1
|
Ang S, Cao N, Zheng W, Zhang Z, Li J, Yan Z, Su K, Wong WL, Zhang K, Hong WD, Wu P. Novel Sophoridine Derivatives as Potential Larvicidal Agents against Aedes albopictus: Synthesis, Biological Evaluation, Acetylcholinesterase Inhibition, and Morphological Study. INSECTS 2023; 14:399. [PMID: 37103214 PMCID: PMC10140878 DOI: 10.3390/insects14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Two series of novel sophoridine derivatives were designed, synthesized, and evaluated for their anti-mosquito activity. SOP-2g, SOP-2q, and SOP-2r exhibited potential larvicidal activity against Aedes albopictus larva with LC50 values of 330.98, 430.53, and 411.09 ppm, respectively. Analysis of structure-activity relationships indicated that the oxime ester group was beneficial for improving the larvicidal biological activity, whereas the long-chain aliphatic group and fused-ring group were introduced. Furthermore, the larvicidal mechanism was also investigated based on the inhibition assay of acetylcholinesterase (AChE) and the morphological observation of dead larva treated with derivatives. Results indicated that the AChE inhibitory activity of the preferred three derivatives were 63.16%, 46.67%, and 35.11%, respectively, at 250 ppm concentration. Additionally, morphological evidence demonstrated that SOP-2q and SOP-2r induced changes in the larva's intestinal cavity, caudal gill, and tail, thereby displaying larvicidal action against Ae. albopictus together with AChE inhibition. Therefore, this study implied that sophoridine and its novel derivatives could be used to control the population of mosquito larva, which may also be effective alkaloids to reduce the mosquito population density.
Collapse
Affiliation(s)
- Song Ang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Nana Cao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wende Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhen Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jinxuan Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhenping Yan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Kaize Su
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Weiqian David Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| |
Collapse
|
2
|
Anwer KE, Sayed GH, Kozakiewicz-Piekarz A, Ramadan RM. Novel annulated thiophene derivatives: Synthesis, spectroscopic, X-ray, Hirshfeld surface analysis, DFT, biological, cytotoxic and molecular docking studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Jiang W, Cheng W, Zhang T, Lu T, Wang J, Yan Y, Tang X, Wang X. Synthesis and antifungal activity evaluation of novel pyridine derivatives as potential succinate dehydrogenase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Hu ZJ, Yang JW, Chen ZH, Chang C, Ma YP, Li N, Deng M, Mao GL, Bao Q, Deng SZ, Liu H. Exploration of Clove Bud ( Syzygium aromaticum) Essential Oil as a Novel Attractant against Bactrocera dorsalis (Hendel) and Its Safety Evaluation. INSECTS 2022; 13:918. [PMID: 36292866 PMCID: PMC9603929 DOI: 10.3390/insects13100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The oriental fruit fly Bactrocera dorsalis (Hendel) is a destructive polyphagous species that targets many economically important fruits and vegetables. The primary control of B. dorsalis relies mainly on the use of synthetic chemicals, and excessive use of these chemicals has adverse effects on both the environment and human health. Environmentally friendly management of pests involving plant essential oils is useful for controlling the populations of pests responsible for decreasing the yields and quality of crops. In the present study, we demonstrate that clove bud essential oil (CBEO) is strongly attractive to sexually mature males. Mature males responded to the CBEO differently throughout the day; the strongest response was elicited during the day and decreased at dusk. Virgin and mated mature males did not respond differently to CBEO. No obvious response behaviour to the CBEO was observed in two species of beneficial natural predator ladybirds. In addition, a cytotoxicity assessment demonstrated that CBEO is nontoxic to normal human and mouse cells. Based on our laboratory experiments, CBEO may serve as a promising, sustainable, and environmentally friendly attractant for B. dorsalis males; however, field experiments are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Zhen-Jie Hu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Jing-Wei Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Zi-Han Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Cheng Chang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Yu-Pei Ma
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Nan Li
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Meng Deng
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Gen-Lin Mao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Qiang Bao
- Hunan Provincial Tea Research Institute, Hunan Provincial Academy of Agricultural Sciences, Changsha 410125, China
| | - Shu-Zhen Deng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Huan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| |
Collapse
|
5
|
Wang J, Xiao T, Lu T, Zhang T, Jiang W, Yan Y, Tang X, Wang X. Novel pyran derivatives as potential succinate dehydrogenase inhibitors: design, synthesis, crystal structure, biological activity, and molecular modeling. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: focus on organic pollutants. Neurotoxicology 2022; 92:131-155. [PMID: 35914637 DOI: 10.1016/j.neuro.2022.07.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022]
Abstract
Investigation of the toxicity triggered by chemicals on the human brain has traditionally relied on approaches using rodent in vivo models and in vitro cell models including primary neuronal cultures and cell lines from rodents. The issues of species differences between humans and rodents, the animal ethical concerns and the time and cost required for neurotoxicity studies on in vivo animal models, do limit the use of animal-based models in neurotoxicology. In this context, human cell models appear relevant in elucidating cellular and molecular impacts of neurotoxicants and facilitating prioritization of in vivo testing. The SH-SY5Y human neuroblastoma cell line (ATCC® CRL-2266TM) is one of the most used cell lines in neurosciences, either undifferentiated or differentiated into neuron-like cells. This review presents the characteristics of the SH-SY5Y cell line and proposes the results of a systematic review of literature on the use of this in vitro cell model for neurotoxicity research by focusing on organic environmental pollutants including pesticides, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), flame retardants, PFASs, parabens, bisphenols, phthalates, and PAHs. Organic environmental pollutants are widely present in the environment and increasingly known to cause clinical neurotoxic effects during fetal & child development and adulthood. Their effects on cultured SH-SY5Y cells include autophagy, cell death (apoptosis, pyroptosis, necroptosis, or necrosis), increased oxidative stress, mitochondrial dysfunction, disruption of neurotransmitter homeostasis, and alteration of neuritic length. Finally, the inherent advantages and limitations of the SH-SY5Y cell model are discussed in the context of chemical testing.
Collapse
|
7
|
Aoiadni N, Chiab N, Jdidi H, Gargouri Bouzid R, El Feki A, Fetoui H, Ghorbel Koubaa F. The pyrethroid insecticide permethrin confers hepatotoxicity through DNA damage and mitochondria-associated apoptosis induction in rat: Palliative benefits of Fumaria officinalis. J Biochem Mol Toxicol 2022; 36:e23172. [PMID: 35861702 DOI: 10.1002/jbt.23172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/16/2021] [Accepted: 07/01/2022] [Indexed: 11/06/2022]
Abstract
Permethrin (PER) is a pyrethroid pesticide that is extensively used as an insecticide in world because of its high activity and its low mammalian toxicity. The current study was conducted to investigate the protective action of Fumaria officinalis against PER-induced liver injury in male rats. However, HPLC-DAD showed the richness of 6 components in F. officinalis (F) including quercetin, ferulic acid, and naringenin which were the most abundant. Total polyphenols, total flavonoids, and condensed tannins were studied by phytochemical screening. In vitro, antioxidant properties showed that F. officinalis exhibited the highest DPPH radical, FRAP, and H2 O2 tests and total antioxidant capacity. Wistar rats were divided into four groups: negative control group (C), positive control group (F) (200 mg F. officinalis/kg BW), PER group (34.05 mg permethrin/kg BW), and PER + F group (34.05 mg permethrin/kg BW and 200 mg F. officinalis/kg BW). Oral administration of PER led to promote a decrease of body weight and Ca2+ -ATPases and Mg2+ -ATPases activities and an increase of plasma C-reactive protein level, transaminases, and hepatic ϒ-GT activities as well as hepatic and mitochondrial oxidative stress. An increase in plasma lactate-to pyruvate ratio and a reduction in complexes enzymes I, III, and IV activities were also observed. In addition, histoarchitecture of liver in PER-treated rats showed apoptosis and necrosis as confirmed by DNA fragmentation. F. officinalis significantly exerted hepatoprotective effect by modulating hepatic alteration and mitochondrial dysfunction as well as genotoxicity. This effect could be attributed to phenolics compounds such as polyphenols, condensed tannins, and flavonoids.
Collapse
Affiliation(s)
- Nissaf Aoiadni
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Nour Chiab
- Laboratory of Plant improvement and Agri-Resources Valorization, National School of Engineers of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Hajer Jdidi
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Radhia Gargouri Bouzid
- Laboratory of Plant improvement and Agri-Resources Valorization, National School of Engineers of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Abdelfattah El Feki
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Hamadi Fetoui
- Laboratory of Toxicology and Environmental Health (LR17ES06), Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Fatma Ghorbel Koubaa
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
8
|
Liu H, Wang DD, Wan L, Hu ZY, He TT, Wang JB, Deng SZ, Wang XS. Assessment of attractancy and safeness of (E)-coniferyl alcohol for management of female adults of Oriental fruit fly, Bactrocera dorsalis (Hendel). PEST MANAGEMENT SCIENCE 2022; 78:1018-1028. [PMID: 34773351 DOI: 10.1002/ps.6713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bactrocera dorsalis is a devastating pest on fruits and vegetables because the adult female is the key factor that determines the population density of offspring and the degree of host damage. Unfortunately, there is still a lack of effective female attractants for behavioral control. Males of B. dorsalis fed on methyl eugenol (ME) were shown to be more sexually attracted to females and, therefore, were more successful in mating over ME-deprived males. RESULTS In the current study, we demonstrated that (E)-coniferyl alcohol (E-CF), one of the ME metabolites in males, was highly attractive to sexually-mature females in laboratory bioassays. During the dusk courtship period, mature females showed the highest response to E-CF. However, there were no significant differences in olfactory responses to E-CF between virgin and mated mature females. Moreover, no obvious signs and symptoms of toxicity or death were observed in mice during a 14-day acute oral toxicity test. Toxicologically, no significant changes were observed in body weight, water intake, food consumption and absolute and relative organ weights between control and treated groups of healthy-looking mice, implying that E-CF could be regarded as non-toxic. Furthermore, cytotoxicity assessment revealed that E-CF was non-toxic against human fetal lung fibroblast 1 (HFL1), human breast cancer (MDA-MB-231), mouse embryonic hepatocytes (BNL-CL.2) and Spodoptera frugiperda ovary (SF-9) cell lines. CONCLUSIONS E-CF proved to be an effective, promising and eco-friendly lure to B. dorsalis females. Therefore, this study may facilitate the development of novel control strategies against B. dorsalis in the field.
Collapse
Affiliation(s)
- Huan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Dan-Dan Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Lin Wan
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Zhao-Yang Hu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Ting-Ting He
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Jun-Bo Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Shu-Zhen Deng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Xin-Shuai Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
9
|
Deng SZ, Li XY, Wang ZM, Wang JB, Han DY, Fan JH, Zhao Q, Liu H, Wang XS. Assessment of 2-allyl-4,5-dimethoxyphenol safety and attractiveness to mature males of Bactrocera dorsalis (Hendel). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112567. [PMID: 34364125 DOI: 10.1016/j.ecoenv.2021.112567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/03/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Males of the Oriental fruit fly Bactrocera dorsalis (Hendel) are highly attracted to, and compulsively feed, on methyl eugenol (ME). ME is converted into 2-allyl-4,5-dimethoxyphenol (DMP) and (E)-coniferyl alcohol (E-CF), which are temporarily sequestered in the fly's rectal gland prior to being released at dusk. Previous research initially confirmed that DMP is a relatively strong lure to B. dorsalis males. However, the characteristics of males' response to DMP and toxicology of DMP remains largely unclear. In our study, we demonstrated that DMP was more attractive to sexually mature males than E-CF tested in laboratory bioassays. Interestingly, the responsiveness of mature males to DMP was not uniform throughout the day, eliciting the highest response during the day and dropping to a low level at night. Furthermore, there were no significant differences between the olfactory responses of virgin and mated mature males to DMP. No obvious signs of toxic symptom and deaths were observed in mice during a 14-day acute oral toxicity testing. Further, toxicologically significant changes were not observed in body weight, water intake, food consumption, and absolute and relative organ weights between control and treated groups, implying DMP could be regarded as nontoxic. Lastly, the cytotoxicity data of DMP on cells showed that it exhibited no significant cytotoxicity to normal human and mouse cells. Taken together, results from both the acute and cellular toxicity experiments demonstrated the nontoxic nature of DMP. In conclusion, DMP shows promise as an effective and eco-friendly lure for B. dorsalis males, and may contribute to controlling B. dorsalis in the flied.
Collapse
Affiliation(s)
- Shu-Zhen Deng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Xin-Yang Li
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Zi-Ming Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Jun-Bo Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Dan-Yang Han
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Jia-Hao Fan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Qi Zhao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Huan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, Henan Province, China.
| | - Xin-Shuai Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
10
|
Yang Y, Zhu Q, Zhang K, Zhao S. Synthesis, antimosquito activities, photodegradation, and toxic assessment of novel pyrethroids containing 2-chlorobiphenyl and 2-chlorophenylpyridine. PEST MANAGEMENT SCIENCE 2021; 77:2773-2784. [PMID: 33512752 DOI: 10.1002/ps.6308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Aedes albopictus is a mosquito species and a vector of dengue virus and malaria parasites that represents a significant threat to global public health. Although mosquito populations have been effectively controlled through the use of synthetic insecticides, the emergence of widespread insecticide resistance in wild mosquito populations is a strong motivation to explore new insecticidal chemistries. RESULTS In this study, A. albopictus was treated with a series of novel pyrethroids containing 2-chlorobiphenyl and 2-chlorophenylpyridine via topical application. The relative antimosquito activity of each novel compound was determined, as measured by the LC50 , and compared with the synthetic pyrethroid bifenthrin. The most antimosquito activity compound (SZ-B-11) was 4.69 times more active than bifenthrin. The novel compounds were also sensitive to wild A. albopictus. In addition, in silico toxicity assessment of aquatic organisms showed that the acute toxicity and chronic toxicity of SZ-B-11 were 31.96 times and 934.40 times lower than those of bifenthrin, respectively. Cytotoxicity assessment demonstrated that all tested compounds were nontoxic against SH-SY5Y cell lines. Furthermore, photolytic results suggested that SZ-B-11 would be photodegraded more easily than bifenthrin and would reduce secondary pollution. CONCLUSION Novel pyrethroids containing 2-chlorobiphenyl and 2-chlorophenylpyridine, through simple synthesis steps, have better antimosquito activity, low resistance, less ecotoxicity, readily degradable characteristics, and may reduce secondary pollution. They are promising insecticides with potential application prospects in agricultural production and environmental protection. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Yang
- Faculty of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Qiuyan Zhu
- Faculty of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Kun Zhang
- Faculty of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People's Republic of China
- Faculty of Biotechnology and Health, Wuyi University, Jiangmen, People's Republic of China
| | - Suqing Zhao
- Faculty of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
Zhu Q, Yang Y, Lao Z, Zhong Y, Zhang K, Zhao S. Photodegradation kinetics, mechanism and aquatic toxicity of deltamethrin, permethrin and dihaloacetylated heterocyclic pyrethroids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142106. [PMID: 33370902 DOI: 10.1016/j.scitotenv.2020.142106] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/06/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
Photochemical methods attracted much research interests for their high-efficiency and low secondary pollution. Decomposition of synthetic pyrethroids, the fourth major group of insecticides in use worldwide, was also of great significance due to their possible environmental risks. The photodegradation of deltamethrin, permethrin and dihaloacetylated heterocyclic pyrethroids in methanol/acetone = 9/1 (by volume) by a 400 W mercury lamp was examined. The t1/2 of tested pyrethroids was less than 25 min, except for cis-permethrin with a t1/2 of up to 50 min. The trans-isomer of permethrin and compound DCA-01 with a smaller t1/2 might be more susceptible to degradation than their cis-isomer. Besides, the photodegradation of pyrethroids was divided into twelve pathways including isomerization, ester hydrolysis, ester bond cleavage, CO bond cleavage, 3,3-dimethylacrylate formation, double bond break, C1-C3 bond cleavage in cyclopropyl, reductive dehalogenation, decarboxylation, nucleophilic reagents attack on lone pair electrons on oxygen atoms in the phenyl ether, cyano hydrolysis, and halogenated hydrocarbon hydrolysis. The ECOSAR program displayed that pyrethroids and most of their photodegradation products were toxic to fish, daphnid, green algae. Particularly, some photodegradation products were more harmful to aquatic organisms than their parents.
Collapse
Affiliation(s)
- Qiuyan Zhu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yang Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhiting Lao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yingying Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China; Faculty of Biotechnology and Health, Wuyi University, Jiangmen 529020, People's Republic of China.
| | - Suqing Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
12
|
Zhu Q, Yang Y, Lao Z, Zhong Y, Zhang K, Zhao S. Acute and chronic toxicity of deltamethrin, permethrin, and dihaloacetylated heterocyclic pyrethroids in mice. PEST MANAGEMENT SCIENCE 2020; 76:4210-4221. [PMID: 32596996 DOI: 10.1002/ps.5978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/12/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Pyrethroids, a class of insecticides, that act on the nervous system of insects. Frequent consumption of foods with pyrethroid residues increase the risk of developmental and neurological diseases in humans. Assessing the toxicity of novel synthetic pyrethroids to mammals is also critical to the development of agrochemicals. RESULTS Using mice as models, the acute and chronic toxicity of deltamethrin, permethrin, dihaloacetylated pyrethroids to mammals was researched by gavage administration. Acute toxicity assessment displayed that the median lethal dose (LD50 ) of deltamethrin, permethrin and dihaloacetylated heterocyclic pyrethroids DCA-O, DCA-01, and DCA-11 tested were greater than 500 mg/kg of weight. Furthermore, chronic toxicity assessment demonstrated that deltamethrin, permethrin caused epidermal damage near the genitals, while dihaloacetylated heterocyclic pyrethroids DCA-O, DCA-01, and DCA-11 showed no relevant symptoms. However, both the acute and chronic toxicity assessment suggested that pyrethroids exposure induced mice loss weight. Additionally, the elevated plus maze (EPM) test showed that pyrethroids caused anxiety-like behaviors and no motor defects in Kunming mice. Beside, during the sucrose preference test (SPT), 60-day pyrethroids exposure increased excitatory behaviors in mice. However, the neurochemical studies displayed that pyrethroids exposure increased the total amount of glutamate (Gln), glutamine (Glu) and γ-aminobutyric acid (GABA) in the mice's blood. CONCLUSION Pyrethroids exposure induced weight loss in mice, although the acute oral toxicity of deltamethrin, permethrin and dihaloacetylated heterocyclic pyrethroids DCA-O, DCA-01, and DCA-11 was low. However, regarding chronic toxicity, deltamethrin, permethrin and dihaloacetylated heterocyclic pyrethroids DCA-O, DCA-01, and DCA-11 induced anxiety-like behaviors, excitatory behaviors, Gln-Glu-GABA circulatory dysfunction in blood. Particularly, deltamethrin, though permethrin also had reproductive toxicity. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiuyan Zhu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Yang Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Zhiting Lao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Yingying Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
- Faculty of Biotechnology and Health, Wuyi University, Jiangmen, P. R. China
| | - Suqing Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| |
Collapse
|
13
|
Li YF, Wang K, Wang HJ, Li FB, Sun R, Li JX, Liu L, Liu CY, Asiri AM. Facile access to amino-substituted cyclopentafullerenes: novel reaction of [60]fullerene with β-substituted propionaldehydes and secondary amines in the absence/presence of magnesium perchlorate. Org Biomol Chem 2020; 18:6866-6880. [PMID: 32844859 DOI: 10.1039/d0ob00008f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A series of scarce amino-substituted cyclopentafullerenes instead of the expected N-alkyl-2,5-disubstituted fulleropyrrolidines were synthesized in moderate to excellent yields via the simple one-step reaction of [60]fullerene with cheap and easily available β-substituted propionaldehydes and secondary amines in the absence/presence of magnesium perchlorate. The in situ generation of allylic amines from β-substituted propionaldehydes and secondary amines played a crucial role in the successful preparation of amino-substituted cyclopentafullerenes without additional carbons. With the addition of magnesium perchlorate, secondary amines containing ethyl group(s) could produce novel amino-substituted cyclopentafullerenes with two additional carbons. All the obtained cyclopentafullerenes displayed high stereoselectivity with cis isomers as the exclusive or major products. Plausible reaction mechanisms are proposed to elucidate the above-mentioned reaction process.
Collapse
Affiliation(s)
- Yun-Fei Li
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, and School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|