated into the mounds, but colonies were not eliminated due to several reasons. We caution others interested in producing bait toxicants to be aware of the multilevel resistance mechanisms of the Coptotermes spp. "superorganism".
Collapse
Affiliation(s)
| | - David Wibowo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Guang-Ze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Yue Hui
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Anton P.J. Middelberg
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- Faculty of Engineering, Computer, and Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
5
|
Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J Control Release 2019; 294:131-153. [PMID: 30552953 DOI: 10.1016/j.jconrel.2018.12.012] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
The incorporation of nanotechnology as a means for nanopesticides is in the early stage of development. The main idea behind this incorporation is to lower the indiscriminate use of conventional pesticides to be in line with safe environmental applications. Nanoencapsulated pesticides can provide controlled release kinetics, while efficiently enhancing permeability, stability, and solubility. Nanoencapsulation can enhance the pest-control efficiency over extended durations by preventing the premature degradation of active ingredients (AIs) under harsh environmental conditions. This review is thus organized to critically assess the significant role of nanotechnology for encapsulation of AIs for pesticides. The smart delivery of pesticides is essential to reduce the dosage of AIs with enhanced efficacy and to overcome pesticide loss (e.g., due to leaching and evaporation). The future trends of pesticide nanoformulations including nanomaterials as AIs and nanoemulsions of biopesticides are also explored. This review should thus offer a valuable guide for establishing regulatory frameworks related to field applications of these nano-based pesticides in the near future.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States.
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Electronics and Communication Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Unit of Florence, Viale delle Medaglie d'Oro 305, 00136, Roma, Italy
| | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
6
|
Boyandin AN, Zhila NO, Kiselev EG, Volova TG. Constructing Slow-Release Formulations of Metribuzin Based on Degradable Poly(3-hydroxybutyrate). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5625-5632. [PMID: 27356030 DOI: 10.1021/acs.jafc.5b05896] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Experimental formulations of herbicide metribuzin embedded in matrices of degradable natural polymer poly(3-hydroxybutyrate) (P3HB) and its composites with poly(ethylene glycol) (PEG), poly-ε-caprolactone (PCL), and wood powder have been prepared in the form of pressed pellets containing 75% polymeric basis (pure P3HB or its composite with a second component at a ratio of 7:3) and 25% metribuzin. Incubation of formulations in soil laboratory systems led to the degradation of the matrix and herbicide release. The most active release of metribuzin (about 60% of the embedded herbicide over 35 days) was detected for the P3HB/PEG carrier compared to the P3HB, P3HB/wood, and P3HB/PCL forms (30-40%). Thus, the study shows that herbicide release can be controlled by the matrix formulation. Metribuzin formulations exerted a significant herbicidal effect on the plant Agrostis stolonifera, used as a weed plant model. Application of these long-term formulations will make it possible to reduce environmental release of chemicals, which will restrict the rate of their accumulation in trophic chains of ecosystems and abate their adverse effects on the biosphere.
Collapse
Affiliation(s)
- Anatoly Nikolayevich Boyandin
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences , 50/50 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Natalia Olegovna Zhila
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences , 50/50 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Evgeniy Gennadievich Kiselev
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences , 50/50 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Tatiana Grigorievna Volova
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences , 50/50 Akademgorodok, Krasnoyarsk 660036, Russia
| |
Collapse
|
7
|
Houbraken M, van den Berg F, Butler Ellis CM, Dekeyser D, Nuyttens D, De Schampheleire M, Spanoghe P. Volatilisation of pesticides under field conditions: inverse modelling and pesticide fate models. PEST MANAGEMENT SCIENCE 2016; 72:1309-1321. [PMID: 26374459 DOI: 10.1002/ps.4149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/15/2015] [Accepted: 09/13/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND A substantial fraction of the applied crop protection products on crops is lost to the atmosphere. Models describing the prediction of volatility and potential fate of these substances in the environment have become an important tool in the pesticide authorisation procedure at the EU level. The main topic of this research is to assess the rate and extent of volatilisation of ten pesticides after application on field crops. RESULTS For eight of the ten pesticides, the volatilisation rates modelled with PEARL (Pesticide Emission Assessment at Regional and Local scales) corresponded well to the calculated rates modelled with ADMS (Atmospheric Dispersion Modelling System). For the other pesticides, large differences were found between the models. Formulation might affect the volatilisation potential of pesticides. Increased leaf wetness increased the volatilisation of propyzamide and trifloxystrobin at the end of the field trial. The reliability of pesticide input parameters, in particular the vapour pressure, is discussed. CONCLUSION Volatilisation of propyzamide, pyrimethanil, chlorothalonil, diflufenican, tolylfluanid, cyprodinil and E- and Z-dimethomorph from crops under realistic environmental conditions can be modelled with the PEARL model, as corroborated against field observations. Suggested improvements to the volatilisation component in PEARL should include formulation attributes and leaf wetness at the time of pesticide application. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Michael Houbraken
- Laboratory of Crop Protection Chemistry, Faculty of Bioscience Engineering, Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Frederik van den Berg
- Alterra, Wageningen University and Research Centre, 6700, AA, Wageningen, The Netherlands
| | | | - Donald Dekeyser
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Sciences, Agricultural Engineering, Merelbeke, Belgium
| | - David Nuyttens
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Sciences, Agricultural Engineering, Merelbeke, Belgium
| | - Mieke De Schampheleire
- Laboratory of Crop Protection Chemistry, Faculty of Bioscience Engineering, Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Pieter Spanoghe
- Laboratory of Crop Protection Chemistry, Faculty of Bioscience Engineering, Department of Crop Protection, Ghent University, Ghent, Belgium
| |
Collapse
|