1
|
Jacoblinnert K, Goedecker C, Halle S, Schenke D, Imholt C, Jacob J. Comparison of baiting strategies in common vole management. PEST MANAGEMENT SCIENCE 2024; 80:5537-5542. [PMID: 38348935 DOI: 10.1002/ps.7967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Worldwide, pest rodents can cause extensive damage to agriculture, forestry, food storage, and infrastructure and pose a risk to public health and livestock due to the spread of zoonotic pathogens. In Europe, the most common pest rodent species is the common vole (Microtus arvalis). Management during periodic outbreaks largely relies on rodenticidal bait with zinc phosphide. Efficient baiting with rodenticides or possibly anti-fertility products in the future require baiting methods that allow a sufficient proportion of the population to consume an effective dose of bait. We used a bait with the quantitative marker ethyl-iophenoxic acid (Et-IPA) to evaluate baiting strategies in enclosure experiments. This wheat-based bait with Et-IPA was placed in bait boxes or directly into the tunnel system entrances in different seasons and common vole abundances. Voles were live-trapped, individually marked and blood samples were collected to relate Et-IPA blood residues to bait uptake. RESULTS The percentage of animals consuming bait was not heavily affected by the baiting strategy but voles had higher Et-IPA blood residues if tunnel baiting was used in autumn and if bait boxes were used in winter. Non-reproductive as well as lighter animals tended to have higher Et-IPA blood residues than reproductive individuals, whereas sex had no effect. Population density had a negative effect on the probability of residues present as well as on Et-IPA blood concentration. CONCLUSION The results of this study might help to improve baiting techniques to manage overabundant rodent pest species regardless of the compounds to be delivered. © 2024 Julius Kühn-Institut. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Kyra Jacoblinnert
- Julius Kuehn-Institute, Federal Research Institute for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics - Rodent Research, Muenster, Germany
- Department of Behavioural Biology, University of Osnabrueck, Osnabrueck, Germany
| | - Caspar Goedecker
- Friedrich Schiller University Jena, Institute of Ecology and Evolution, Jena, Germany
| | - Stefan Halle
- Friedrich Schiller University Jena, Institute of Ecology and Evolution, Jena, Germany
| | - Detlef Schenke
- Julius Kuehn-Institute, Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | - Christian Imholt
- Julius Kuehn-Institute, Federal Research Institute for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics - Rodent Research, Muenster, Germany
| | - Jens Jacob
- Julius Kuehn-Institute, Federal Research Institute for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics - Rodent Research, Muenster, Germany
| |
Collapse
|
2
|
Han M, Zhang J, Wei H, Zou W, Zhang M, Meng X, Chen W, Shao H, Wang C. Rapid and Robust Analysis of Coumatetralyl in Environmental Water and Human Urine Using a Portable Raman Spectrometer. ACS OMEGA 2023; 8:12878-12885. [PMID: 37065026 PMCID: PMC10099114 DOI: 10.1021/acsomega.3c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The widespread use and exposure of coumatetralyl (CMTT) has led to its accumulation in the environment and organisms, causing damage to ecosystems and adverse health effects in humans. Unfortunately, achieving fast detection of CMTT remains challenging. Herein, a rapid and robust surface-enhanced Raman spectroscopy (SERS) method was developed for rapid on-site detection of CMTT in environmental water and human urine. Clear trends were observed between the signal intensity and the logarithmic concentration of CMTT, ranging from 0.025 to 5.0 μg/mL with high reproducibility. The detection limits in water and human urine were as low as 1.53 and 13.71 ng/mL, respectively. The recoveries of CMTT for environmental water and urine samples were 90.2-98.2 and 82.0-87.5%, respectively, satisfactory for practical applications. The quantitative results of this approach were highly comparable to those obtained by high-performance liquid chromatography. Most importantly, it is cost-effective, operationally simple, and without a complicated sample preparation step. Detecting CMTT in water samples took only 5 min, and the detection of urine samples was completed within 8 min. This simple yet practical SERS approach offers a reliable application prospect for on-site CMTT detection in environmental water and point-of-care monitoring of poisoned patients.
Collapse
|
3
|
Krijger IM, Strating M, van Gent‐Pelzer M, van der Lee TA, Burt SA, Schroeten FH, de Vries R, de Cock M, Maas M, Meerburg BG. Large-scale identification of rodenticide resistance in Rattus norvegicus and Mus musculus in the Netherlands based on Vkorc1 codon 139 mutations. PEST MANAGEMENT SCIENCE 2023; 79:989-995. [PMID: 36309944 PMCID: PMC10107327 DOI: 10.1002/ps.7261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/18/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Resistance to rodenticides has been reported globally and poses a considerable problem for efficacy in pest control. The most-documented resistance to rodenticides in commensal rodents is associated with mutations in the Vkorc1 gene, in particular in codon 139. Resistance to anticoagulant rodenticides has been reported in the Netherlands since 1989. A study from 2013 showed that 25% of 169 Norway rats (Rattus norvegicus) had a mutation at codon 139 of the Vkorc1 gene. To gain insight in the current status of rodenticide resistance amongst R. norvegicus and house mice Mus musculus in the Netherlands, we tested these rodents for mutations in codon 139 of the Vkorc1 gene. In addition, we collected data from pest controllers on their use of rodenticides and experience with rodenticide resistance. RESULTS A total of 1801 rodent samples were collected throughout the country consisting of 1404 R. norvegicus and 397 M. musculus. In total, 15% of R. norvegicus [95% confidence interval (CI): 13-17%] and 38% of M. musculus (95% CI: 33-43%) carried a genetic mutation at codon 139 of the Vkorc1 gene. CONCLUSION This study demonstrates genetic mutations at codon 139 of the Vkorc1 gene in M. musculus in the Netherlands. Resistance to anticoagulant rodenticides is present in R. norvegicus and M. musculus in multiple regions in the Netherlands. The results of this comprehensive study provide a baseline and facilitate trend analyses of Vkorc1 codon 139 mutations and evaluation of integrated pest management (IPM) strategies as these are enrolled in the Netherlands. © 2022 The Dutch Pest and Wildlife. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Inge M. Krijger
- Dutch Pest and Wildlife Expertise Centre (KAD)Wageningenthe Netherlands
| | - Max Strating
- Dutch Pest and Wildlife Expertise Centre (KAD)Wageningenthe Netherlands
| | | | | | - Sara A. Burt
- Institute for Risk Assessment Sciences, Faculty of Veterinary MedicineUniversity of UtrechtUtrechtthe Netherlands
| | - Fleur H. Schroeten
- Institute for Risk Assessment Sciences, Faculty of Veterinary MedicineUniversity of UtrechtUtrechtthe Netherlands
| | - Robin de Vries
- Dutch Pest and Wildlife Expertise Centre (KAD)Wageningenthe Netherlands
| | - Marieke de Cock
- Centre for Infectious Disease ControlNational institute for Public Health and the Environment (RIVM)Bilthoventhe Netherlands
| | - Miriam Maas
- Centre for Infectious Disease ControlNational institute for Public Health and the Environment (RIVM)Bilthoventhe Netherlands
| | - Bastiaan G. Meerburg
- Dutch Pest and Wildlife Expertise Centre (KAD)Wageningenthe Netherlands
- Wageningen University & ResearchLivestock ResearchWageningenthe Netherlands
| |
Collapse
|
4
|
Princk C, Drewes S, Meyer‐Schlinkmann KM, Saathoff M, Binder F, Freise J, Tenner B, Weiss S, Hofmann J, Esser J, Runge M, Jacob J, Ulrich RG, Dreesman J. Cluster of human Puumala orthohantavirus infections due to indoor exposure?-An interdisciplinary outbreak investigation. Zoonoses Public Health 2022; 69:579-586. [PMID: 35312223 PMCID: PMC9539979 DOI: 10.1111/zph.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/02/2022]
Abstract
Puumala orthohantavirus (PUUV) is the most important hantavirus species in Europe, causing the majority of human hantavirus disease cases. In central and western Europe, the occurrence of human infections is mainly driven by bank vole population dynamics influenced by beech mast. In Germany, hantavirus epidemic years are observed in 2- to 5-year intervals. Many of the human infections are recorded in summer and early autumn, coinciding with peaks in bank vole populations. Here, we describe a molecular epidemiological investigation in a small company with eight employees of whom five contracted hantavirus infections in late 2017. Standardized interviews with employees were conducted to assess the circumstances under which the disease cluster occurred, how the employees were exposed and which counteractive measures were taken. Initially, two employees were admitted to hospital and serologically diagnosed with hantavirus infection. Subsequently, further investigations were conducted. By means of a self-administered questionnaire, three additional symptomatic cases could be identified. The hospital patients' sera were investigated and revealed in one patient a partial PUUV L segment sequence, which was identical to PUUV sequences from several bank voles collected in close proximity to company buildings. This investigation highlights the importance of a One Health approach that combines efforts from human and veterinary medicine, ecology and public health to reveal the origin of hantavirus disease clusters.
Collapse
Affiliation(s)
- Christina Princk
- Public Health Agency of Lower SaxonyHannoverGermany
- Present address:
Department of Clinical EpidemiologyLeibniz Institute for Prevention Research and Epidemiology—BIPSBremenGermany
| | - Stephan Drewes
- Friedrich‐Loeffler‐InstitutFederal Research Institute for Animal HealthInstitute of Novel and Emerging Infectious DiseasesGreifswald‐Insel RiemsGermany
| | | | - Marion Saathoff
- Lower Saxony State Office for Consumer Protection and Food SafetyOldenburg/HannoverGermany
| | - Florian Binder
- Friedrich‐Loeffler‐InstitutFederal Research Institute for Animal HealthInstitute of Novel and Emerging Infectious DiseasesGreifswald‐Insel RiemsGermany
| | - Jona Freise
- Lower Saxony State Office for Consumer Protection and Food SafetyOldenburg/HannoverGermany
| | - Beate Tenner
- Institute of VirologyCharité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Sabrina Weiss
- Institute of VirologyCharité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Present address:
Centre for International Health Protection – Public Health Laboratory SupportRobert Koch‐InstituteBerlinGermany
| | - Jörg Hofmann
- Institute of VirologyCharité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Jutta Esser
- Practice of Laboratory MedicineDepartment of Dermatology, Environmental Medicine, Health TheoryUniversity OsnabrückOsnabrückGermany
| | - Martin Runge
- Lower Saxony State Office for Consumer Protection and Food SafetyOldenburg/HannoverGermany
| | - Jens Jacob
- Julius Kühn‐Institute (JKI),Federal Research Centre for Cultivated PlantsInstitute for Plant Protection in Horticulture and Forests, Vertebrate ResearchMünsterGermany
| | - Rainer G. Ulrich
- Friedrich‐Loeffler‐InstitutFederal Research Institute for Animal HealthInstitute of Novel and Emerging Infectious DiseasesGreifswald‐Insel RiemsGermany
| | | |
Collapse
|
5
|
Elliott JE, Silverthorn V, Hindmarch S, Lee S, Bowes V, Redford T, Maisonneuve F. Anticoagulant Rodenticide Contamination of Terrestrial Birds of Prey from Western Canada: Patterns and Trends, 1988-2018. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1903-1917. [PMID: 35678209 PMCID: PMC9540899 DOI: 10.1002/etc.5361] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/06/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
As the dominant means for control of pest rodent populations globally, anticoagulant rodenticides (ARs), particularly the second-generation compounds (SGARs), have widely contaminated nontarget organisms. We present data on hepatic residues of ARs in 741 raptorial birds found dead or brought into rehabilitation centers in British Columbia, Canada, over a 30-year period from 1988 to 2018. Exposure varied by species, by proximity to residential areas, and over time, with at least one SGAR residue detected in 74% of individuals and multiple residues in 50% of individuals. By comparison, we detected first-generation compounds in <5% of the raptors. Highest rates of exposure were in barred owls (Strix varia), 96%, and great horned owls (Bubo virginianus), 81%, species with diverse diets, including rats (Rattus norvegicus and Rattus rattus), and inhabiting suburban and intensive agricultural habitats. Barn owls (Tyto alba), mainly a vole (Microtus) eater, had a lower incidence of exposure of 65%. Putatively, bird-eating raptors also had a relatively high incidence of exposure, with 75% of Cooper's hawks (Accipiter cooperii) and 60% of sharp-shinned hawks (Accipiter striatus) exposed. Concentrations of SGARs varied greatly, for example, in barred owls, the geometric mean ∑SGAR = 0.13, ranging from <0.005 to 1.81 μg/g wet weight (n = 208). Barred owls had significantly higher ∑SGAR concentrations than all other species, driven by significantly higher bromadiolone concentrations, which was predicted by the proportion of residential land within their home ranges. Preliminary indications that risk mitigation measures implemented in 2013 are having an influence on exposure include a decrease in mean concentrations of brodifacoum and difethialone in barred and great horned owls and an increase in bromodialone around that inflection point. Environ Toxicol Chem 2022;41:1903-1917. © 2022 Her Majesty the Queen in Right of Canada. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Environment and Climate Change Canada.
Collapse
Affiliation(s)
- John E. Elliott
- Ecotoxicology and Wildlife Health DirectorateEnvironment and Climate Change CanadaDeltaBritish ColumbiaCanada
| | - Veronica Silverthorn
- Ecotoxicology and Wildlife Health DirectorateEnvironment and Climate Change CanadaDeltaBritish ColumbiaCanada
| | - Sofi Hindmarch
- Ecotoxicology and Wildlife Health DirectorateEnvironment and Climate Change CanadaDeltaBritish ColumbiaCanada
| | - Sandi Lee
- Ecotoxicology and Wildlife Health DirectorateEnvironment and Climate Change CanadaDeltaBritish ColumbiaCanada
| | - Victoria Bowes
- Animal Health CentreBC Ministry of AgricultureAbbotsfordBritish ColumbiaCanada
| | - Tony Redford
- Animal Health CentreBC Ministry of AgricultureAbbotsfordBritish ColumbiaCanada
| | - France Maisonneuve
- Science & Technology BranchEnvironment and Climate Change CanadaOttawaOntarioCanada
| |
Collapse
|
6
|
Anti-Gnawing, Thermo-Mechanical and Rheological Properties of Polyvinyl Chloride: Effect of Capsicum Oleoresin and Denatonium Benzoate. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs6010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anti-rodent polymer composites were prepared using non-toxic substances denatonium benzoate (DB) and capsicum oleroresin (CO) mixed with polyvinyl chloride (PVC) matrix. DB is mixed in zinc stearate (ZnSt) called DB/ZnSt, and CO, providing burning sensation, is impregnated in mesoporous silica named SiCO. There are three sets of sample: Blank, composites Set I and Set II. Set I consists of DB/ZnSt at concentration of 1.96 wt% and SiCO at concentration of 12.16 wt%, 14.47 wt%, 18.75 wt% and 23.53 wt%. Set II comprises SiCO at the same amount of Set I. The anti-rodent composites studied are anti-gnawing, surface morphology, thermo-mechanical and rheological properties. Anti-rodent testing is analyzed by one-way blocked analysis of variance (ANOVA) and compared with Tukey test with a 95% level of significance, presenting good anti-gnawing efficiency. The best rat-proof sample is II.4, consisting of SiCO 23.53 wt%, which presents percentage of weight loss from gnawing at 1.68% compared to weight loss of neat PVC at 59.74%. The addition of SiCO at concentration ranging from 12.16 to 23.53 wt% reduces tensile strength around 25–50%, elongation at break strength around 2–23%, shear storage modulus (G′) around 30%, shear loss modulus (G″) shear viscosity (η) and glass transition (Tg) around 43% compared to Blank. The increase in SiCO concentration slightly improves the thermal stability of PVC composites around 3%, but the addition of DB/ZnSt at 1.96 wt% slightly reduces those properties.
Collapse
|
7
|
Jacoblinnert K, Jacob J, Zhang Z, Hinds LA. The status of fertility control for rodents-recent achievements and future directions. Integr Zool 2021; 17:964-980. [PMID: 34549512 DOI: 10.1111/1749-4877.12588] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Management of overabundant rodents at a landscape scale is complex but often required to sustainably reduce rodent abundance below damage thresholds. Current conventional techniques such as poisoning are not species specific, with some approaches becoming increasingly unacceptable to the general public. Fertility control, first proposed for vertebrate pest management over 5 decades ago, has gained public acceptance because it is perceived as a potentially more species-specific and humane approach compared with many lethal methods. An ideal fertility control agent needs to induce infertility across one or more breeding seasons, be easily delivered to an appropriate proportion of the population, be species specific with minimal side-effects (behavioral or social structure changes), and be environmentally benign and cost effective. To date, effective fertility control of rodents has not been demonstrated at landscape scales and very few products have achieved registration. Reproductive targets for fertility control include disrupting the hormonal feedback associated with the hypothalamic-pituitary-gonadal axis, gonad function, fertilization, and/or early implantation. We review progress on the oral delivery of various agents for which laboratory studies have demonstrated efficacy in females and/or males and synthesize progress with the development and/or use of synthetic steroids, plant extracts, ovarian specific peptides, and immunocontraceptive vaccines. There are promising results for field application of synthetic steroids (levonorgestrel, quinestrol), chemosterilants (4-vinylcyclohexene diepoxide), and some plant extracts (triptolide). For most fertility control agents, more research is essential to enable their efficient and cost-effective delivery such that rodent impacts at a population level are mitigated and food security is improved.
Collapse
Affiliation(s)
- Kyra Jacoblinnert
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany.,Department of Behavioral Biology, University Osnabrück, Osnabrück, Germany
| | - Jens Jacob
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lyn A Hinds
- CSIRO Health and Biosecurity, Canberra, ACT, Australia
| |
Collapse
|
8
|
Walther B, Ennen H, Geduhn A, Schlötelburg A, Klemann N, Endepols S, Schenke D, Jacob J. Effects of anticoagulant rodenticide poisoning on spatial behavior of farm dwelling Norway rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147520. [PMID: 34000553 DOI: 10.1016/j.scitotenv.2021.147520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Commensal rodent species cause damage to crops and stored products, they transmit pathogens to people, livestock and pets and threaten native flora and fauna. To minimize such adverse effects, commensal rodents are predominantly managed with anticoagulant rodenticides (AR) that can be transferred along the food chain. We tested the effect of the uptake of the AR brodifacoum (BR) by Norway rats (Rattus norvegicus) on spatial behavior because this helps to assess the availability of dead rats and residual BR to predators and scavengers. BR was delivered by oral gavage or free-fed bait presented in bait stations. Rats were radio-collared to monitor spatial behavior. BR residues in rat liver tissue were analyzed using liquid chromatography coupled with tandem mass spectrometry. Norway rats that had consumed BR decreased distances moved and had reduced home range size. Treatment effects on spatial behavior seemed to set in rapidly. However, there was no effect on habitat preference. Ninety-two percent of rats that succumbed to BR died in well-hidden locations, where removal by scavenging birds and large mammalian scavengers is unlikely. Rats that ingested bait from bait stations had 65% higher residue concentrations than rats that died from dosing with two-fold LD50. This suggests an overdosing in rats that are managed with 0.0025% BR. None of the 70 BR-loaded rats was caught/removed by wild predators/scavengers before collection of carcasses within 5-29 h. Therefore, and because almost all dead rats died in well-hidden locations, they do not seem to pose a significant risk of AR exposure to large predators/scavengers at livestock farms. Exposure of large predators may originate from AR-poisoned non-target small mammals. The few rats that died in the open are accessible and should be removed in routine searches during and after the application of AR bait to minimize transfer of AR into the wider environment.
Collapse
Affiliation(s)
- Bernd Walther
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Toppheideweg 88, 48161 Münster, Germany.
| | - Hendrik Ennen
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Toppheideweg 88, 48161 Münster, Germany
| | - Anke Geduhn
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Toppheideweg 88, 48161 Münster, Germany; German Environment Agency, Bötticher Straße 2 (Haus 23), Dahlemer Dreieck, 14195 Berlin, Germany
| | - Annika Schlötelburg
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Toppheideweg 88, 48161 Münster, Germany; German Environment Agency, Bötticher Straße 2 (Haus 23), Dahlemer Dreieck, 14195 Berlin, Germany
| | | | - Stefan Endepols
- Bayer AG, CropScience R & D, FS - Public Health, Rodent Management and SPP, Germany
| | - Detlef Schenke
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Strasse 19, 14195 Berlin, Germany
| | - Jens Jacob
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Toppheideweg 88, 48161 Münster, Germany
| |
Collapse
|
9
|
Burke CB, Quinn NM, Stapp P. Use of rodenticide bait stations by commensal rodents at the urban-wildland interface: Insights for management to reduce nontarget exposure. PEST MANAGEMENT SCIENCE 2021; 77:3126-3134. [PMID: 33638310 DOI: 10.1002/ps.6345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/21/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pest management professionals use anticoagulant rodenticides, usually placed in tamper-resistant bait stations, to control commensal rodents, but significant concerns remain about exposure of nontarget species, especially at the urban-wildland interface. We deployed digital cameras to monitor use of bait stations placed in 90 residential yards across Orange County, California, USA. Two bait stations, supplied with nontoxic bait, were monitored in each yard for approximately 30 consecutive days during two camera-trapping sessions between December 2017 and March 2019. One station was placed on the ground, while the other was elevated 1-1.5 m to determine if elevating stations could reduce nontarget exposure. RESULTS Black rats (Rattus rattus L.) were present at 80% of sites, with mean activity ranging from 0 to 9.6 h each night. There were no significant differences between elevated and ground stations in the time to discovery, time to bait station entry, or nightly activity of rats. Rats discovered bait stations more quickly, and mean nightly activity was greater, in yards where rats were detected more frequently. Although native rodents visited and entered bait stations occasionally, they were relatively rare among our sites (13.3%), and were detected five times less often at elevated stations compared to those on the ground. Yards visited by these rodents were significantly nearer to areas of green open space and natural vegetation, and tended to have no significant barriers to entry, e.g. solid fences or walls. CONCLUSIONS By elevating bait stations and avoiding placing rodenticides in yards that are likely to be visited by wildlife, pest management professionals may be able to reduce the risk of nontarget exposure, including secondary poisoning of predators and scavengers, while still providing effective control of commensal pests. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Christopher B Burke
- Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Niamh M Quinn
- University of California Agriculture and Natural Resources, South Coast Research and Extension Center, Irvine, CA, USA
| | - Paul Stapp
- Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| |
Collapse
|
10
|
Walther B, Geduhn A, Schenke D, Jacob J. Exposure of passerine birds to brodifacoum during management of Norway rats on farms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144160. [PMID: 33373750 DOI: 10.1016/j.scitotenv.2020.144160] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
The exposure of non-target wildlife to anticoagulant compounds used for rodent control is a well-known phenomenon. Exposure can be primary when non-target species consume bait or secondary via uptake of poisoned animals by mammalian and avian predators. However, nothing is known about the exposure patterns in passerine birds that are commonly present on farms where rodent control is conducted. We used liquid chromatography coupled with tandem mass spectrometry to screen for residues of anticoagulant rodenticides (ARs) in liver tissue of passerine birds that were present during rodent control with a product containing brodifacoum (BR). The 222 birds of 13 species were bycatch of rodent snap trapping in 2011-2013 on 11 livestock farms run synchronously with baiting. During baiting, ARs were detected in about 30% of birds; 28% carried BR. In liver tissue of 54 birds that carried BR, concentrations ranged from 4 to 7809 ng/g (mean 490 ± 169 ng/g). Among common bird species with AR residues, BR was most prevalent in robins (Erithacus rubecula) (44%) and dunnocks (Prunella modularis) (41%). Mean BR concentration was highest in great tits (Parus major) (902 ± 405 ng/g). The occurrence and concentrations of BR residues were about 30% higher in birds collected close to bait stations compared to birds collected further away. The results demonstrate that several ground feeding songbird species are exposed to ARs used on farms. If BR was present in liver tissue, concentrations were variable, which may imply a combination of primary and secondary exposure of songbirds. Exposure was mostly restricted to the immediate surroundings of farms where bait was used, which might limit the transfer to the wider environment. Efforts should be made to reduce the access for birds to AR bait to prevent high exposure.
Collapse
Affiliation(s)
- Bernd Walther
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Toppheideweg 88, 48161 Münster, Germany.
| | - Anke Geduhn
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Toppheideweg 88, 48161 Münster, Germany
| | - Detlef Schenke
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Strasse 19, 14195, Berlin, Germany
| | - Jens Jacob
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Toppheideweg 88, 48161 Münster, Germany
| |
Collapse
|
11
|
Jacob J. In Focus: vertebrate management and risk mitigation. PEST MANAGEMENT SCIENCE 2021; 77:597-598. [PMID: 33438843 DOI: 10.1002/ps.6199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Jens Jacob
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| |
Collapse
|