1
|
Kortsinoglou AM, Wood MJ, Myridakis AI, Andrikopoulos M, Roussis A, Eastwood D, Butt T, Kouvelis VN. Comparative genomics of Metarhizium brunneum strains V275 and ARSEF 4556: unraveling intraspecies diversity. G3 (BETHESDA, MD.) 2024; 14:jkae190. [PMID: 39210673 PMCID: PMC11457142 DOI: 10.1093/g3journal/jkae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Entomopathogenic fungi belonging to the Order Hypocreales are renowned for their ability to infect and kill insect hosts, while their endophytic mode of life and the beneficial rhizosphere effects on plant hosts have only been recently recognized. Understanding the molecular mechanisms underlying their different lifestyles could optimize their potential as both biocontrol and biofertilizer agents, as well as the wider appreciation of niche plasticity in fungal ecology. This study describes the comprehensive whole genome sequencing and analysis of one of the most effective entomopathogenic and endophytic EPF strains, Metarhizium brunneum V275 (commercially known as Lalguard Met52), achieved through Nanopore and Illumina reads. Comparative genomics for exploring intraspecies variability and analyses of key gene sets were conducted with a second effective EPF strain, M. brunneum ARSEF 4556. The search for strain- or species-specific genes was extended to M. brunneum strain ARSEF 3297 and other species of genus Metarhizium, to identify molecular mechanisms and putative key genome adaptations associated with mode of life differences. Genome size differed significantly, with M. brunneum V275 having the largest genome amongst M. brunneum strains sequenced to date. Genome analyses revealed an abundance of plant-degrading enzymes, plant colonization-associated genes, and intriguing intraspecies variations regarding their predicted secondary metabolic compounds and the number and localization of Transposable Elements. The potential significance of the differences found between closely related endophytic and entomopathogenic fungi, regarding plant growth-promoting and entomopathogenic abilities, are discussed, enhancing our understanding of their diverse functionalities and putative applications in agriculture and ecology.
Collapse
Affiliation(s)
- Alexandra M Kortsinoglou
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Martyn J Wood
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea, UK
| | - Antonis I Myridakis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Marios Andrikopoulos
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Andreas Roussis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Dan Eastwood
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea, UK
| | - Tariq Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea, UK
| | - Vassili N Kouvelis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
2
|
Zhang Z, Liu M, Wang X, Gou J, Li T, Zhao T, Zhou L, Zhang F, Cheng F, Wang L. Plant volatiles mediated the orientation preference of slugs to different plant species. PEST MANAGEMENT SCIENCE 2024; 80:267-274. [PMID: 37672502 DOI: 10.1002/ps.7757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/07/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Slugs mechanically damage plant leaves, resulting in significant economic losses. However, there are limited cost-efficient strategies available in slug management. By studying how slugs utilize plant volatiles to locate host plants, we can gain insights into the design of attractants and repellents. RESULTS Bioassay results suggest slugs (Agriolimax agrestis) prefer to orientate to lettuce (Lactuca sativa), cabbage (Brassica oleracea L.), and young tobacco seedlings, compared with old tobacco seedlings. We analyzed the volatomics of lettuce, cabbage, young and old tobacco seedlings. 2-(2-butoxyethoxy)-ethanol acetate (2EA) had high abundance while nonanal, decanal, and β-cylocitral had relatively low content in volatiles. Old tobacco seedlings released significantly more hexanal but fewer 1,4-dihydro-4-oxopyridazine (DO). In olfactory tests, hexanal, nonanal, decanal, and β-cylocitral showed strong repellency to slugs, while DO at a dose of 500 ng/μL and 2EA at a dose of 1% were attractive to slugs. The two alkanes, hexadecane and heptadecane, had no effect on slug orientating to host plants. DO and 2EA can thus alleviate the repellency of hexanal, nonanal, decanal and β-cylocitral. CONCLUSION The high emission of hexanal in old tobacco seedlings helps repel slugs, while 2EA and DO attract slugs to lettuce and cabbage. These findings suggest that these chemicals can be utilized in the design of repellents and attractants, and contribute to constructing a push-pull system for slug control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zelong Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticides, Henan Agricultural University, Zhengzhou, China
| | - Minghong Liu
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, China
| | - Xiaoyan Wang
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, China
| | - Jianyu Gou
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, China
| | - Tianliang Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticides, Henan Agricultural University, Zhengzhou, China
| | - Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticides, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticides, Henan Agricultural University, Zhengzhou, China
| | - Fulong Zhang
- Inner Mongolia Kingbo Biotech.Co., Ltd, Bayannur, China
| | - Fujia Cheng
- School of Biotechnology and Food Engineering, Huanghuai University, Zhumadian, China
| | - Li Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticides, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Wood MJ, Kortsinoglou AM, Bull JC, Eastwood DC, Kouvelis VN, Bourdon PA, Loveridge EJ, Mathias S, Meyrick A, Midthassel A, Myrta A, Butt T. Evaluation of Metarhizium brunneum- and Metarhizium-Derived VOCs as Dual-Active Biostimulants and Pest Repellents in a Wireworm-Infested Potato Field. J Fungi (Basel) 2023; 9:599. [PMID: 37367536 DOI: 10.3390/jof9060599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Wireworm, the larval stages of click beetles, are a serious pest of tubers, brassicas and other important commercial crops throughout the northern hemisphere. No effective control agent has been developed specifically for them, and many of the pesticides marketed as having secondary application against them have been withdrawn from EU and Asian markets. Metarhizium brunneum, an effective entomopathogenic fungus, and its derived volatile metabolites are known to be effective plant biostimulants and plant protectants, although field efficacy has yet to be validated. Field validation of a combined M. brunneum and derived VOC treatments was conducted in Wales, UK, to assess the effects of each as a wireworm control agent and biostimulant. Plots were treated with Tri-Soil (Trichoderma atroviridae), M. brunneum, 1-octen-3-ol or 3-octanone, or combinations thereof. Treatments were applied subsurface during potato seeding (n = 52), and potatoes were harvested at the end of the growing season. Each potato was weighed individually and scored for levels of wireworm damage. Applications of both the VOCs and the M. brunneum individually were found to significantly decrease wireworm burden (p < 0.001). Combinations of M. brunneum and 3-octanone were also found to significantly decrease wireworm damage (p < 0.001), while no effect on yield was reported, resulting in an increased saleable mass over controls (p < 0.001). Herein, we present a novel 'stimulate and deter' wireworm control strategy that can be used to significantly enhance saleable potato yields and control wireworm populations, even under high pest pressure densities.
Collapse
Affiliation(s)
- Martyn J Wood
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 73100 Heraklion, Greece
| | - Alexandra M Kortsinoglou
- Department of Biology, Section of Genetics and Biotechnology, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - James C Bull
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Daniel C Eastwood
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Vassili N Kouvelis
- Department of Biology, Section of Genetics and Biotechnology, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Pierre A Bourdon
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - E Joel Loveridge
- Department of Chemistry, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | | | | | - Audun Midthassel
- Certis Belchim BV, R & D Department, 3521 AZ Utrecht, The Netherlands
| | - Arben Myrta
- Certis Belchim BV, R & D Department, 3521 AZ Utrecht, The Netherlands
| | - Tariq Butt
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
4
|
Veronico P, Sasanelli N, Troccoli A, Myrta A, Midthassel A, Butt T. Evaluation of Fungal Volatile Organic Compounds for Control the Plant Parasitic Nematode Meloidogyne incognita. PLANTS (BASEL, SWITZERLAND) 2023; 12:1935. [PMID: 37653851 PMCID: PMC10221407 DOI: 10.3390/plants12101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 09/02/2023]
Abstract
Plant parasitic nematodes are a serious threat to crop production worldwide and their control is extremely challenging. Fungal volatile organic compounds (VOCs) provide an ecofriendly alternative to synthetic nematicides, many of which have been withdrawn due to the risks they pose to humans and the environment. This study investigated the biocidal properties of two fungal VOCs, 1-Octen-3-ol and 3-Octanone, against the widespread root-knot nematode Meloidogyne incognita. Both VOCs proved to be highly toxic to the infective second-stage juveniles (J2) and inhibited hatching. Toxicity was dependent on the dose and period of exposure. The LD50 of 1-Octen-3-ol and 3-Octanone was 3.2 and 4.6 µL, respectively. The LT50 of 1-Octen-3-ol and 3-Octanone was 71.2 and 147.1 min, respectively. Both VOCs were highly toxic but 1-Octen-3-ol was more effective than 3-Octanone. Exposure of M. incognita egg-masses for 48 h at two doses (0.8 and 3.2 µL) of these VOCs showed that 1-Octen-3-ol had significantly greater nematicidal activity (100%) than 3-Octanone (14.7%) and the nematicide metham sodium (6.1%). High levels of reactive oxygen species detected in J2 exposed to 1-Octen-3-ol and 3-Octanone suggest oxidative stress was one factor contributing to mortality and needs to be investigated further.
Collapse
Affiliation(s)
- Pasqua Veronico
- Institute for Sustainable Plant Protection, CNR, Via G. Amendola 122/D, 70126 Bari, Italy; (N.S.); (A.T.)
| | - Nicola Sasanelli
- Institute for Sustainable Plant Protection, CNR, Via G. Amendola 122/D, 70126 Bari, Italy; (N.S.); (A.T.)
| | - Alberto Troccoli
- Institute for Sustainable Plant Protection, CNR, Via G. Amendola 122/D, 70126 Bari, Italy; (N.S.); (A.T.)
| | - Arben Myrta
- Certis Belchim BV, Stadsplateau 16, 3521 AZ Utrecht, The Netherlands; (A.M.); (A.M.)
| | - Audun Midthassel
- Certis Belchim BV, Stadsplateau 16, 3521 AZ Utrecht, The Netherlands; (A.M.); (A.M.)
| | - Tariq Butt
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK;
| |
Collapse
|
5
|
İlknur Yavasoglu S, Wood MJ, Alkhaibari AM, Touray M, Butt T. Potential of 3-octanone as a lure and kill agent for control of the Brown Garden Snail. J Invertebr Pathol 2023; 198:107920. [PMID: 37023891 DOI: 10.1016/j.jip.2023.107920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
The brown garden snail (Cornu aspersum) is a major agricultural pest, causing damage to a wide range of economically important crops. Withdrawal or restricted use of pollutant molluscicides like metaldehyde has prompted a search for more benign control products. This study investigated the response of snails to 3-octanone; a volatile organic compound (VOCs) produced by the insect pathogenic fungus Metarhizium brunneum. Concentrations of 1 - 1000 ppm of 3-octanone were first assessed in laboratory choice assays to determine behavioural response. Repellent activity was found at 1000 ppm whereas attractance was found for the lower concentrations of 1, 10 and 100 ppm. These three concentrations 3-octanone were carried forward in field evaluations to assess potential for use in "lure and kill" strategies. The highest concentration (100 ppm) was the most attractive to the snails but also the most lethal. Even at the lowest concentration this compound proved toxic making 3-octanone an excellent candidate for the development as a snail attractant and molluscicide.
Collapse
Affiliation(s)
- Sare İlknur Yavasoglu
- Department of Biology, Faculty of Science, Aydın Adnan Menderes University, 09010 Aydın, Türkiye.
| | - Martyn J Wood
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100 Heraklion, Greece
| | - Abeer M Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Mustapha Touray
- Department of Biology, Faculty of Science, Aydın Adnan Menderes University, 09010 Aydın, Türkiye
| | - Tariq Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
6
|
Lee CH, Lee YY, Chang YC, Pon WL, Lee SP, Wali N, Nakazawa T, Honda Y, Shie JJ, Hsueh YP. A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone. SCIENCE ADVANCES 2023; 9:eade4809. [PMID: 36652525 PMCID: PMC9848476 DOI: 10.1126/sciadv.ade4809] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/16/2022] [Indexed: 05/27/2023]
Abstract
The carnivorous mushroom Pleurotus ostreatus uses an unknown toxin to rapidly paralyze and kill nematode prey upon contact. We report that small lollipop-shaped structures (toxocysts) on fungal hyphae are nematicidal and that a volatile ketone, 3-octanone, is detected in these fragile toxocysts. Treatment of Caenorhabditis elegans with 3-octanone recapitulates the rapid paralysis, calcium influx, and neuronal cell death arising from fungal contact. Moreover, 3-octanone disrupts cell membrane integrity, resulting in extracellular calcium influx into cytosol and mitochondria, propagating cell death throughout the entire organism. Last, we demonstrate that structurally related compounds are also biotoxic to C. elegans, with the length of the ketone carbon chain being crucial. Our work reveals that the oyster mushroom has evolved a specialized structure containing a volatile ketone to disrupt the cell membrane integrity of its prey, leading to rapid cell and organismal death in nematodes.
Collapse
Affiliation(s)
- Ching-Han Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Yun Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chu Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Li Pon
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Sue-Ping Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Niaz Wali
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 60004, Taiwan
| |
Collapse
|
7
|
Rabelo MM, Dimase M, Paula-Moraes SV. Ecology and management of the invasive land snail Bulimulus bonariensis (Rafinesque, 1833) (Stylommatophora: Bulimulidae) in row crops. FRONTIERS IN INSECT SCIENCE 2022; 2:1056545. [PMID: 38468786 PMCID: PMC10926363 DOI: 10.3389/finsc.2022.1056545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/30/2022] [Indexed: 03/13/2024]
Abstract
Solutions for managing the growing populations of the snail Bulimulus bonariensis (Rafinesque, 1833) in row crops, notably peanut (Arachis hypogaea L.), are urgently needed in the United States. This species has become a concern to the economy and food security for infesting commercial crops in U.S. southern states. In the present study, sampling, trapping, and management strategies were investigated to support a management program for B. bonariensis in row crops. In addition, the preference of B. bonariensis for species of row crops and weeds, used as a shelter, and snail dispersal capacity were documented. The results indicated that the ideal tools for monitoring and capturing snails are beat cloth and cardboard trap, respectively. Metaldehyde 4% bait produced effective control. Tillage was tested as an alternative cultural management tactic and produced the most promising outcomes in lowering snail populations. According to snail ecological studies, peanut and soybean are the preferred crops used as shelter over cotton and corn. Among eight common winter-growing weeds, the favored non-crop host plants are cutleaf primrose (Oenothera laciniata) and dandelion (Taraxacum officinale). The snail field population tends to increase as early spring temperatures rise, with more snails becoming trapped in warm, humid conditions but not through heavy precipitation. This study provides ecology information on B. bonariensis and validates tactics to manage this invasive species in row crops, in an IPM approach.
Collapse
Affiliation(s)
| | | | - Silvana V. Paula-Moraes
- Department of Entomology and Nematology, West Florida Research and Education Center, University of Florida, Jay, FL, United States
| |
Collapse
|
8
|
Liu J, Clarke JA, McCann S, Hillier NK, Tahlan K. Analysis of Streptomyces Volatilomes Using Global Molecular Networking Reveals the Presence of Metabolites with Diverse Biological Activities. Microbiol Spectr 2022; 10:e0055222. [PMID: 35900081 PMCID: PMC9431705 DOI: 10.1128/spectrum.00552-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/09/2022] [Indexed: 12/20/2022] Open
Abstract
Streptomyces species produce a wide variety of specialized metabolites, some of which are used for communication or competition for resources in their natural environments. In addition, many natural products used in medicine and industry are derived from Streptomyces, and there has been interest in their capacity to produce volatile organic compounds (VOCs) for different industrial and agricultural applications. Recently, a machine-learning workflow called MSHub/GNPS was developed, which enables auto-deconvolution of gas chromatography-mass spectrometry (GC-MS) data, molecular networking, and library search capabilities, but it has not been applied to Streptomyces volatilomes. In this study, 131 Streptomyces isolates from the island of Newfoundland were phylogenetically typed, and 37 were selected based on their phylogeny and growth characteristics for VOC analysis using both a user-guided (conventional) and an MSHub/GNPS-based approach. More VOCs were annotated by MSHub/GNPS than by the conventional method. The number of unknown VOCs detected by the two methods was higher than those annotated, suggesting that many novel compounds remain to be identified. The molecular network generated by GNPS can be used to guide the annotation of such unknown VOCs in future studies. However, the number of overlapping VOCs annotated by the two methods is relatively small, suggesting that a combination of analysis methods might be required for robust volatilome analysis. More than half of the VOCs annotated with high confidence by the two approaches are plant-associated, many with reported bioactivities such as insect behavior modulation. Details regarding the properties and reported functions of such VOCs are described. IMPORTANCE This study represents the first detailed analysis of Streptomyces volatilomes using MSHub/GNPS, which in combination with a routinely used conventional method led to many annotations. More VOCs could be annotated using MSHub/GNPS as compared to the conventional method, many of which have known antimicrobial, anticancer, and insect behavior-modulating activities. The identification of numerous plant-associated VOCs by both approaches in the current study suggests that their production could be a more widespread phenomenon by members of the genus, highlighting opportunities for their large-scale production using Streptomyces. Plant-associated VOCs with antimicrobial activities, such as 1-octen-3-ol, octanol, and phenylethyl alcohol, have potential applications as fumigants. Furthermore, many of the annotated VOCs are reported to influence insect behavior, alluding to a possible explanation for their production based on the functions of other recently described Streptomyces VOCs in dispersal and nutrient acquisition.
Collapse
Affiliation(s)
- Jingyu Liu
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Jody-Ann Clarke
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Sean McCann
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - N. Kirk Hillier
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
9
|
Yuan YH, Liu LX, Guo L, Wang L, Hao JW, Liu YG. Changes of bacterial communities and volatile compounds developed from the spoilage of white Hypsizygus marmoreus under different storage conditions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Hummadi EH, Cetin Y, Demirbek M, Kardar NM, Khan S, Coates CJ, Eastwood DC, Dudley E, Maffeis T, Loveridge J, Butt TM. Antimicrobial Volatiles of the Insect Pathogen Metarhizium brunneum. J Fungi (Basel) 2022; 8:jof8040326. [PMID: 35448558 PMCID: PMC9025432 DOI: 10.3390/jof8040326] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
Fungal volatile organic compounds (VOCs) represent promising candidates for biopesticide fumigants to control crop pests and pathogens. Herein, VOCs produced using three strains of the entomopathogenic fungus Metarhizium brunneum were identified via GC-MS and screened for antimicrobial activity. The VOC profiles varied with fungal strain, development state (mycelium, spores) and culture conditions. Selected VOCs were screened against a range of rhizosphere and non-rhizosphere microbes, including three Gram-negative bacteria (Escherichia coli, Pantoea agglomerans, Pseudomonas aeruginosa), five Gram-positive bacteria (Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis, B. megaterium, B. thuringiensis), two yeasts (Candida albicans, Candida glabrata) and three plant pathogenic fungi (Pythium ultimum, Botrytis cinerea, Fusarium graminearum). Microbes differed in their sensitivity to the test compounds, with 1-octen-3-ol and isovaleric acid showing broad-spectrum antimicrobial activity. Yeasts and bacteria were inhibited by the same VOCs. Cryo-SEM showed that both yeasts and bacteria underwent some form of “autolysis”, where all components of the cell, including the cell wall, disintegrated with little evidence of their presence in the clear, inhibition zone. The oomycete (P. ultimum) and ascomycete fungi (F. graminearum, B. cinerea) were sensitive to a wider range of VOCs than the bacteria, suggesting that eukaryotic microbes are the main competitors to M. brunneum in the rhizosphere. The ability to alter the VOC profile in response to nutritional cues may assist M. brunneum to survive among the roots of a wide range of plant species. Our VOC studies provided new insights as to how M. brunneum may protect plants from pathogenic microbes and correspondingly promote healthy growth.
Collapse
Affiliation(s)
- Esam Hamid Hummadi
- Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK; (Y.C.); (M.D.); (N.M.K.); (S.K.); (C.J.C.); (D.C.E.); (T.M.); (J.L.)
- Department of Biotechnology, College of Science, University of Diyala, Baqubah City 32001, Iraq
- Correspondence: (E.H.H.); (T.M.B.)
| | - Yarkin Cetin
- Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK; (Y.C.); (M.D.); (N.M.K.); (S.K.); (C.J.C.); (D.C.E.); (T.M.); (J.L.)
| | - Merve Demirbek
- Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK; (Y.C.); (M.D.); (N.M.K.); (S.K.); (C.J.C.); (D.C.E.); (T.M.); (J.L.)
| | - Nadeems M. Kardar
- Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK; (Y.C.); (M.D.); (N.M.K.); (S.K.); (C.J.C.); (D.C.E.); (T.M.); (J.L.)
| | - Shazia Khan
- Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK; (Y.C.); (M.D.); (N.M.K.); (S.K.); (C.J.C.); (D.C.E.); (T.M.); (J.L.)
| | - Christopher J. Coates
- Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK; (Y.C.); (M.D.); (N.M.K.); (S.K.); (C.J.C.); (D.C.E.); (T.M.); (J.L.)
| | - Daniel C. Eastwood
- Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK; (Y.C.); (M.D.); (N.M.K.); (S.K.); (C.J.C.); (D.C.E.); (T.M.); (J.L.)
| | - Ed Dudley
- Faculty of Medicine, Health and Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK;
| | - Thierry Maffeis
- Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK; (Y.C.); (M.D.); (N.M.K.); (S.K.); (C.J.C.); (D.C.E.); (T.M.); (J.L.)
| | - Joel Loveridge
- Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK; (Y.C.); (M.D.); (N.M.K.); (S.K.); (C.J.C.); (D.C.E.); (T.M.); (J.L.)
| | - Tariq M. Butt
- Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK; (Y.C.); (M.D.); (N.M.K.); (S.K.); (C.J.C.); (D.C.E.); (T.M.); (J.L.)
- Correspondence: (E.H.H.); (T.M.B.)
| |
Collapse
|
11
|
van den Brandhof JG, Wösten HAB. Risk assessment of fungal materials. Fungal Biol Biotechnol 2022; 9:3. [PMID: 35209958 PMCID: PMC8876125 DOI: 10.1186/s40694-022-00134-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Sustainable fungal materials have a high potential to replace non-sustainable materials such as those used for packaging or as an alternative for leather and textile. The properties of fungal materials depend on the type of fungus and substrate, the growth conditions and post-treatment of the material. So far, fungal materials are mainly made with species from the phylum Basidiomycota, selected for the mechanical and physical properties they provide. However, for mycelium materials to be implemented in society on a large scale, selection of fungal species should also be based on a risk assessment of the potential to be pathogenic, form mycotoxins, attract insects, or become an invasive species. Moreover, production processes should be standardized to ensure reproducibility and safety of the product.
Collapse
Affiliation(s)
- Jeroen G van den Brandhof
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Hummadi EH, Dearden A, Generalovic T, Clunie B, Harrott A, Cetin Y, Demirbek M, Khoja S, Eastwood D, Dudley E, Hazir S, Touray M, Ulug D, Hazal Gulsen S, Cimen H, Butt T. Volatile organic compounds of Metarhizium brunneum influence the efficacy of entomopathogenic nematodes in insect control. BIOLOGICAL CONTROL : THEORY AND APPLICATIONS IN PEST MANAGEMENT 2021; 155:104527. [PMID: 33814871 PMCID: PMC7923176 DOI: 10.1016/j.biocontrol.2020.104527] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/03/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
The entomopathogenic fungus (EPF) Metarhizium brunneum occupies the same ecological niche as entomopathogenic nematodes (EPN), with both competing for insects as a food source in the rhizosphere. Interactions between these biocontrol agents can be antagonistic or synergistic. To better understand these interactions, this study focussed on investigating the effect of M. brunneum volatile organic compounds (VOCs), 1-octen-3-ol and 3-octanone, on EPN survival and behaviour. These VOCs proved to be highly toxic to the infective juveniles (IJs) of the EPN Steinernema carpocapsae, Steinernema feltiae and Heterorhabditis bacteriophora with mortality being dose dependent. Chemotaxis studies of H. bacteriophora IJs in Pluronic F127 gel revealed significant preference for the VOCs compared with controls for all tested concentrations. The VOCs also impacted on the test insects in a dose-dependent manner with 3-octanone being more toxic to Galleria mellonella, Cydia splendana and Curculio elephas larvae than 1-octen-3-ol. Mortality of C. splendana and G. mellonella larvae was significantly higher when exposed to relatively high doses (>25%) of 3-octanone. Lower doses of 3-octanone and 1-octen-3-ol immobilised test insects, which recovered after exposure to fresh air for 2 hrs. In depth studies on H. bacteriophora showed that exposure of IJs to > 10% concentration of 3-octanone or 1-octen-3-ol negatively affected infectivity whereas exposure to lower doses (0.1%, 0.01%) had no effect. The VOCs affected IJs, reducing penetration efficacy and the number of generations inside G. mellonella but they failed to inhibit the bacterial symbiont, Photorhabdus kayaii. The ecological significance of VOCs and how they could influence EPF-EPN insect interactions is discussed.
Collapse
Affiliation(s)
- Esam H. Hummadi
- Department of Biotechnology, College of Science, University of Diyala, Diyala, Iraq
- Department of Biosciences, College of Science, Swansea University, SA2 8PP, UK
| | - Alexander Dearden
- Department of Biosciences, College of Science, Swansea University, SA2 8PP, UK
| | - Tomas Generalovic
- Department of Biosciences, College of Science, Swansea University, SA2 8PP, UK
| | - Benjamin Clunie
- Department of Biosciences, College of Science, Swansea University, SA2 8PP, UK
| | - Alexandria Harrott
- Department of Biosciences, College of Science, Swansea University, SA2 8PP, UK
| | - Yarkin Cetin
- Department of Biosciences, College of Science, Swansea University, SA2 8PP, UK
| | - Merve Demirbek
- Department of Biosciences, College of Science, Swansea University, SA2 8PP, UK
| | - Salim Khoja
- Department of Biosciences, College of Science, Swansea University, SA2 8PP, UK
| | - Dan Eastwood
- Department of Biosciences, College of Science, Swansea University, SA2 8PP, UK
| | - Ed Dudley
- School of Medicine, Swansea University, Singleton Park, SA2 8PP, UK
| | - Selcuk Hazir
- Department of Biology, Faculty of Arts and Sciences, Aydin Adnan Menderes University, Aydin, Turkey
| | - Mustapha Touray
- Department of Biology, Faculty of Arts and Sciences, Aydin Adnan Menderes University, Aydin, Turkey
| | - Derya Ulug
- Department of Biology, Faculty of Arts and Sciences, Aydin Adnan Menderes University, Aydin, Turkey
| | - Sebnem Hazal Gulsen
- Department of Biology, Faculty of Arts and Sciences, Aydin Adnan Menderes University, Aydin, Turkey
| | - Harun Cimen
- Department of Biology, Faculty of Arts and Sciences, Aydin Adnan Menderes University, Aydin, Turkey
| | - Tariq Butt
- Department of Biosciences, College of Science, Swansea University, SA2 8PP, UK
| |
Collapse
|
13
|
Khoja S, Eltayef KM, Baxter I, Myrta A, Bull JC, Butt T. Volatiles of the entomopathogenic fungus, Metarhizium brunneum, attract and kill plant parasitic nematodes. BIOLOGICAL CONTROL : THEORY AND APPLICATIONS IN PEST MANAGEMENT 2021; 152:104472. [PMID: 33390683 PMCID: PMC7737096 DOI: 10.1016/j.biocontrol.2020.104472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/23/2020] [Accepted: 11/01/2020] [Indexed: 05/29/2023]
Abstract
Root knot nematodes (RKNs) cause significant crop losses. Although RKNs and entomopathogenic fungi, such as Metarhizium brunneum, are associated with plant roots, very little is known about the interactions between these two organisms. This study showed that conidia and VOCs of Me. brunneum influenced the behaviour of M. hapla. The response was dependent on the fungal strain, VOC, concentration of both VOC and conidia, and time. Tomatoes planted in soil treated with the highest doses of conidia usually had a higher number of nematodes than untreated control plants. This was particularly obvious for Me. brunneum strain ARSEF 4556, 7 and 14-days post-treatment. The VOCs, 1-octen-3-ol and 3-octanone, lured M. hapla to plants when used at low doses and repelled them at high doses. In Petri dish assays. the VOCs 1-octen-3-ol and 3-octanone, caused 100% mortality of M. hapla at the highest dose tested (20 µl). Very few live M. hapla were recovered from soil treated with the VOC 1-octen-3-ol, especially at the highest doses tested.
Collapse
Affiliation(s)
- Salim Khoja
- Department of Biosciences, Swansea University, Singleton Park, SA2 8PP. Swansea, UK
| | - Khalifa M. Eltayef
- Department of Biosciences, Swansea University, Singleton Park, SA2 8PP. Swansea, UK
| | - Ian Baxter
- Certis Europe BV, Stadsplateau 16, 3521 AZ Utrecht, the Netherlands
| | - Arben Myrta
- Certis Europe BV, Stadsplateau 16, 3521 AZ Utrecht, the Netherlands
| | - James C. Bull
- Department of Biosciences, Swansea University, Singleton Park, SA2 8PP. Swansea, UK
| | - Tariq Butt
- Department of Biosciences, Swansea University, Singleton Park, SA2 8PP. Swansea, UK
| |
Collapse
|