1
|
Toprak U, İnak E, Nauen R. Lipid Metabolism as a Target Site in Pest Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39466572 DOI: 10.1007/5584_2024_822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Lipid metabolism is essential to insect life as insects use lipids for their development, reproduction, flight, diapause, and a wide range of other functions. The central organ for insect lipid metabolism is the fat body, which is analogous to mammalian adipose tissue and liver, albeit less structured. Various other systems including the midgut, brain, and neural organs also contribute functionally to insect lipid metabolism. Lipid metabolism is under the control of core lipogenic [e.g. acetyl-CoA-carboxylase (ACC), fatty acid synthase (FAS), perilipin 2 (LSD2)], and lipolytic (lipases, perilipin 1) enzymes that are primarily expressed in the fat body, as well as hormones [insulin-like peptides (ILP), adipokinetic hormone (AKH)], transcription factors (SREBPs, foxO, and CREB), secondary messengers (calcium) and post-translational modifications (phosphorylation). Essential roles of the fat body, together with the fact that proper coordination of lipid metabolism is critical for insects, render lipid metabolism an attractive target site in pest control. In the current chapter, we focus on pest control tactics that target insect lipid metabolism. Various classes of traditional chemical insecticides [e.g. organophosphates, pyrethroids, neonicotinoids, and chitin synthesis inhibitors (Sects. 2.1 and 2.2)] have been shown to interfere with lipid metabolism, albeit it is not their primary site of action. However, the discovery of "lipid biosynthesis inhibitors", tetronic and tetramic acid derivatives commonly known as ketoenols (Sect. 2.3), was a milestone in applied entomology as they directly target lipid biosynthesis, particularly in sucking pests. Spirodiclofen, spiromesifen, and spirotetramat targeting ACC act against various insect and mite pests, while spiropidion and spidoxamat have been introduced to the market only recently. Efforts have concentrated on the development of chemical alternatives, such as hormone agonists and antagonists (Sect. 2.4), dsRNA-based pesticides that depend on RNA interference, which have great potential in pest control (Sect. 2.5) and other eco-friendly alternatives (Sect. 2.6).
Collapse
Affiliation(s)
- Umut Toprak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey.
| | - Emre İnak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Monheim, Germany.
| |
Collapse
|
2
|
Zhang XY, Han WH, Zhang FB, Wang JX, Liu SS, Wang XW. Attraction of Nicotiana benthamiana to Bemisia tabaci is related to a chemical signal in plant volatile, undecane. PEST MANAGEMENT SCIENCE 2024. [PMID: 39258464 DOI: 10.1002/ps.8411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND The whitefly Bemisia tabaci is one of the world's foremost agricultural pests. Recently, we found that a wild relative of tobacco (Nicotiana benthamiana) demonstrates remarkable attractiveness and nearly 100% lethality towards whiteflies. Therefore, it can act as a dead-end trap crop for whitefly control in the field. However, the underlying mechanism of the significant attractiveness of N. benthamiana towards whiteflies is unclear. RESULTS Binary-choice assays and olfactory experiments showed that compared to common tobacco (N. tabacum), the volatile of N. benthamiana has a greater attraction to whiteflies. Then we analyzed and compared volatiles from these two Nicotiana species by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). We identified 16 chemical compounds that are more abundant in N. benthamiana than in N. tabacum. Seven compounds were further tested with olfactometer assays and we found that, among them, undecane strongly attracted whiteflies. Further experiments revealed that even 0.005 μg mL-1 undecane is attractive to whiteflies. We also silenced the genes that may influence the biosynthesis of undecane and found the production of undecane decreased after silencing NbCER3, and that N. benthamiana plants with less undecane lost their attraction to whiteflies. In addition, we found that applying 0.005 μg mL-1 undecane on yellow sticky traps can increase the number of stuck insects on the traps by ≈40%. CONCLUSION Undecane from the volatile of N. benthamiana is a critical chemical signal that attracts whiteflies and NbCER3 involved in the biosynthesis of undecane. Undecane may be used to improve the efficiency of yellow sticky traps for whitefly control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Hao Han
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Feng-Bin Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jun-Xia Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Cerda-Apresa D, Gutierrez-Rodriguez SM, Davila-Barboza JA, Lopez-Monroy B, Rodriguez-Sanchez IP, Saavedra-Rodriguez KL, Flores AE. Repurposing Insecticides for Mosquito Control: Evaluating Spiromesifen, a Lipid Synthesis Inhibitor against Aedes aegypti (L.). Trop Med Infect Dis 2024; 9:184. [PMID: 39195622 PMCID: PMC11360630 DOI: 10.3390/tropicalmed9080184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
The growing resistance of Aedes aegypti (L.) to conventional insecticides presents a major challenge in arbovirus control, necessitating the exploration of alternative insecticidal chemistries. Spiromesifen, derived from spirocyclic tetronic acids, is widely used against agricultural pests and is crucial in resistance management due to its unique lipid synthesis inhibition. This study evaluates the insecticidal activity of spiromesifen against temephos-resistant Ae. aegypti populations, focusing on larval body weight, volume, biochemical composition, and adult female reproductive potential. Spiromesifen demonstrated effective larvicidal activity, significantly reducing adult emergence. Resistance to spiromesifen was not observed, with resistance ratios (RR50, RR90) ranging from 0.36- to 3.31-fold. Larvae exposed to LC50 showed significant reductions in body weight and volume, and reduced carbohydrate, lipid, and protein contents. Enhanced catalase activity and malondialdehyde levels indicated increased oxidative stress and lipid peroxidation, highlighting its effects on lipid metabolism. Spiromesifen also exhibited sterilizing effects, significantly reducing fecundity and fertility in adult females, thereby impacting Ae. aegypti reproductive capacity. These findings highlight the potential of spiromesifen as a component of integrated vector management strategies, especially in regions with prevalent insecticide resistance in Ae. aegypti, serving as an effective larvicide and impacting adult reproductive outcomes.
Collapse
Affiliation(s)
- Daniela Cerda-Apresa
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| | - Selene M. Gutierrez-Rodriguez
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| | - Jesus A. Davila-Barboza
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| | - Beatriz Lopez-Monroy
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| | - Iram P. Rodriguez-Sanchez
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| | - Karla L. Saavedra-Rodriguez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Adriana E. Flores
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| |
Collapse
|
4
|
Dearlove EL, Chandler D, Edgington S, Berry SD, Martin G, Svendsen C, Hesketh H. Improved control of Trialeurodes vaporariorum using mixture combinations of entomopathogenic fungi and the chemical insecticide spiromesifen. Sci Rep 2024; 14:15259. [PMID: 38956259 PMCID: PMC11219850 DOI: 10.1038/s41598-024-66051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Greenhouse whitefly (Trialeurodes vaporariorum) is a major global pest, causing direct damage to plants and transmitting viral plant diseases. Management of T. vaporariorum is problematic because of widespread pesticide resistance, and many greenhouse growers rely on biological control agents to regulate T. vaporariorum populations. However, these are often slow and vary in efficacy, leading to subsequent application of chemical insecticides when pest populations exceed threshold levels. Combining chemical and biological pesticides has great potential but can result in different outcomes, from positive to negative interactions. In this study, we evaluated co-applications of the entomopathogenic fungi (EPF) Beauveria bassiana and Cordyceps farinosa and the chemical insecticide spiromesifen in laboratory bioassays. Complex interactions between the EPFs and insecticide were described using an ecotoxicological mixtures model, the MixTox analysis. Depending on the EPF and chemical concentrations applied, mixtures resulted in additivity, synergism, or antagonism in terms of total whitefly mortality. Combinations of B. bassiana and spiromesifen, compared to single treatments, increased the rate of kill by 5 days. Results indicate the potential for combined applications of EPF and spiromesifen as an effective integrated pest management strategy and demonstrate the applicability of the MixTox model to describe complex mixture interactions.
Collapse
Affiliation(s)
- Eleanor L Dearlove
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK.
- RSK ADAS Ltd. ADAS Gleadthorpe, Meden Vale, Mansfield, NG20 9PD, UK.
| | - David Chandler
- Warwick Crop Centre, School of Life Sciences, Wellesbourne Campus, The University of Warwick, Warwick, UK
| | | | | | | | - Claus Svendsen
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Helen Hesketh
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK.
| |
Collapse
|
5
|
Abou Jawdah Y, Ezzeddine N, Fardoun A, Kharroubi S, Sobh H, Atamian HS, Skinner M, Parker B. Biological Control of Three Major Cucumber and Pepper Pests: Whiteflies, Thrips, and Spider Mites, in High Plastic Tunnels Using Two Local Phytoseiid Mites. PLANTS (BASEL, SWITZERLAND) 2024; 13:889. [PMID: 38592899 PMCID: PMC10976136 DOI: 10.3390/plants13060889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
To enhance food security, food safety, and environmental health, a bio-based integrated pest management (BIPM) strategy was evaluated at two coastal locations in Lebanon as an alternative to toxic pesticide sprays in commercial high-arched plastic tunnels common in many countries. The evaluation occurred during two cucumber and pepper cropping seasons: spring and fall. At each site, two commercial tunnels were used; farmers' conventional practices were applied in one tunnel, while the BIPM approach was followed in the second tunnel. In the farmers' practices, a total of 14 sprays of insecticide/acaricide mixtures were applied during the spring growing season, and 6 sprays were applied during the fall. In the BIPM tunnels, hotspot releases of local strains of Amblyseius swirskii and Phytoseiulus persimilis were applied. By the end of the spring season, the number of whitefly nymphs (WFNs)/leaf and thrips/leaf in the pesticide treatment were 4.8 and 0.06, respectively, compared to 0.1 and 0.33, respectively, in the BIPM treatment. Similarly, at the end of the fall season, the WFNs reached 19.7/leaf in the pesticide control as compared to 1.2/leaf in the BIPM treatment, proving the efficacy of A. swirskii. Farmers using conventional acaricides during both cropping seasons failed to control Tetranychus urticae, the two-spotted spider mite (TSSM). However, hotspot releases of P. persimilis were successful in controlling TSSM. By the end of June, the number of TSSMs reached 7.8/leaf in the BIPM treatment compared to 53/leaf in the pesticide treatment. Likewise, in December, TSSM numbers reached 9/leaf in the BIPM treatment compared to 40/leaf in the pesticide treatment. Preliminary observations of pepper showed that both predatory mites (A. swirskii and P. persimilis) gave similar or better efficacy against the three pests. The two local predatory phytoseiid mites seem to be effective in controlling these three major pests and to be adapted to local environmental conditions. A rate of increase of 0.86 was observed for P. persimilis and 0.22 for A. swirskii, in June, when maximum temperatures were close to 40 °C. This also shows a compatibility between the two predators. In conclusion, our BIPM approach was efficient under a Mediterranean climate in arched plastic tunnels with relatively poor aeration.
Collapse
Affiliation(s)
- Yusuf Abou Jawdah
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (N.E.); (A.F.); (H.S.)
| | - Nour Ezzeddine
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (N.E.); (A.F.); (H.S.)
| | - Aya Fardoun
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (N.E.); (A.F.); (H.S.)
| | - Samer Kharroubi
- Department of Nutrition and Food Sciences, Faculty of Agriculture and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
| | - Hana Sobh
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (N.E.); (A.F.); (H.S.)
| | - Hagop S. Atamian
- Biological Sciences Program, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA;
| | - Margaret Skinner
- Department of Plant and Soil Science, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA; (M.S.); (B.P.)
| | - Bruce Parker
- Department of Plant and Soil Science, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA; (M.S.); (B.P.)
| |
Collapse
|
6
|
Ji Y, Zheng H, Zhang C, Tan X, He C, Fu B, Du T, Liang J, Wei X, Gong P, Liu S, Yang J, Huang M, Yin C, Xue H, Hu J, Du H, Xie W, Yang X, Zhang Y. Dynamic monitoring of the insecticide resistance status of Bemisia tabaci across China from 2019-2021. PEST MANAGEMENT SCIENCE 2024; 80:341-354. [PMID: 37688583 DOI: 10.1002/ps.7763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a major agricultural insect pest that causes severe economic losses worldwide. Several insecticides have been applied to effectively control this key pest. However, owing to the indiscriminate use of chemical insecticides, B. tabaci has developed resistance against these chemical compounds over the past several years. RESULTS From 2019 to 2021, 23 field samples of B. tabaci were collected across China. Twenty species were identified as the Mediterranean 'Q' type (MED) and three were identified as MED/ Middle East-Asia Minor 1 mixtures. Subsequently, resistance of the selected populations to different insecticides was evaluated. The results showed that 13 populations developed low levels of resistance to abamectin. An overall upward trend in B. tabaci resistance toward spirotetramat, cyantraniliprole and pyriproxyfen was observed. In addition, resistance to thiamethoxam remained low-to-moderate in the 23 field populations. CONCLUSION These findings suggest that the overall resistance of the field-collected B. tabaci populations has shown an upward trend over the years in China. We believe our study can provide basic data to support integrated pest management and insecticide resistance management of field B. tabaci in China. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yao Ji
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huixin Zheng
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengjia Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xing Tan
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinyu Hu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - He Du
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
7
|
Du TH, Yin C, Gui LY, Liang JJ, Liu SN, Fu BL, He C, Yang J, Wei XG, Gong PP, Huang MJ, Xue H, Hu JY, Du H, Ji Y, Zhang R, Wang C, Zhang CJ, Yang X, Zhang YJ. Over-expression of UDP-glycosyltransferase UGT353G2 confers resistance to neonicotinoids in whitefly (Bemisia tabaci). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105635. [PMID: 37945266 DOI: 10.1016/j.pestbp.2023.105635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 11/12/2023]
Abstract
The whitefly, Bemisia tabaci, comes up high metabolic resistance to most neonicotinoids in long-term evolution, which is the key problem of pest control. UGT glycosyltransferase, as a secondary detoxification enzyme, plays an indispensable role in detoxification metabolism. In this study, UGT inhibitors, 5-nitrouracil and sulfinpyrazone, dramatically augmented the toxic damage of neonicotinoids to B. tabaci. A UGT named UGT353G2 was identified in whitefly, which was notably up-regulated in resistant strain (3.92 folds), and could be induced by most neonicotinoids. Additionally, the using of RNA interference (RNAi) suppresses UGT353G2 substantially increased sensitivity to neonicotinoids in resistant strain. Our results support that UGT353G2 may be involved in the neonicotinoids resistance of whitefly. These findings will help further verify the functional role of UGTs in neonicotinoid resistance.
Collapse
Affiliation(s)
- Tian-Hua Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Yin
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Lian-You Gui
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Jin-Jin Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shao-Nan Liu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bu-Li Fu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue-Gao Wei
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pei-Pan Gong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming-Jiao Huang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin-Yu Hu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng-Jia Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - You-Jun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Yang J, Fu B, Gong P, Zhang C, Wei X, Yin C, Huang M, He C, Du T, Liang J, Liu S, Ji Y, Xue H, Wang C, Hu J, Du H, Zhang R, Yang X, Zhang Y. CYP6CX2 and CYP6CX3 mediate thiamethoxam resistance in field whitefly, Bemisia tabaci (Hemiptera:Aleyrodidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1342-1351. [PMID: 37208311 DOI: 10.1093/jee/toad089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are well-known for their crucial roles in the detoxification of xenobiotics. However, whether CYP6CX2 and CYP6CX3, 2 genes from our Bemisia tabaci (B. tabaci) MED/Q genome data were associated with detoxification metabolism and confer resistance to thiamethoxam is unclear. In this study, we investigated the role of CYP6CX2 and CYP6CX3 in mediating whitefly thiamethoxam resistance. Our results showed that mRNA levels of CYP6CX2 and CYP6CX3 were up-regulated after exposure to thiamethoxam. Transcriptional levels of 2 genes were overexpressed in laboratory and field thiamethoxam resistant strains by RT-qPCR. These results indicate that the enhanced expression of CYP6CX2 and CYP6CX3 appears to confer thiamethoxam resistance in B. tabaci. Moreover, linear regression analysis showed that the expression levels of CYP6CX2 and CYP6CX3 were positively correlated with thiamethoxam resistance levels among populations. The susceptibility of whitefly adults was markedly increased after silencing 2 genes by RNA interference (RNAi) which further confirming their major role in thiamethoxam resistance. Our findings provide information to better understand the roles of P450s in resistance to neonicotinoids and suggest that these genes may be applied to develop target genes for sustainable management tactic of agricultural pests such as B. tabaci.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengjia Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinyu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Sabra SG, Abbas N, Hafez AM. First monitoring of resistance and corresponding mechanisms in the green peach aphid, Myzus persicae (Sulzer), to registered and unregistered insecticides in Saudi Arabia. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105504. [PMID: 37532324 DOI: 10.1016/j.pestbp.2023.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/10/2023] [Accepted: 06/18/2023] [Indexed: 08/04/2023]
Abstract
Insecticides are widely used as the primary management strategy for controlling Myzus persicae, the devastating pest ravaging various vegetables, fruits, crops, and ornamentals. This study examined the susceptibility of M. persicae field populations to bifenthrin, fosthiazate, acetamiprid, spirotetramat, afidopyropen, and flonicamid while exploring the possible metabolic mechanisms of resistance. The study findings revealed that M. persicae field populations exhibited susceptible-to-moderate resistance to bifenthrin (resistance ratio (RR) = 0.94-19.65) and acetamiprid (RR = 1.73-12.91), low-to-moderate resistance to fosthiazate (RR = 3.67-17.00), and susceptible-to-low resistance to spirotetramat (RR = 0.70-6.68). However, all M. persicae field populations were susceptible to afidopyropen (RR = 0.44-2.25) and flonicamid (RR = 0.40-2.08). As determined by the biochemical assays, carboxylesterases were involved in the resistance cases to bifenthrin and fosthiazate, whereas cytochrome P450 monooxygenases were implicated in the resistance cases to acetamiprid. However, glutathione S-transferases were not implicated in the documented resistance of M. persicae field populations. Overall, the susceptibility of M. persicae field populations to flonicamid and afidopyropen-two unregistered insecticides in Saudi Arabia-suggests their potential as promising chemicals that can expand the various alternatives available for controlling this devastating pest. Although the detected moderate levels of resistance to bifenthrin, fosthiazate, and acetamiprid indicate a shift in the selection pressure of insecticides for M. persicae due to Saudi regulations, which have resulted in eventual obsolescence of conventional insecticides in favor of novel insecticides. Finally, rotational use of aforementioned insecticides can help in managing insecticide resistance in M. persicae.
Collapse
Affiliation(s)
- Safwat G Sabra
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Naeem Abbas
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulwahab M Hafez
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
10
|
Abubakar M, Umer A, Shad SA, Sarwar ZM, Kamran M. Negative Impact of Unstable Spiromesifen Resistance on Fitness of Tetranychus urticae (Acari: Tetranychidae). NEOTROPICAL ENTOMOLOGY 2023; 52:772-780. [PMID: 37195556 DOI: 10.1007/s13744-023-01050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is a phytophagous haplodiploid mite and its control is largely based on the use of pesticides. But, the short life cycle and high reproductive rate allow them to develop resistance to many pesticides. To design a strategy for resistance management, a fitness cost study was conducted on different populations of T. urticae, i.e., spiromesifen selected (SPIRO-SEL), unselected (Unsel), and reciprocal crosses. After twelve rounds of selections, T. urticae developed high spiromesifen resistance (71.7-fold) compared to the Unsel strain. Results showed a fitness cost for SPIRO-SEL, Cross1 (Unsel ♀ × SPIRO-SEL ♂), and Cross2 (SPIRO-SEL ♀ × Unsel ♂) with a relative fitness values of 0.63, 0.86, and 0.70, respectively. There was a significant increase in the incubation period, quiescent larvae, and egg to adult male and female developmental period of the SPIRO-SEL compared with Unsel strain. Moreover, resistance to spiromesifen was unstable with a decline in resistance value of - 0.05. The presence of unstable spiromesifen resistance associated with fitness costs suggests that intermittent withdrawal of its usage could potentially preserve its effectiveness for management of T. urticae.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya Univ, Multan, Punjab, Pakistan.
| | - Ayyan Umer
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya Univ, Multan, Punjab, Pakistan
| | - Sarfraz Ali Shad
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya Univ, Multan, Punjab, Pakistan.
| | - Zahid Mehmood Sarwar
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya Univ, Multan, Punjab, Pakistan
| | - Muhammad Kamran
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya Univ, Multan, Punjab, Pakistan
| |
Collapse
|
11
|
Mavridis K, Papapostolou KM, Ilias A, Michaelidou K, Stavrakaki M, Roditakis E, Tsagkarakou A, Bass C, Vontas J. Next-generation molecular diagnostics (TaqMan qPCR and ddPCR) for monitoring insecticide resistance in Bemisia tabaci. PEST MANAGEMENT SCIENCE 2022; 78:4994-5001. [PMID: 36054028 DOI: 10.1002/ps.7122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Insecticide resistance has developed in several populations of the whitefly Bemisia tabaci worldwide and threatens to compromise the efficacy of chemical control. The molecular mechanisms underpinning resistance have been characterized and markers associated with the trait have been identified, allowing the development of diagnostics for individual insects. RESULTS TaqMan and Droplet Digital PCR (ddPCR) assays were developed and validated, in individual and pooled whitefly samples, respectively, for the following target-site mutations: the acetylcholinesterase (ace1) F331W mutation conferring organophosphate-resistance; the voltage-gated sodium channel (vgsc) mutations L925I and T929V conferring pyrethroid-resistance; and the acetyl-CoA carboxylase (acc) A2083V mutation conferring ketoenol-resistance. The ddPCR's limit of detection (LoD) was <0.2% (i.e. detection of one heterozygote whitefly in a pool of 249 wild-type individuals). The assays were applied in 11 B. tabaci field populations from four locations in Crete, Greece. The F331W mutation was detected to be fixed or close to fixation in eight of 11 B. tabaci populations, and at lower frequency in the remaining ones. The pyrethroid-resistance mutations were detected at very high frequencies. The A2083V spiromesifen resistance mutation was detected in eight of 11 populations (frequencies = 6.16-89.56%). Spiromesifen phenotypic resistance monitoring showed that the populations tested had variable levels of resistance, ranging from full susceptibility to high resistance. A strong spiromesifen-resistance phenotype-genotype (A2083V) correlation (rs = -0.839, P = 0.002) was observed confirming the ddPCR diagnostic value. CONCLUSION The ddPCR diagnostics developed in this study are a valuable tool to support evidence-based rational use of insecticides and resistance management strategies. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Kyriaki Maria Papapostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Aris Ilias
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Kleita Michaelidou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - Marianna Stavrakaki
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization "DIMITRA", Heraklion, Greece
| | - Emmanouil Roditakis
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization "DIMITRA", Heraklion, Greece
- Hellenic Mediterranean University, Department of Agriculture, School of Agricultural Sciences, Heraklion, Greece
| | - Anastasia Tsagkarakou
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization "DIMITRA", Heraklion, Greece
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Cornwall, UK
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
12
|
Zhang Z, Wen Z, Li K, Xu W, Liang N, Yu X, Li C, Chu D, Guo L. Cytochrome P450 Gene, CYP6CX3, Is Involved in the Resistance to Cyantraniliprole in Bemisia tabaci. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12398-12407. [PMID: 36154000 DOI: 10.1021/acs.jafc.2c04699] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bemisia tabaci is an important agricultural sucking pest, and it develops serious resistance to various insecticides. Although cytochrome P450 was involved in the resistance to cyantraniliprole, limited studies have been conducted on B. tabaci. In the present study, piperonyl butoxide significantly increased the toxicity of cyantraniliprole. P450 activities in two resistant populations were 1.97- and 2.17-fold higher than that in the susceptible population. Among 79 P450 genes, CYP6CX3 expressions in two resistant populations were 3.08- and 3.67-fold higher than that in the susceptible population. When CYP6CX3 was knocked down, the toxicity of cyantraniliprole increased significantly. The LC50 value of cyantraniliprole to the Drosophila melanogaster line overexpressing B. tabaci CYP6CX3 increased 7.34-fold. The content of cyantraniliprole was decreased by 25.74 ± 4.27% after mixing with CYP6CX3 and CPR for 2 h. These results suggested that the overexpression of CYP6CX3 was likely involved in the resistance to cyantraniliprole in B. tabaci.
Collapse
Affiliation(s)
- Zhuang Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Zanrong Wen
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Kaixin Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Wei Xu
- Food Futures Institute, Murdoch University, Murdoch WA 6150, Australia
| | - Ni Liang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xinyue Yu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Changyou Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Dong Chu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Lei Guo
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
13
|
Taillebois E, Thany SH. The use of insecticide mixtures containing neonicotinoids as a strategy to limit insect pests: Efficiency and mode of action. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105126. [PMID: 35715064 DOI: 10.1016/j.pestbp.2022.105126] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Synthetic insecticides continue to be the main strategy for managing insect pests, which are a major concern for both crop protection and public health. As nicotinic acetylcholine receptors play a central role in insect neurotransmission, they are the molecular target of neurotoxic insecticides such as neonicotinoids. These insecticides are used worldwide and have shown high efficiency in culture protection. However, the emergence of insect resistance mechanisms, and negative side-effects on non-target species have highlighted the need for a new control strategy. In this context, the use of insecticide mixtures with synergistic effects have been used in order to decrease the insecticide dose, and thus delay the selection of resistance-strains, and limit their negative impact. In this review, we summarize the available data concerning the mode of action of neonicotinoid mixtures, as well as their toxicity to various insect pests and non-target species. We found that insecticide mixtures containing neonicotinoids may be an effective strategy for limiting insect pests, and in particular resistant strains, although they could also negatively impact non-target species such as pollinating insects.
Collapse
Affiliation(s)
- Emiliane Taillebois
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, UPRES EA 1207-USC INRAE 1328, 1 rue de Chartres, BP 6759, 45067 Orléans, France
| | - Steeve H Thany
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, UPRES EA 1207-USC INRAE 1328, 1 rue de Chartres, BP 6759, 45067 Orléans, France.
| |
Collapse
|
14
|
Peng T, Liu X, Tian F, Xu H, Yang F, Chen X, Gao X, Lv Y, Li J, Pan Y, Shang Q. Functional investigation of lncRNAs and target cytochrome P450 genes related to spirotetramat resistance in Aphis gossypii Glover. PEST MANAGEMENT SCIENCE 2022; 78:1982-1991. [PMID: 35092151 DOI: 10.1002/ps.6818] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/07/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Spirotetramat is a tetramic acid derivative insecticide with novel modes of action for controlling Aphis gossypii Glover in the field. Previous studies have shown that long noncoding RNAs (lncRNAs) and cytochrome P450 monooxygenases (P450s) are involved in the detoxification process. However, the functions of lncRNAs in regulating P450 gene expression in spirotetramat resistance in A. gossypii are unknown. RESULTS In this study, we found CYP4CJ1, CYP6CY7 and CYP6CY21 expression levels to be significantly upregulated in a spirotetramat-resistant (SR) strain compared with a susceptible (SS) strain. Furthermore, knockdown of CYP4CJ1, CYP6CY7 and CYP6CY21 increased nymph and adult mortality in the SR strain following exposure to spirotetramat. Drosophila ectopically expressing CYP380C6, CYP4CJ1, CYP6DA2, CYP6CY7 and CYP6CY21 showed significantly decreased mortality after spirotetramat exposure, and CYP380C6, CYP4CJ1 and CYP6CY21 are putative targets of six lncRNAs. Silencing of lncRNAs MSTRG.36649.2/5 and MSTRG.71880.1 changed CYP6CY21 and CYP380C6 expression, altering the sensitivity of the SR strain to spirotetramat. Moreover, MSTRG.36649.2/5 did not compete for microRNA (miRNA) binding to regulate CYP6CY21 expression. CONCLUSION Our results confirm that CYP380C6, CYP4CJ1, CYP6DA2, CYP6CY7 and CYP6CY21 are potentially involved in the development of spirotetramat resistance in A. gossypii, and MSTRG.36649.2/5 and MSTRG.71880.1 probably regulate CYP6CY21 and CYP380C6 expression other than through the "sponge effect" of competing for miRNA binding. Our results provide a favorable molecular basis for studying cotton aphid P450 genes and lncRNA functions in spirotetramat resistance development.
Collapse
Affiliation(s)
- Tianfei Peng
- College of Plant Science, Jilin University, Changchun, China
| | - Xuemei Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun, China
| | - Hongfei Xu
- College of Plant Science, Jilin University, Changchun, China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun, China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun, China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun, China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun, China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
15
|
Latorre G, García-Martínez MM, Martín-Bejerano M, Julio LF, Zalacain A, Carrión ME, Carmona M. Biopesticide Activity of Guayule Resin. PLANTS 2022; 11:plants11091169. [PMID: 35567170 PMCID: PMC9105131 DOI: 10.3390/plants11091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022]
Abstract
The extensive use of synthetic pesticides has created considerable concern for both human health and the environment, which has prompted the search for safer alternatives, such as the resin of guayule (Parthenium argentatum). Thus, in the present study, we aimed to test the biopesticide activity of crude guayule resin and three derived fractions and compare them to reference products that act against four of the most economically significant plant pests: Tetranychus urticae, Bemisia tabaci, Myzus persicae and Frankliniella occidentalis. None of the guayule products caused plant damage. The crude guayule resin and the hexane and ethyl acetate fractions displayed moderate to high contact mortality against T. urticae and B. tabaci, as well as moderate to high antifeedant activity against T. urticae, B. tabaci and M. persicae. No significant activity was observed against F. occidentalis. A correlation analysis of the activity and fraction composition revealed that guayulins C and D, isoargentatins A and B, argentatins A, B and D and an unknown compound C6 were likely responsible for the contact mortality. By contrast, the antifeedant activity appeared to be caused by guayulins A and B against T. urticae and B. tabaci and by guayulins C and D and argentatin B against M. persicae. The feeding reduction in F. occidentalis was associated with an unknown compound C2 and argentatin C. Therefore, guayule appears to be a promising novel biopesticide.
Collapse
Affiliation(s)
- Guayente Latorre
- Catedra de Química Agrícola, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - María Mercedes García-Martínez
- Catedra de Química Agrícola, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - María Martín-Bejerano
- Kimitec Biogroup S.L, Maavi Innovation Center, Paraje Cerro Los Lobos s/n Vícar, 04738 Almería, Spain
| | - Luis F Julio
- Kimitec Biogroup S.L, Maavi Innovation Center, Paraje Cerro Los Lobos s/n Vícar, 04738 Almería, Spain
| | - Amaya Zalacain
- Catedra de Química Agrícola, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - María Engracia Carrión
- Food Quality Research Group, Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - Manuel Carmona
- Food Quality Research Group, Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| |
Collapse
|
16
|
Calvo‐Agudo M, Tooker JF, Dicke M, Tena A. Insecticide-contaminated honeydew: risks for beneficial insects. Biol Rev Camb Philos Soc 2022; 97:664-678. [PMID: 34802185 PMCID: PMC9299500 DOI: 10.1111/brv.12817] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
Honeydew is the sugar-rich excretion of phloem-feeding hemipteran insects such as aphids, mealybugs, whiteflies, and psyllids, and can be a main carbohydrate source for beneficial insects in some ecosystems. Recent research has revealed that water-soluble, systemic insecticides contaminate honeydew excreted by hemipterans that feed on plants treated with these insecticides. This contaminated honeydew can be toxic to beneficial insects, such as pollinators, parasitic wasps and generalist predators that feed on it. This route of exposure has now been demonstrated in three plant species, for five systemic insecticides and four hemipteran species; therefore, we expect this route to be widely available in some ecosystems. In this perspective paper, we highlight the importance of this route of exposure by exploring: (i) potential pathways through which honeydew might be contaminated with insecticides; (ii) hemipteran families that are more likely to excrete contaminated honeydew; and (iii) systemic insecticides with different modes of action that might contaminate honeydew through the plant. Furthermore, we analyse several model scenarios in Europe and/or the USA where contaminated honeydew could be problematic for beneficial organisms that feed on this ubiquitous carbohydrate source. Finally, we explain why this route of exposure might be important when exotic, invasive, honeydew-producing species are treated with systemic insecticides. Overall, this review opens a new area of research in the field of ecotoxicology to understand how insecticides can reach non-target beneficial insects. In addition, we aim to shed light on potential undescribed causes of insect declines in ecosystems where honeydew is an important carbohydrate source for insects, and advocate for this route of exposure to be included in future environmental risk assessments.
Collapse
Affiliation(s)
- Miguel Calvo‐Agudo
- Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones Agrarias (IVIA)Carretera de Moncada‐Náquera Km. 4,546113MoncadaValenciaSpain
- Laboratory of EntomologyWageningen UniversityPO Box 166700AAWageningenThe Netherlands
| | - John F. Tooker
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPA16802U.S.A.
| | - Marcel Dicke
- Laboratory of EntomologyWageningen UniversityPO Box 166700AAWageningenThe Netherlands
| | - Alejandro Tena
- Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones Agrarias (IVIA)Carretera de Moncada‐Náquera Km. 4,546113MoncadaValenciaSpain
| |
Collapse
|
17
|
Fang J, Wang B, Fang K, Liu T, Yan S, Wang X. Assessing the bioavailability and biotoxicity of spiromesifen and its main metabolite spiromesifen-enol (M01) reveals the defense mechanisms of earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151910. [PMID: 34838556 DOI: 10.1016/j.scitotenv.2021.151910] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
As a promising acaricide and potentially hazardous material, the defense mechanisms of non-target organisms to its exposure are unknown. This study investigates the bioavailability and biotoxicity of spiromesifen and spiromesifen-enol (M01), its main metabolite, in Eisenia fetida. The results showed that M01 was more persistent in the soil environment and E. fetida than spiromesifen. Transcriptome analysis indicated that the spiromesifen- and M01-induced differentially expressed genes (DEGs) were mainly enriched in lysosomal and phagosomal pathways. Analysis of the key common DEGs showed that both spiromesifen and M01 significantly influenced the lysosomes, phagosomes, antioxidant systems, and detoxification systems. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that spiromesifen and M01 damaged E. fetida epidermis and enhanced lysosomal and phagosomal activities. Significant oxidative stress effects were observed at the end of exposure. The hydroxyl free radical (·OH-) content and neutral red retention time (NRRT) could serve as sensitive early biomarkers to predict their pollution. These results revealed the synergistic effects of the epidermis, lysosomes, phagosomes, antioxidant systems, and detoxification system in resisting spiromesifen- and M01-induced damage, which could contribute to the defense mechanisms of non-target organisms against these pollutants.
Collapse
Affiliation(s)
- Jianwei Fang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China
| | - Binning Wang
- College of Land Science and Technology, China Agricultural University (CAU), Beijing 100083, China
| | - Kuan Fang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China
| | - Tong Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China.
| | - Saihong Yan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiuguo Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China.
| |
Collapse
|
18
|
Chemosensory Proteins Are Associated with Thiamethoxam and Spirotetramat Tolerance in Aphis gossypii Glover. Int J Mol Sci 2022; 23:ijms23042356. [PMID: 35216472 PMCID: PMC8874399 DOI: 10.3390/ijms23042356] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Chemosensory proteins (CSPs) are a class of transporters in arthropods. Deeper research on CSPs showed that CSPs may be involved in some physiological processes beyond chemoreception, such as insect resistance to pesticides. We identified two upregulated CSPs in two resistant strains of Aphis gossypii Glover. To understand their role in the resistance of aphids to pesticides, we performed the functional verification of CSP1 and CSP4 in vivo and in vitro. Results showed that the sensitivity of the thiamethoxam-resistant strain to thiamethoxam increased significantly with the silencing of CSP1 and CSP4 by RNAi (RNA interference), and the sensitivity of the spirotetramat-resistant strain to spirotetramat increased significantly with the silencing of CSP4. Transgenic Drosophila melanogaster expressing CSPs exhibited stronger resistance to thiamethoxam, spirotetramat, and alpha-cypermethrin than the control did. In the bioassay of transgenic Drosophila, CSPs showed different tolerance mechanisms for different pesticides, and the overexpressed CSPs may play a role in processes other than resistance to pesticides. In brief, the present results prove that CSPs are related to the resistance of cotton aphids to insecticides.
Collapse
|
19
|
Ijaz M, Shad SA. Stability and fitness cost associated with spirotetramat resistance in Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae). PEST MANAGEMENT SCIENCE 2022; 78:572-578. [PMID: 34596320 DOI: 10.1002/ps.6665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Dusky cotton bug, Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae) is an important pest of cotton and causing economic losses to this crop. It also remains active round the year, infesting a number of host plants. Spirotetramat is a systemic insecticide and is effective against many sucking insect pests. A field collected population of O. hyalinipennis was reared in the laboratory under continuous spirotetramat selection pressure for 21 generations for the development of resistance to spirotetramat. The Spiro-Sel population was further reared for seven generations without insecticide exposure to assess the stability of spirotetramat resistance. Leaf dip method was used for the bioassays and selection. In this study, the impact of spirotetramat resistance on its stability and life history traits of Spiro-Sel, C1 (15 Spiro-Sel♀ × 15 UNSEL ♂) and C2 (15 Spiro-Sel♂ × 15 UNSEL ♀) O. hyalinipennis was assessed. RESULTS Spiro-Sel (G21 ) population developed 2333-fold and 20.83-fold resistance compared with the susceptible and unselected (UNSEL) populations, respectively. Resistance to spirotetramat was unstable after seven generations (G28 ) when reared without exposure to any insecticide. A significant reduction in overall nymphal survival, fecundity, egg hatching and net reproductive rate of Spiro-Sel population was observed when compared with UNSEL population. Intrinsic rate of natural increase, biotic potential and mean relative growth rate were also lower in Spiro-Sel population compared to UNSEL population. The Spiro-Sel, C1 and C2 population had a relative fitness of 0.44, 0.51 and 0.44, respectively. CONCLUSION Results of our study suggested that fitness cost is involved in the development of spirotetramat resistance. Unstable resistance and high fitness cost may provide great benefits to limit the evolution of resistance to spirotetramat in O. hyalinipennis. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mamuna Ijaz
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sarfraz A Shad
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
20
|
Watson GB, Siebert MW, Wang NX, Loso MR, Sparks TC. Sulfoxaflor - A sulfoximine insecticide: Review and analysis of mode of action, resistance and cross-resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104924. [PMID: 34446200 DOI: 10.1016/j.pestbp.2021.104924] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
The sulfoximines, as exemplified by sulfoxaflor (Isoclast™active), are a relatively new class of nicotinic acetylcholine receptor (nAChR) competitive modulator (Insecticide Resistance Action Committee [IRAC] Group 4C) insecticides that provide control of a wide range of sap-feeding insect pests. The sulfoximine chemistry and sulfoxaflor exhibits distinct interactions with metabolic enzymes and nAChRs compared to other IRAC Group 4 insecticides such as the neonicotinoids (Group 4A). These distinctions translate to notable differences in the frequency and degree of cross-resistance between sulfoxaflor and other insecticides. Most insect strains exhibiting resistance to a variety of insecticides, including neonicotinoids, exhibited little to no cross-resistance to sulfoxaflor. To date, only two laboratory-based studies involving four strains (Koo et al. 2014, Chen et al. 2017) have observed substantial cross-resistance (>100 fold) to sulfoxaflor in neonicotinoid resistant insects. Where higher levels of cross-resistance to sulfoxaflor are observed the magnitude of that resistance is far less than that of the selecting neonicotinoid. Importantly, there is no correlation between presence of resistance to neonicotinoids (i.e., imidacloprid, acetamiprid) and cross-resistance to sulfoxaflor. This phenomenon is consistent with and can be attributed to the unique and differentiated chemical class represented by sulfoxalfor. Recent studies have demonstrated that high levels of resistance (resistance ratio = 124-366) to sulfoxaflor can be selected for in the laboratory which thus far appear to be associated with enhanced metabolism by specific cytochrome P450s, although other resistance mechanisms have not yet been excluded. One hypothesis is that sulfoxaflor selects for and is susceptible to a subset of P450s with different substrate specificity. A range of chemoinformatic, molecular modeling, metabolism and target-site studies have been published. These studies point to distinctions in the chemistry of sulfoxaflor, and its metabolism by enzymes associated with resistance to other insecticides, as well as its interaction with insect nicotinic acetylcholine receptors, further supporting the subgrouping of sulfoxaflor (Group 4C) separate from that of other Group 4 insecticides. Herein is an expansion of an earlier review (Sparks et al. 2013), providing an update that considers prior and current studies focused on the mode of action of sulfoxaflor, along with an analysis of the presently available resistance / cross-resistance studies, and implications and recommendations regarding resistance management.
Collapse
Affiliation(s)
- Gerald B Watson
- Corteva Agriscience LLC, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America.
| | - Melissa W Siebert
- Corteva Agriscience LLC, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| | - Nick X Wang
- Corteva Agriscience LLC, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| | - Michael R Loso
- Corteva Agriscience LLC, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| | - Thomas C Sparks
- Corteva Agriscience LLC, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| |
Collapse
|
21
|
Zheng H, Xie W, Fu B, Xiao S, Tan X, Ji Y, Cheng J, Wang R, Liu B, Yang X, Guo Z, Wang S, Wu Q, Xu B, Zhou X, Zhang Y. Annual analysis of field-evolved insecticide resistance in Bemisia tabaci across China. PEST MANAGEMENT SCIENCE 2021; 77:2990-3001. [PMID: 33624368 DOI: 10.1002/ps.6338] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Over recent decades, many efficacious insecticides have been applied for control of Bemisia tabaci, one of the most notorious insect pests worldwide. Field-evolved insecticide resistance in B. tabaci has developed globally, but remains poorly understood in China. RESULTS In this study, a total of 30 field samples of the whitefly Bemisia tabaci from eight provinces of China were collected in 2015 to 2018. Twenty-four of the populations were identified as Mediterranean, 'Q' type (MED), three were Middle East-Asia Minor 1, 'B' type (MEAM1), and three were mixtures of MED/ MEAM1. After identifying whether they belong to MED or MEAM1, the selected individuals were used in bioassays assessing insecticide resistance to abamectin, thiamethoxam, spirotetramat, cyantraniliprole, and pyriproxyfen. Our results showed that all populations in the eight regions had little or no resistance to abamectin; abamectin resistance was highest in the Hunan (Changsha) and Hubei (Wuhan) regions and was lowest in the island region of Hainan (Sanya). The resistance of B. tabaci to spirotetramat, cyantraniliprole, and pyriproxyfen increased each year. The resistance to thiamethoxam remained low because of the high LC50 value for the laboratory strain. CONCLUSION These findings suggest that a rotation system using efficacious B. tabaci insecticides with differing mode of actions ought to be implemented for sustainable control to reduce the potential of resistance development. This study provides important data to support the integrated pest management and insecticide resistance management of B. tabaci in China. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huixin Zheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection of Hunan Agricultural University, Changsha, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Buli Fu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Si Xiao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Tan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yao Ji
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaxu Cheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Baiming Liu
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaomao Zhou
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Ijaz M, Shad SA. Genetic basis and realized heritability of laboratory selected spirotetramat resistance for insecticide resistance management in Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae). CHEMOSPHERE 2021; 270:128617. [PMID: 33127114 DOI: 10.1016/j.chemosphere.2020.128617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Dusky cotton bug, Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae) is become a major pest of cotton. It causes damage to cotton by sucking the cell sap or by staining the cotton seed. Insect pests in Pakistan are mainly managed by use of insecticides, applying this practice leads to resistance development. In this study, O. hyalinipennis was selected with spirotetramat under laboratory conditions to investigate genetic mode of resistance to spirotetramat. Selection with spirotetramat for eleven generations resulted in a 727-fold resistance compared to the susceptible strain. The LC50 values of spirotetramat in both reciprocal crosses were significantly different from each other and degree of dominanace values were 0.25 for cross-1 and 0.01 for cross-2. Monogenic model proved the contribution of more than one gene in controlling the spirotetramat resistance. Moreover, the value for realized heritability of spirotetramat resistance was 0.13. It can be concluded that spirotetramat resistance was sex linked, polygenic and incompletely dominant. These findings could be helpful in management of spirotetramat resistance in O. hyalinipennis as incompletely dominant and polygenic resistance tend to develop slowly and is manageable.
Collapse
Affiliation(s)
- M Ijaz
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan.
| | - S A Shad
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan.
| |
Collapse
|
23
|
Zhang J, Qian L, Wang C, Teng M, Duan M, Chen X, Li X, Wang C. UPLC-TOF-MS/MS metabolomics analysis of zebrafish metabolism by spirotetramat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115310. [PMID: 32798906 DOI: 10.1016/j.envpol.2020.115310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Spirotetramat, a member of tetronic and tetramic acid derivatives, is a unique insecticide and acaricide. Although the effect on zebrafish embryos lipid biosynthesis of spirotetramat has been characterized, the energy metabolism and toxic effect mechanism warrant further investigation. To investigate the toxic mechanism of spirotetramat on energy metabolism, zebrafish embryos were exposed to 100, 500 and 1000 µg/L of spirotetramat for 4 days. Untargeted metabolomics showed the synthesis and degradation of ketone pathway metabolites (R)-3-Hydroxybutyric acid and Acetoacetate significantly decreased, as well as increasing the abundance of Anti-Acetyl Coenzyme A Carboxylase protein (ACC1). Down-regulation of the genes related to ß-oxidation and the tricarboxylic acid cycle in the embryos show decreased energy metabolism. Carnitine palmitoyltransferase 1 (CPT- I) significantly decreased while citrate synthase (CS) significantly increased. Additionally, mitochondrial lesions in embryos were found using electron microscopy. Our study provides novel and robust perspectives, which show that spirotetramat treatment in embryos leads to metabolic disturbances that adversely affect cellular energy homeostasis.
Collapse
Affiliation(s)
- Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Le Qian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Miaomiao Teng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xuefeng Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
24
|
Yang W, Zhang M, Feng J. Recent Advances in the Construction of Spiro Compounds
via
Radical Dearomatization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000636] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen‐Chao Yang
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
- Guangling College Yangzhou University Yangzhou 225009 P. R. China
| | - Ming‐Ming Zhang
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Jian‐Guo Feng
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| |
Collapse
|
25
|
Lueke B, Douris V, Hopkinson JE, Maiwald F, Hertlein G, Papapostolou KM, Bielza P, Tsagkarakou A, Van Leeuwen T, Bass C, Vontas J, Nauen R. Identification and functional characterization of a novel acetyl-CoA carboxylase mutation associated with ketoenol resistance in Bemisia tabaci. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104583. [PMID: 32448413 DOI: 10.1016/j.pestbp.2020.104583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Insecticides of the tetronic/tetramic acid family (cyclic ketoenols) are widely used to control sucking pests such as whiteflies, aphids and mites. They act as inhibitors of acetyl-CoA carboxylase (ACC), a key enzyme for lipid biosynthesis across taxa. While it is well documented that plant ACCs targeted by herbicides have developed resistance associated with mutations at the carboxyltransferase (CT) domain, resistance to ketoenols in invertebrate pests has been previously associated either with metabolic resistance or with non-validated candidate mutations in different ACC domains. A recent study revealed high levels of spiromesifen and spirotetramat resistance in Spanish field populations of the whitefly Bemisia tabaci that was not thought to be associated with metabolic resistance. We confirm the presence of high resistance levels (up to >640-fold) against ketoenol insecticides in both Spanish and Australian B. tabaci strains of the MED and MEAM1 species, respectively. RNAseq analysis revealed the presence of an ACC variant bearing a mutation that results in an amino acid substitution, A2083V, in a highly conserved region of the CT domain. F1 progeny resulting from reciprocal crosses between susceptible and resistant lines are almost fully resistant, suggesting an autosomal dominant mode of inheritance. In order to functionally investigate the contribution of this mutation and other candidate mutations previously reported in resistance phenotypes, we used CRISPR/Cas9 to generate genome modified Drosophila lines. Toxicity bioassays using multiple transgenic fly lines confirmed that A2083V causes high levels of resistance to commercial ketoenols. We therefore developed a pyrosequencing-based diagnostic assay to map the spread of the resistance alleles in field-collected samples from Spain. Our screening confirmed the presence of target-site resistance in numerous field-populations collected in Sevilla, Murcia and Almeria. This emphasizes the importance of implementing appropriate resistance management strategies to prevent or slow the spread of resistance through global whitefly populations.
Collapse
Affiliation(s)
- Bettina Lueke
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany
| | - Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB/FORTH), 70013 Heraklion, Greece
| | - Jamie E Hopkinson
- Department of Agriculture and Fisheries, Queensland Government, Toowoomba, QLD 4350, Australia
| | - Frank Maiwald
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany
| | - Gillian Hertlein
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany
| | - Kyriaki-Maria Papapostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB/FORTH), 70013 Heraklion, Greece; Laboratory of Molecular Entomology, Department of Biology, University of Crete, 70013 Heraklion, Greece
| | - Pablo Bielza
- Department of Agricultural Engineering, Cartagena Polytechnical University, 30203 Cartagena, Spain
| | - Anastasia Tsagkarakou
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization "DEMETER", 70013 Heraklion, Greece
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Chris Bass
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB/FORTH), 70013 Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany.
| |
Collapse
|
26
|
Taquet A, Delatte H, Barrès B, Simiand C, Grondin M, Jourdan-Pineau H. Insecticide resistance and fitness cost in Bemisia tabaci (Hemiptera: Aleyrodidae) invasive and resident species in La Réunion Island. PEST MANAGEMENT SCIENCE 2020; 76:1235-1244. [PMID: 31583807 DOI: 10.1002/ps.5633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/10/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Global and intensive use of insecticides has led to the emergence and rapid evolution of resistance in the major pest Bemisia tabaci (Gennadius). In La Réunion, an island of the South West Indian Ocean, three whitefly species coexist, two of which are predominant, the indigenous Indian Ocean (IO) and the invasive Middle East Asia Minor 1 (MEAM1) species. To assess the resistance level of both of these species to acetamiprid and pymetrozine, whitefly populations were sampled at 15 collection sites located all over the island in agroecosystems and natural areas, and tested using leaf-dip bioassays. We also investigated the potential cost of resistance to acetamiprid by measuring six fitness-related traits for MEAM1 populations that displayed different resistance levels. RESULTS IO was mainly found in natural areas and was susceptible to both acetamiprid and pymetrozine. MEAM1 populations displayed evidence of high resistance to pymetrozine, whereas resistance to acetamiprid was more variable. No fitness-related costs were associated with this resistance in MEAM1 populations. CONCLUSION This is the first assessment of the susceptibility to insecticides for B. tabaci IO species. For the time being, no resistance to the tested insecticides has evolved in this species despite (i) its presence in agroecosystems and their surroundings, and (ii) its close proximity to, and possible hybridization with, the MEAM1 species. In contrast, with continuous selection pressure of insecticide treatments and in the absence of fitness cost to resistance, the invasive exotic species MEAM1 will continue to threaten agriculture in La Réunion. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alizée Taquet
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, Saint-Pierre, France
| | - Hélène Delatte
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, Saint-Pierre, France
| | - Benoit Barrès
- Université de Lyon, Anses, INRA, USC CASPER, Lyon, France
| | | | - Martial Grondin
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, Saint-Pierre, France
| | | |
Collapse
|