1
|
Chen J, Cui H, Li Z, Yu H, Hou Q, Li X. Potential Role of EPSPS Mutations in the Resistance of Eleusine indica to Glyphosate. Int J Mol Sci 2023; 24:ijms24098250. [PMID: 37175957 PMCID: PMC10179075 DOI: 10.3390/ijms24098250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Gene mutation is a basic evolutionary mechanism in plants under selection pressure of herbicides. Such mutation has pleiotropic effects on plant growth. We systemically investigated the effects of Pro106Leu (P106L), Pro106Ser (P106S), and Thr102Ile + Pro106Ser (TIPS) mutations on EPSPS functionality and fitness traits in Eleusine indica at the biochemical and physiological levels. The affinity of natural EPSPS for glyphosate was 53.8 times higher than that for phosphoenolpyruvate (PEP), as revealed by the dissociation constant; the constant decreased in both the P106L (39.9-fold) and P106S (46.9-fold) mutants but increased in the TIPS (87.5-fold) mutant. The Km (PEP) values of the P106L, P106S, and TIPS mutants were 2.4-, 0.7-, and 4.1-fold higher than that of natural EPSPS, corresponding to resistance levels of 2.5, 1.9, and 11.4, respectively. The catalytic efficiency values (maximum reaction rates) were 0.89-, 0.94-, and 0.26-fold higher than that of natural EPSPS. The levels of metabolites related to amino acids and nucleotides were significantly reduced in the mutated plants. The fitness costs were substantial for the biomass, total leaf area, seed number, and seedling emergence throughout the growth period in the plants with P106L and TIPS mutations. These results provide insights into EPSPS kinetics and their effect on plant growth.
Collapse
Affiliation(s)
- Jingchao Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hailan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiling Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haiyan Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiang Hou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangju Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Mackie ERR, Barrow AS, Christoff RM, Abbott BM, Gendall AR, Soares da Costa TP. A dual-target herbicidal inhibitor of lysine biosynthesis. eLife 2022; 11:78235. [PMID: 35723913 PMCID: PMC9208756 DOI: 10.7554/elife.78235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022] Open
Abstract
Herbicides with novel modes of action are urgently needed to safeguard global agricultural industries against the damaging effects of herbicide-resistant weeds. We recently developed the first herbicidal inhibitors of lysine biosynthesis, which provided proof-of-concept for a promising novel herbicide target. In this study, we expanded upon our understanding of the mode of action of herbicidal lysine biosynthesis inhibitors. We previously postulated that these inhibitors may act as proherbicides. Here, we show this is not the case. We report an additional mode of action of these inhibitors, through their inhibition of a second lysine biosynthesis enzyme, and investigate the molecular determinants of inhibition. Furthermore, we extend our herbicidal activity analyses to include a weed species of global significance.
Collapse
Affiliation(s)
- Emily R R Mackie
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia.,School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, Australia
| | - Andrew S Barrow
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Rebecca M Christoff
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Anthony R Gendall
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Bundoora, Australia.,Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia.,School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, Australia
| |
Collapse
|
3
|
Ouyang C, Liu W, Chen S, Zhao H, Chen X, Jin X, Li X, Wu Y, Zeng X, Huang P, He X, An B. The Naturally Evolved EPSPS From Goosegrass Confers High Glyphosate Resistance to Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:756116. [PMID: 34777434 PMCID: PMC8586540 DOI: 10.3389/fpls.2021.756116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate-resistant crops developed by the CP4-EPSPS gene from Agrobacterium have been planted on a massive scale globally, which benefits from the high efficiency and broad spectrum of glyphosate in weed control. Some glyphosate-resistant (GR) genes from microbes have been reported, which might raise biosafety concerns. Most of them were obtained through a hygromycin-HPT transformation system. Here we reported the plant source with 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from goosegrass endowed rice with high resistance to glyphosate. The integrations and inheritability of the transgenes in the rice genome were investigated within two generations. The EiEPSPS transgenic plants displayed similar growth and development to wild type under no glyphosate selection pressure but better reproductive performance under lower glyphosate selection pressure. Furthermore, we reconstructed a binary vector pCEiEPSPS and established the whole stage glyphosate selection using the vector. The Glyphosate-pCEiEPSPS selection system showed a significantly higher transformation efficiency compared with the hygromycin-HPT transformation system. Our results provided a promising alternative gene resource to the development of GR plants and also extended the plant transformation toolbox.
Collapse
Affiliation(s)
- Chao Ouyang
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Silan Chen
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Huimin Zhao
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xinyan Chen
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xiongxia Jin
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xinpeng Li
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Yongzhong Wu
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xiang Zeng
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Peijin Huang
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xiuying He
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Baoguang An
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| |
Collapse
|
4
|
Vila‐Aiub MM, Han H, Yu Q, García F, Powles SB. Contrasting plant ecological benefits endowed by naturally occurring EPSPS resistance mutations under glyphosate selection. Evol Appl 2021; 14:1635-1645. [PMID: 34178109 PMCID: PMC8210788 DOI: 10.1111/eva.13230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/27/2022] Open
Abstract
Concurrent natural evolution of glyphosate resistance single- and double-point EPSPS mutations in weed species provides an opportunity for the estimation of resistance fitness benefits and prediction of equilibrium resistance frequencies in environments under glyphosate selection. Assessment of glyphosate resistance benefit was conducted for the most commonly identified single Pro-106-Ser and less-frequent double TIPS mutations in the EPSPS gene evolved in the global damaging weed Eleusine indica. Under glyphosate selection at the field dose, plants with the single Pro-106-Ser mutation at homozygous state (P106S-rr) showed reduced survival and compromised vegetative growth and fecundity compared with TIPS plants. Whereas both homozygous (TIPS-RR) and compound heterozygous (TIPS-Rr) plants with the double TIPS resistance mutation displayed similar survival rates when exposed to glyphosate, a significantly higher fecundity in the currency of seed number was observed in TIPS-Rr than TIPS-RR plants. The highest plant fitness benefit was associated with the heterozygous TIPS-Rr mutation, whereas plants with the homozygous Pro-106-Ser and TIPS mutations exhibited, respectively, 31% and 39% of the fitness benefit revealed by the TIPS-Rr plants. Populations are predicted to reach stable allelic and genotypic frequencies after 20 years of glyphosate selection at which the WT allele is lost and the stable genotypic polymorphism is comprised by 2% of heterozygous TIPS-Rr, 52% of homozygous TIPS-RR and 46% of homozygous P106S-rr. The high inbreeding nature of E. indica is responsible for the expected frequency decrease in the fittest TIPS-Rr in favour of the homozygous TIPS-RR and P106S-rr. Mutated alleles associated with the glyphosate resistance EPSPS single EPSPS Pro-106-Ser and double TIPS mutations confer contrasting fitness benefits to E. indica under glyphosate treatment and therefore are expected to exhibit contrasting evolution rates in cropping systems under recurrent glyphosate selection.
Collapse
Affiliation(s)
- Martin M. Vila‐Aiub
- Australian Herbicide Resistance Initiative (AHRI) ‐ School of Agriculture & EnvironmentUniversity of Western Australia (UWA)CrawleyWestern AustraliaAustralia
- IFEVA ‐ CONICET – Faculty of AgronomyDepartment of EcologyUniversity of Buenos Aires (UBA)Buenos AiresArgentina
| | - Heping Han
- Australian Herbicide Resistance Initiative (AHRI) ‐ School of Agriculture & EnvironmentUniversity of Western Australia (UWA)CrawleyWestern AustraliaAustralia
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI) ‐ School of Agriculture & EnvironmentUniversity of Western Australia (UWA)CrawleyWestern AustraliaAustralia
| | - Federico García
- IFEVA ‐ CONICET – Faculty of AgronomyDepartment of EcologyUniversity of Buenos Aires (UBA)Buenos AiresArgentina
| | - Stephen B. Powles
- Australian Herbicide Resistance Initiative (AHRI) ‐ School of Agriculture & EnvironmentUniversity of Western Australia (UWA)CrawleyWestern AustraliaAustralia
| |
Collapse
|
5
|
Duke SO. Glyphosate: Uses Other Than in Glyphosate-Resistant Crops, Mode of Action, Degradation in Plants, and Effects on Non-target Plants and Agricultural Microbes. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 255:1-65. [PMID: 33895876 DOI: 10.1007/398_2020_53] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Glyphosate is the most used herbicide globally. It is a unique non-selective herbicide with a mode of action that is ideal for vegetation management in both agricultural and non-agricultural settings. Its use was more than doubled by the introduction of transgenic, glyphosate-resistant (GR) crops. All of its phytotoxic effects are the result of inhibition of only 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), but inhibition of this single enzyme of the shikimate pathway results in multiple phytotoxicity effects, both upstream and downstream from EPSPS, including loss of plant defenses against pathogens. Degradation of glyphosate in plants and microbes is predominantly by a glyphosate oxidoreductase to produce aminomethylphosphonic acid and glyoxylate and to a lesser extent by a C-P lyase to produce sarcosine and phosphate. Its effects on non-target plant species are generally less than that of many other herbicides, as it is not volatile and is generally sprayed in larger droplet sizes with a relatively low propensity to drift and is inactivated by tight binding to most soils. Some microbes, including fungal plant pathogens, have glyphosate-sensitive EPSPS. Thus, glyphosate can benefit GR crops by its activity on some plant pathogens. On the other hand, glyphosate can adversely affect some microbes that are beneficial to agriculture, such as Bradyrhizobium species, although GR crop yield data indicate that such an effect has been minor. Effects of glyphosate on microbes of agricultural soils are generally minor and transient, with other agricultural practices having much stronger effects.
Collapse
Affiliation(s)
- Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA.
| |
Collapse
|
6
|
Omics Potential in Herbicide-Resistant Weed Management. PLANTS 2019; 8:plants8120607. [PMID: 31847327 PMCID: PMC6963460 DOI: 10.3390/plants8120607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
The rapid development of omics technologies has drastically altered the way biologists conduct research. Basic plant biology and genomics have incorporated these technologies, while some challenges remain for use in applied biology. Weed science, on the whole, is still learning how to integrate omics technologies into the discipline; however, omics techniques are more frequently being implemented in new and creative ways to address basic questions in weed biology as well as the more practical questions of improving weed management. This has been especially true in the subdiscipline of herbicide resistance where important questions are the evolution and genetic basis of herbicide resistance. This review examines the advantages, challenges, potential solutions, and outlook for omics technologies in the discipline of weed science, with examples of how omics technologies will impact herbicide resistance studies and ultimately improve management of herbicide-resistant populations.
Collapse
|
7
|
Serra AA, Miqueau A, Ramel F, Couée I, Sulmon C, Gouesbet G. Species- and organ-specific responses of agri-environmental plants to residual agricultural pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133661. [PMID: 31756788 DOI: 10.1016/j.scitotenv.2019.133661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Soil pollution by anthropogenic chemicals is a major concern for sustainability of crop production and of ecosystem functions mediated by natural plant biodiversity. The complex effects on plants are however difficult to apprehend. Plant communities of field margins, vegetative filter strips or rotational fallows are confronted with agricultural pollutants through residual soil contamination and/or through drift, run-off and leaching events that result from chemical applications. Exposure to xenobiotics and heavy metals causes biochemical, physiological and developmental effects. However, the range of doses, modalities of exposure, metabolization of contaminants into derived xenobiotics, and combinations of contaminants result in variable and multi-level effects. Understanding these complex plant-pollutant interactions cannot directly rely on toxicological or agronomical approaches that focus on the effects of field-rate pesticide applications. It must take into account exposure at root level, sublethal concentrations of bioactive compounds and functional biodiversity of the plant species that are affected. The present study deals with agri-environmental plant species of field margins, vegetative filter strips or rotational fallows in European agricultural landscapes. Root and shoot physiological and growth responses were compared under controlled conditions that were optimally adjusted for each plant species. Contrasted responses of growth inhibition, no adverse effect or growth enhancement depended on species, organ and nature of contaminant. However, all of the agricultural contaminants under study (pesticides, pesticide metabolites, heavy metals, polycyclic aromatic hydrocarbons) had significant effects under conditions of sublethal exposure on at least some of the plant species. The fungicide tebuconazole and polycyclic aromatic hydrocarbon fluoranthene, which gave highest levels of responses, induced both activation or inhibition effects, in different plant species or in different organs of the same plant species. These complex effects are discussed in terms of dynamics of agri-environmental plants and of ecological consequences of differential root-shoot growth under conditions of soil contamination.
Collapse
Affiliation(s)
- Anne-Antonella Serra
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Amélie Miqueau
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Fanny Ramel
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Ivan Couée
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France.
| | - Cécile Sulmon
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Gwenola Gouesbet
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| |
Collapse
|
8
|
Vila-Aiub MM, Yu Q, Powles SB. Do plants pay a fitness cost to be resistant to glyphosate? THE NEW PHYTOLOGIST 2019; 223:532-547. [PMID: 30737790 DOI: 10.1111/nph.15733] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
We reviewed the literature to understand the effects of glyphosate resistance on plant fitness at the molecular, biochemical and physiological levels. A number of correlations between enzyme characteristics and glyphosate resistance imply the existence of a plant fitness cost associated with resistance-conferring mutations in the glyphosate target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). These biochemical changes result in a tradeoff between the glyphosate resistance of the EPSPS enzyme and its catalytic activity. Mutations that endow the highest resistance are more likely to decrease catalytic activity by reducing the affinity of EPSPS for its natural substrate, and/or slowing the velocity of the enzyme reaction, and are thus very likely to endow a substantial plant fitness cost. Prediction of fitness costs associated with EPSPS gene amplification and overexpression can be more problematic. The validity of cost prediction based on the theory of evolution of gene expression and resource allocation has been cast into doubt by contradictory experimental evidence. Further research providing insights into the role of the EPSPS cassette in weed adaptation, and estimations of the energy budget involved in EPSPS amplification and overexpression are required to understand and predict the biochemical and physiological bases of the fitness cost of glyphosate resistance.
Collapse
Affiliation(s)
- Martin M Vila-Aiub
- Australian Herbicide Resistance Initiative (AHRI) - School of Agriculture & Environment, University of Western Australia (UWA), Crawley, 6009, Western Australia, Australia
- IFEVA - CONICET - Faculty of Agronomy, Department of Ecology, University of Buenos Aires (UBA), Buenos Aires, 1417, Argentina
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI) - School of Agriculture & Environment, University of Western Australia (UWA), Crawley, 6009, Western Australia, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative (AHRI) - School of Agriculture & Environment, University of Western Australia (UWA), Crawley, 6009, Western Australia, Australia
| |
Collapse
|
9
|
Sablok G, Amiryousefi A, He X, Hyvönen J, Poczai P. Sequencing the Plastid Genome of Giant Ragweed ( Ambrosia trifida, Asteraceae) From a Herbarium Specimen. FRONTIERS IN PLANT SCIENCE 2019; 10:218. [PMID: 30873197 PMCID: PMC6403193 DOI: 10.3389/fpls.2019.00218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/08/2019] [Indexed: 05/09/2023]
Abstract
We report the first plastome sequence of giant ragweed (Ambrosia trifida); with this new genome information, we assessed the phylogeny of Asteraceae and the transcriptional profiling against glyphosate resistance in giant ragweed. Assembly and genic features show a normal angiosperm quadripartite plastome structure with no signatures of deviation in gene directionality. Comparative analysis revealed large inversions across the plastome of giant ragweed and the previously sequenced members of the plant family. Asteraceae plastid genomes contain two inversions of 22.8 and 3.3 kb; the former is located between trnS-GCU and trnG-UCC genes, and the latter between trnE-UUC and trnT-GGU genes. The plastid genome sequences of A. trifida and the related species, Ambrosia artemisiifolia, are identical in gene content and arrangement, but they differ in length. The phylogeny is well-resolved and congruent with previous hypotheses about the phylogenetic relationship of Asteraceae. Transcriptomic analysis revealed divergence in the relative expressions at the exonic and intronic levels, providing hints toward the ecological adaptation of the genus. Giant ragweed shows various levels of glyphosate resistance, with introns displaying higher expression patterns at resistant time points after the assumed herbicide treatment.
Collapse
Affiliation(s)
- Gaurav Sablok
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Ali Amiryousefi
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Xiaolan He
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jaakko Hyvönen
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Péter Poczai
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Duke SO. Glyphosate: The world's most successful herbicide under intense scientific scrutiny. PEST MANAGEMENT SCIENCE 2018; 74:1025-1026. [PMID: 29582591 DOI: 10.1002/ps.4902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
|
11
|
Bracamonte E, Silveira HMD, Alcántara-de la Cruz R, Domínguez-Valenzuela JA, Cruz-Hipolito HE, De Prado R. From tolerance to resistance: mechanisms governing the differential response to glyphosate in Chloris barbata. PEST MANAGEMENT SCIENCE 2018; 74:1118-1124. [PMID: 29384251 DOI: 10.1002/ps.4874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Susceptibility and the mechanism (s) governing tolerance/resistance to glyphosate were characterized in two putative-glyphosate-resistant Chloris barbata populations (R1 and R2), collected in Persian lime orchards from Colima State, Mexico, comparing them with one non-treated population (referred to as S). RESULTS Glyphosate doses required to reduce fresh weight or cause mortality by 50% were 4.2-6.4 times higher in resistant populations than in the S population. The S population accumulated 4.3 and 5.2 times more shikimate than the R2 and R1 populations, respectively. There were no differences in 14 C-glyphosate uptake between R and S populations, but the R plants translocated at least 12% less herbicide to the rest of plant and roots 96 h after treatment. Insignificant amounts of glyphosate were metabolized to aminomethyl phosphonate and glyoxylate in both R and S plants. The 5-enolpyruvylshikimate-3-phosphate synthase gene of the R populations contained the Pro106-Ser mutation, giving them a resistance 12 (R2) and 14.7 (R1) times greater at target-site level compared with the S population. CONCLUSION The Pro106-Ser mutation governs the resistance to glyphosate of the R1 and R2 C barbata populations, but the impaired translocation could contribute to the resistance. These results confirm the first case of glyphosate resistance evolved in this species. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Enzo Bracamonte
- Faculty of Agricultural Sciences, National University of Cordoba (UNC), Cordoba, Argentina
| | | | | | | | | | - Rafael De Prado
- Department of Agricultural Chemistry and Edaphology, University of Cordoba, Cordoba, Spain
| |
Collapse
|