1
|
Adams B, Yusuf AA, Torto B, Khamis FM. Tritrophic Interactions Mediated by Zoophytophagous Predator-Induced Host Plant Volatiles. J Chem Ecol 2024; 50:663-678. [PMID: 38722476 PMCID: PMC11543773 DOI: 10.1007/s10886-024-01501-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 11/08/2024]
Abstract
The zoophytophagous mirid predator Nesidiocoris tenuis and the ectoparasitoid Stenomesius japonicus are important biological control agents for several agricultural pests including the invasive leafminer, Phthorimaea absoluta, a destructive pest of Solanaceous crops especially tomato in sub-Saharan Africa. However, little is known about how feeding by N. tenuis can influence the tritrophic interactions in the tomato plant. Here, we tested the hypothesis that N. tenuis phytophagy would influence the tritrophic olfactory interactions between the host plant tomato and pest, predator, and parasitoid. In olfactometer assays, P. absoluta females and N. tenuis adults were both attracted to constitutive volatiles released by the tomato plant. Whereas females of P. absoluta avoided volatiles released by N. tenuis-infested plants, S. japonicus females and N. tenuis adults were attracted to the induced volatiles. In coupled gas chromatography-electroantennographic detection (GC-EAD) recordings of intact and N. tenuis-infested plant volatiles, antennae of P. absoluta and S. japonicus females both detected eight components, whereas N. tenuis adults detected seven components which were identified by GC-mass spectrometry (GC-MS) as terpenes and green leaf volatiles (GLVs). Dose-response olfactometer bioassays revealed that the responses of P. absoluta, N. tenuis, and S. japonicus varied with the composition and concentration of blends and individual compounds tested from N tenuis-induced volatiles. Females of P. absoluta showed no preference for an eight-component blend formulated from the individual repellents including hexanal, (Z)-3-hexenyl butanoate, and δ-elemene identified in the volatiles. On the other hand, S. japonicus females were attracted to an eight-component blend including the attractants (E)-2-hexenal, (Z)-3-hexenol, methyl salicylate, β-phellandrene, and (E)-caryophyllene. Likewise, N. tenuis adults were attracted to a seven-component blend including the attractants β-phellandrene, δ-elemene, and (E)-caryophyllene identified in the volatiles. Our findings suggest that there is potential for the use of terpenes and GLVs to manage the insects in the tritrophic interaction.
Collapse
Affiliation(s)
- Bashiru Adams
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Abdullahi Ahmed Yusuf
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
| | - Fathiya Mbarak Khamis
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
2
|
Adams B, Mbarak Khamis F, Ahmed Yusuf A, Torto B. Zoophytophagous predator sex pheromone and visual cues of opposing reflectance spectra lure predator and invasive prey. J Adv Res 2024:S2090-1232(24)00182-6. [PMID: 38710469 DOI: 10.1016/j.jare.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
INTRODUCTION In sub-Saharan Africa, the invasive South American leafminer Phthorimaea absoluta is the most damaging tomato pest. Females of the pest can reproduce both sexually and through parthenogenesis and lay their eggs on all tomato plant parts. The mirid predator Nesidiocoris tenuis, a biological control agent for the pest, is also a tomato pest when prey population is low. To date, however, no study has developed an eco-friendly solution that targets both the predator and its host in a tomato farming system. OBJECTIVE To develop a bio-based management system for both pest and predator based on the combined use of sexual communication in the predator and visual cues. METHODS We collected volatiles from both sexes of the Kenyan population of the predator N. tenuis and identified candidate sex pheromone components by coupled gas chromatography-mass spectrometry (GC-MS). We used electrophysiological assays to identify antennally-active odorants in the volatiles, followed by field trials with different pheromone-baited colored traps to validate the responses of both predator and prey. Thereafter, we compared the reflectance spectra of the colored traps with those of different tomato plant tissues. RESULTS Our results reveal an interplay between different sensory cues which in the predator-prey interaction may favor the predator. Antennae of both sexes of predator and prey detect the predator sex pheromone identified as 1-octanol and hexyl hexanoate. Unexpectedly, our field experiments led to the discovery of a lure for P. absoluta females, which were lured distinctly into a pheromone-baited trap whose reflectance spectrum mimicked that of ripe tomato fruit (long wavelength), an egg-laying site for females. Contrastingly, N. tenuis males were lured into baited white trap (short wavelength) when the predator is actively searching for prey. CONCLUSION Our results demonstrate the novel use of a predator sex pheromone and different visual cues to assess complex trophic interactions on tomatoes.
Collapse
Affiliation(s)
- Bashiru Adams
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772 00100, Nairobi, Kenya; Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Fathiya Mbarak Khamis
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772 00100, Nairobi, Kenya.
| | - Abdullahi Ahmed Yusuf
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772 00100, Nairobi, Kenya; Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| |
Collapse
|
3
|
He F, Gao YW, Ye ZX, Huang HJ, Tian CH, Zhang CX, Chen JP, Li JM, Lu JB. Comparative transcriptomic analysis of salivary glands between the zoophytophagous Cyrtorhinus lividipennis and the phytozoophagous Apolygus lucorum. BMC Genomics 2024; 25:53. [PMID: 38212677 PMCID: PMC10785411 DOI: 10.1186/s12864-023-09956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Saliva plays a crucial role in shaping the feeding behavior of insects, involving processes such as food digestion and the regulation of interactions between insects and their hosts. Cyrtorhinus lividipennis serves as a predominant natural enemy of rice pests, while Apolygus lucorum, exhibiting phytozoophagous feeding behavior, is a destructive agricultural pest. In this study, a comparative transcriptome analysis, incorporating the published genomes of C.lividipennis and A.lucorum, was conducted to reveal the role of salivary secretion in host adaptation. RESULTS In contrast to A.lucorum, C.lividipennis is a zoophytophagous insect. A de novo genome analysis of C.lividipennis yielded 19,706 unigenes, including 16,217 annotated ones. On the other hand, A.lucorum had altogether 20,111 annotated genes, as obtained from the published official gene set (20,353 unigenes). Functional analysis of the top 1,000 salivary gland (SG)-abundant genes in both insects revealed that the SG was a dynamically active tissue engaged in protein synthesis and secretion. Predictions of other tissues and signal peptides were compared. As a result, 94 and 157 salivary proteins were identified in C.lividipennis and A.lucorum, respectively, and were categorized into 68 and 81 orthogroups. Among them, 26 orthogroups were shared, potentially playing common roles in digestion and detoxification, including several venom serine proteases. Furthermore, 42 and 55 orthogroups were exclusive in C.lividipennis and A.lucorum, respectively, which were exemplified by a hyaluronidase in C.lividipennis that was associated with predation, while polygalacturonases in A.lucorum were involved in mesophyll-feeding patterns. CONCLUSIONS Findings in this study provide a comprehensive insight into saliva secretions in C.lividipennis and A.lucorum via a transcriptome approach, reflecting the intricate connections between saliva secretions and feeding behaviors. It is found that conserved salivary secretions are involved in shaping the overlapping feeding patterns, while a plethora of unique salivary secretions may drive the evolution of specific feeding behaviors crucial for their survival. These results enhance our understanding of the feeding mechanisms in different insects from the perspective of saliva and contribute to future environmentally friendly pest control by utilizing predatory insects.
Collapse
Affiliation(s)
- Fang He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Yang-Wei Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Cai-Hong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, 450002, Zhengzhou, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
- Institute of Insect Science, Zhejiang University, 310058, Hangzhou, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China.
| |
Collapse
|
4
|
Betsi PC, Perdikis DC. Lethal and Sub-Lethal Effects of Organic-Production-Approved Insecticides and Fungicides on the Predator Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae). INSECTS 2023; 14:866. [PMID: 37999065 PMCID: PMC10672414 DOI: 10.3390/insects14110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
In this study, the effects of paraffin oil, copper hydroxide, copper oxychloride, wettable sulfur, Beauveria bassiana and deltamethrin, as a toxic reference treatment, on the survival and predation rate of M. pygmaeus were investigated. In each treatment, the prey were classified as slightly, partially or fully consumed. The mortality rate after contact exposure was high (66.6%) when nymphs were treated with copper hydroxide but much lower after residual exposure (6.6%). B. bassiana caused 53.3% and 46.6% mortality via contact and residual exposure, respectively. The total prey consumption was significantly lower in the pyrethroid reference treatment control and B. bassiana treatments. The highest percentage of slightly consumed prey was recorded in the toxic reference and B. bassiana treatments, that of partially consumed prey in the copper hydroxide treatment and, finally, that of fully consumed prey in the paraffin oil treatment. Therefore, assessing the sub-lethal effects by separating the prey killed into slightly, partially and fully consumed is a sensitive approach to detect impacts which otherwise may remain unnoticed. The results provide information for the most appropriate use of M. pygmaeus in IPM programs and introduce more sensitive approaches in the detection of side-effects of pesticides on M. pygmaeus and other hemipteran predators.
Collapse
Affiliation(s)
| | - Dionysios Ch Perdikis
- Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| |
Collapse
|
5
|
Riahi C, Urbaneja A, Fernández-Muñoz R, Fortes IM, Moriones E, Pérez-Hedo M. Induction of Glandular Trichomes to Control Bemisia tabaci in Tomato Crops: Modulation by the Natural Enemy Nesidiocoris tenuis. PHYTOPATHOLOGY 2023; 113:1677-1685. [PMID: 36998120 DOI: 10.1094/phyto-11-22-0440-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Whitefly-transmitted viruses are one of the biggest threats to tomato (Solanum lycopersicum) growing worldwide. Strategies based on the introgression of resistance traits from wild relatives are promoted to control tomato pests and diseases. Recently, a trichome-based resistance characterizing the wild species Solanum pimpinellifolium was introgressed into a cultivated tomato. An advanced backcross line (BC5S2) exhibiting the presence of acylsugar-associated type IV trichomes, which are lacking in cultivated tomatoes, was effective at controlling whiteflies (Hemiptera: Aleyrodidae) and limiting the spread of whitefly-transmitted viruses. However, at early growth stages, type IV trichome density and acylsugar production are limited; thus, protection against whiteflies and whitefly-transmitted viruses remains irrelevant. In this work, we demonstrate that young BC5S2 tomato plants feeding-punctured by the zoophytophagous predator Nesidiocoris tenuis (Hemiptera: Miridae) displayed an increase (above 50%) in type IV trichome density. Acylsugar production was consistently increased in N. tenuis-punctured BC5S2 plants, which was more likely associated with upregulated expression of the BCKD-E2 gene related to acylsugar biosynthesis. In addition, the infestation of BC5S2 plants with N. tenuis effectively induced the expression of defensive genes involved in the jasmonic acid signaling pathway, resulting in strong repellence to Bemisia tabaci and attractiveness to N. tenuis. Thus, through preplant release of N. tenuis in tomato nurseries carried out in some integrated pest management programs, type IV trichome-expressing plants can be prepared to control whiteflies and whitefly-transmitted viruses at early growth stages. This study emphasizes the advantage of reinforcing constitutive resistance using defense inducers to guarantee robust protection against pests and transmitted viruses.
Collapse
Affiliation(s)
- Chaymaa Riahi
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, (IVIA), 46113 Moncada, Valencia, Spain
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, (IVIA), 46113 Moncada, Valencia, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| | - Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| | - Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, (IVIA), 46113 Moncada, Valencia, Spain
| |
Collapse
|
6
|
Wang L, Zhang Y, Huang N, Di N, Tian L, Zhu Z, Liu J, Wang S. Biological traits of the zoophytophagous predatory mirid Nesidiocoris poppiusi (Heteroptera: Miridae), a candidate biocontrol agent in China. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1146-1154. [PMID: 37267079 DOI: 10.1093/jee/toad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/22/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Mirid predators are increasingly used in biological control of multiple greenhouse crops pests. However, due to great morphological similarity and tiny body size, some mirid predators have been largely confused with their allied species. Nesidiocoris tenuis Reuter as a commercial mirid predator was confused largely with Nesidiocoris poppiusi Carvalho in China. To evaluate the biocontrol potential of N. poppiusi, its biological traits and the functional response to Bemisia tabaci Gennadius were studied compared with N. tenuis under laboratory conditions. The results showed that no significant differences of the developmental times from the first instar to adult stages between the 2 mirids fed on Corcyra cephalonica Stainton eggs were observed, while N. poppiusi had better population growth parameters than N. tenuis. Under the condition with prey, both female and male of N. poppiusi lived significantly longer than those of N. tenuis. It could lay 74.0 eggs, which was significantly higher than that of N. tenuis (30.2 eggs). Under the condition without prey, both N. poppiusi and N. tenuis couldn't complete development to adulthood on tomato, tobacco, muskmelon, and cabbage leaves, however, tobacco and tomato were more suitable than the other 2 plants. A type II functional response was observed for both males and females of the 2 predators. Nesidiocoris poppiusi females consumed significantly more B. tabaci pupae than N. tenuis when prey densities were large than 30. Our results indicated that N. poppiusi could be a promising candidate for biological control of B. tabaci.
Collapse
Affiliation(s)
- Lili Wang
- Laboratory of Applied Entomology, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Beijing 100122, China
| | - Yibo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ningxing Huang
- Laboratory of Applied Entomology, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Beijing 100122, China
| | - Ning Di
- Laboratory of Applied Entomology, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Beijing 100122, China
| | - Lixia Tian
- Laboratory of Applied Entomology, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhengyang Zhu
- Laboratory of Applied Entomology, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Junxiu Liu
- Laboratory of Applied Entomology, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Beijing 100122, China
| | - Su Wang
- Laboratory of Applied Entomology, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Beijing 100122, China
| |
Collapse
|
7
|
Park YG, Kwon M, Sarker S, Lim UT. Synergism of a mixed diet of Myzus persicae and egg of Ephestia kuehniella on fitness of the predator Nabis stenoferus. Sci Rep 2023; 13:9075. [PMID: 37277422 PMCID: PMC10241876 DOI: 10.1038/s41598-023-35363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023] Open
Abstract
Nabis stenoferus is a zoophytophagous predator that lives in grasslands around agricultural fields. It is a candidate biological control agent for use via augmentation or conservation. To find a suitable food source for mass-rearing and to better understand this predator's biology, we compared the life history characteristics of N. stenoferus under the three different diets: aphids only (Myzus persicae), moth eggs only (Ephestia kuehniella), or a mixed diet of aphids and moth eggs. Interestingly, when only aphids were supplied, N. stenoferus developed to the adult stage but lacked normal levels of fecundity. There was a significant synergism of the mixed diet on N. stenoferus fitness in both the immature and adult stages, i.e., a 13% reduction in the nymphal developmental period and an 87.3-fold increase in fecundity, compared to aphid-only diet. Furthermore, the intrinsic rate of increase was significantly higher for the mixed diet (0.139) than either aphids only (0.022) or moth eggs only (0.097). These results show that M. persicae alone is not a complete diet for the mass-rearing of N. stenoferus, whereas this aphid can be a supplementary food when combined with E. kuehniella eggs. Implications and applications of these findings for biological control are discussed.
Collapse
Affiliation(s)
- Young-Gyun Park
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Minhyeok Kwon
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Souvic Sarker
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
- Department of Entomology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Un Taek Lim
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea.
| |
Collapse
|
8
|
Pang R, Chen B, Wang S, Chi Y, Huang S, Xing D, Yao Q. Decreased cuticular penetration minimizes the impact of the pyrethroid insecticide λ-cyhalothrin on the insect predator Eocanthecona furcellata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114369. [PMID: 36508800 DOI: 10.1016/j.ecoenv.2022.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The use of broad-spectrum pesticides may reduce the biological control efficacy of predatory arthropods. Hence, the risks of pesticides to predators need to be evaluated. Here, we assessed the effects of a broad spectrum pyrethroid λ-cyhalothrin on a polyphagous predatory insect Eocanthecona furcellata via contact exposure route. The recommended application rate of λ-cyhalothrin was lower than the LR50 and HQ (in-field) was equal to 0.57, indicating the risk of λ-cyhalothrin to E. furcellata was low. Dried λ-cyhalothrin residue had no effect on the mortality, body weight, protein content of cuticle, or activities of major detoxification enzymes in E. furcellata. Residual of λ-cyhalothrin was only detected in the cuticle and legs of E. furcellata with a decreasing trend as time went by and no λ-cyhalothrin was detected inside the body. Additionally, a comparative transcriptome analysis was conducted to study global changes in gene expression in E. furcellata at different time points following exposure to λ-cyhalothrin-contaminated environment. A total of 57,839 unigenes with an average length of 1044 bp and an N50 of 1820 bp were obtained. In total, 118 and 109 differentially expressed genes (DEGs) at 12 h, and 60 h were identified between two groups. The DEGs were largely enriched in functional categories related to the structural constituent of cuticle. Accordingly, multiple cuticle protein-coding genes were up-regulated at 12 h after pesticide exposure. The present study stressed the importance of evaluating the compatibility between a specific pesticide (λ-cyhalothrin) and E. furcellata via simulating the releasing predators after insecticide application. The data could help optimize the pesticide use, optimizing the ecological services of E. furcellata as a BCA, and expanding its use into more areas of agriculture.
Collapse
Affiliation(s)
- Rui Pang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China; South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Bingxu Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Siwei Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yanyan Chi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Shixuan Huang
- South China Agricultural University, Guangzhou 510642, China
| | - Dongxu Xing
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Qiong Yao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China.
| |
Collapse
|
9
|
Castillo J, Roda A, Qureshi J, Pérez-Hedo M, Urbaneja A, Stansly P. Sesame as an Alternative Host Plant to Establish and Retain Predatory Mirids in Open-Field Tomatoes. PLANTS (BASEL, SWITZERLAND) 2022; 11:2779. [PMID: 36297803 PMCID: PMC9612361 DOI: 10.3390/plants11202779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The silverleaf whitefly (Bemisia tabaci) and the South America tomato pinworm (Tuta absoluta) are two of the most destructive pests of tomato. Open-field tomato production frequently relies on chemical treatments, which has been shown to lead to pesticide resistance. The integration of biological control using predatory mirid bugs is an effective alternative method for managing these pests. However, methods to establish and maintain populations of zoophytophagous mirids are not adequately described. We explored the potential use of two mirids naturally occurring in Florida, Nesidiocoris tenuis and Macrolophus praeclarus. We conducted 6 field experiments over 4 consecutive years to develop a strategy to maintain the mirids. Pre-plant inoculation of tomato plants did not lead to their establishment, likely due to the low prevalence of prey. We explored the use of sesame (Sesamum indicum) to retain the mirids. Intercropping sesame maintained the populations of N. tenuis throughout the duration of the crop. Macrolophus praeclarus never established in any of the open-field experiments. Nesidiocoris tenuis damage was minimal (<1 necrotic ring/plant) and mirid damage was reduced in the presence of sesame. Our results show that intercropping sesame may provide a means to utilize mirids to manage B. tabaci, an established pest, and provide options to tomato growers should T. absoluta invade USA.
Collapse
Affiliation(s)
- Jose Castillo
- Department of Entomology and Nematology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL 34142, USA
| | - Amy Roda
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Miami, FL 33158, USA
| | - Jawwad Qureshi
- Department of Entomology and Nematology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL 34142, USA
| | - Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, CV-315, Km. 10, 7, 46113 Moncada, Valencia, Spain
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, CV-315, Km. 10, 7, 46113 Moncada, Valencia, Spain
| | - Philip Stansly
- Department of Entomology and Nematology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL 34142, USA
| |
Collapse
|
10
|
Sarmah N, Kaldis A, Kalampokis I, Aliferis KA, Voloudakis A, Perdikis D. Metabolomic and Genomic Approach to Study Defense Induction by Nesidiocoris tenuis against Tuta absoluta and Tetranychus urticae in Tomato Plants. Metabolites 2022; 12:metabo12090838. [PMID: 36144242 PMCID: PMC9504375 DOI: 10.3390/metabo12090838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
The phytophagy of the predator Nesidiocoris tenuis (Hemiptera: Miridae) can trigger defense responses in tomato plants against pests, such as two spotted spider mite Tetranychus urticae (Acari: Tetranychidae) and South American leaf miner Tuta absoluta (Lepidoptera: Gelechiidae). The expression of genes governing Jasmonic Acid (JA) biosynthesis pathway and fluctuations in the levels of underlying metabolites have been rarely studied in mirid-infested plants. In the present study, fifteen 3rd instar nymphs of N.tenuis were caged on each top and lower leaf of tomato plants for 4 d to induce plant defense; after this period the predators were removed. With regard to T. absoluta, oviposition preference; larval period; and pupal weight were significantly reduced in N. tenuis-punctured plants. T. urticae adults exhibited a significantly higher escape tendency and reduced survival on punctured plants. Metabolomics confirmed such observations revealing substantial differences between N. tenuis-punctured and unpunctured (control) plants. Metabolites directly associated with the activation of the JA defense pathway, such as the precursor α-linolenic acid, had increased concentrations. The expression of the defense-related genes PI-II, MYC2, VSP2, and HEL was increased in the top leaves and only VSP2 and MBP2 in the lower leaves; interestingly, in the middle (unpunctured) leaves VSP2, HEL, and MBP2 were also upregulated, indicating systemic signaling. Collectively, phytophagy of N. tenuis caused adverse effects on T. absoluta and T. urticae, whereas the multi-omics approach (phenomics, metabolomics, and genomics) offered valuable insights into the nature of the plant defense responses and provided useful evidence for future applications in integrated pest management, plausibly resulting in the reduction in the required pesticide volumes.
Collapse
Affiliation(s)
- Nomi Sarmah
- Laboratory of Agricultural Zoology and Entomology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Ioannis Kalampokis
- Laboratory of Pesticide Science, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Department of Plant Science, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Andreas Voloudakis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Dionysios Perdikis
- Laboratory of Agricultural Zoology and Entomology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Correspondence: ; Tel.: +30-210-529-4581
| |
Collapse
|
11
|
Silva DB, Hanel A, Franco FP, de Castro Silva-Filho M, Bento JMS. Two in one: the neotropical mirid predator Macrolophus basicornis increases pest control by feeding on plants. PEST MANAGEMENT SCIENCE 2022; 78:3314-3323. [PMID: 35485909 DOI: 10.1002/ps.6958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plant defenses activated by European zoophytophagous predators trigger behavioral responses in arthropods, benefiting pest management. However, repellence or attraction of pests and beneficial insects seems to be species-specific. In the neotropical region, the mirid predator Macrolophus basicornis has proved to be a promising biological control agent of important tomato pests; nevertheless, the benefits of its phytophagous behavior have never been explored. Therefore, we investigated if M. basicornis phytophagy activates tomato plant defenses and the consequences for herbivores and natural enemies. RESULTS Regardless of the induction period of M. basicornis on tomato plants, Tuta absoluta females showed no preference for the odors emitted by induced or control plants. However, Tuta absoluta oviposited less on plants induced by M. basicornis for 72 h than on control plants. In contrast, induced plants repelled Bemisia tabaci females, and the number of eggs laid was reduced. Although females of Trichogramma pretiosum showed no preference between mirid-induced or control plants, we observed high attraction of the parasitoid Encarsia inaron and conspecifics to plants induced by M. basicornis. While the mirid-induced plants down-regulated the expression of genes involving the salicylic acid (SA) pathway over time, the genes related to the jasmonic acid (JA) pathway were up-regulated, increasing emissions of fatty-acid derivatives and terpenes, which might have influenced the arthropods' host/prey choices. CONCLUSION Based on both the molecular and behavioral findings, our results indicated that in addition to predation, M. basicornis benefits tomato plant resistance indirectly through its phytophagy. This study is a starting point to pave the way for a novel and sustainable pest-management strategy in the neotropical region. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Diego Bastos Silva
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Aldo Hanel
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Flavia Pereira Franco
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - José Mauricio Simões Bento
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
12
|
Transcriptomics and Metabolomics Analyses Reveal High Induction of the Phenolamide Pathway in Tomato Plants Attacked by the Leafminer Tuta absoluta. Metabolites 2022; 12:metabo12060484. [PMID: 35736416 PMCID: PMC9230075 DOI: 10.3390/metabo12060484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
Tomato plants are attacked by a variety of herbivore pests and among them, the leafminer Tuta absoluta, which is currently a major threat to global tomato production. Although the commercial tomato is susceptible to T. absoluta attacks, a better understanding of the defensive plant responses to this pest will help in defining plant resistance traits and broaden the range of agronomic levers that can be used for an effective integrated pest management strategy over the crop cycle. In this study, we developed an integrative approach combining untargeted metabolomic and transcriptomic analyses to characterize the local and systemic metabolic responses of young tomato plants to T. absoluta larvae herbivory. From metabolomic analyses, the tomato response appeared to be both local and systemic, with a local response in infested leaves being much more intense than in other parts of the plant. The main response was a massive accumulation of phenolamides with great structural diversity, including rare derivatives composed of spermine and dihydrocinnamic acids. The accumulation of this family of specialized metabolites was supported by transcriptomic data, which showed induction of both phenylpropanoid and polyamine precursor pathways. Moreover, our transcriptomic data identified two genes strongly induced by T. absoluta herbivory, that we functionally characterized as putrescine hydroxycinnamoyl transferases. They catalyze the biosynthesis of several phenolamides, among which is caffeoylputrescine. Overall, this study provided new mechanistic clues of the tomato/T. absoluta interaction.
Collapse
|
13
|
Half Friend, Half Enemy? Comparative Phytophagy between Two Dicyphini Species (Hemiptera: Miridae). INSECTS 2022; 13:insects13020175. [PMID: 35206748 PMCID: PMC8874493 DOI: 10.3390/insects13020175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/04/2022]
Abstract
Despite their importance as biological control agents, zoophytophagous dicyphine mirids can produce economically important damage. We evaluated the phytophagy and potential impact on tomato plants of Dicyphus cerastii and Nesidiocoris tenuis. We developed a study in three parts: (i) a semi-field trial to characterize the type of plant damage produced by these species on caged tomato plants; (ii) a laboratory experiment to assess the effect of fruit ripeness, mirid age, and prey availability on feeding injuries on fruit; and (iii) a laboratory assay to compare the position of both species on either fruit or plants, over time. Both species produced plant damage, however, although both species produced scar punctures on leaves and necrotic patches on petioles, only N. tenuis produced necrotic rings. Both species caused flower abortion at a similar level. Overall, N. tenuis females produced more damage to tomato fruit than D. cerastii. There was an increased frequency of D. cerastii females found on the plants over time, which did not happen with N. tenuis. Our results suggested that, although D. cerastii caused less damage to fruit than N. tenuis, it still fed on them and could cause floral abortion, which requires field evaluation and caution in its use in biological control strategies.
Collapse
|
14
|
Duke SO. Success, despite another plague year. PEST MANAGEMENT SCIENCE 2022; 78:7-11. [PMID: 34874600 DOI: 10.1002/ps.6708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
15
|
Ayelo PM, Yusuf AA, Pirk CW, Chailleux A, Mohamed SA, Deletre E. Terpenes from herbivore-induced tomato plant volatiles attract Nesidiocoris tenuis (Hemiptera: Miridae), a predator of major tomato pests. PEST MANAGEMENT SCIENCE 2021; 77:5255-5267. [PMID: 34310838 DOI: 10.1002/ps.6568] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Biological control plays a key role in reducing crop damage by Tuta absoluta (Meyrick) and Trialeurodes vaporariorum (Westwood), which cause huge yield losses in tomato (Solanum lycopersicum L.). The mirid predator Nesidiocoris tenuis (Reuter) preys heavily on these pests, with satisfying control levels in tomato greenhouses. Although N. tenuis is known to be attracted to volatiles of tomato plants infested by T. absoluta and whitefly, little is known about the specific attractive compounds and the effect of prey density on the predator response. RESULTS Y-tube olfactometer bioassays revealed that the attraction of N. tenuis to tomato volatiles was positively correlated with the density of T. absoluta infestation, unlike T. vaporariorum infestation. The predator was also attracted to volatiles of T. absoluta larval frass, but not to T. vaporariorum honeydew or T. absoluta sex pheromone. Among the herbivore-induced plant volatiles (HIPVs) that characterised the attractive plants infested with 20 T. absoluta larvae, olfactometer bioassays revealed that N. tenuis is attracted to the monoterpenes α-pinene, α-phellandrene, 3-carene, β-phellandrene and β-ocimene, whereas (E)-β-caryophyllene was found to repel the predator. In dose-response bioassays, the five-component blend of the attractants elicited a relatively low attraction in the predator, and removal of β-phellandrene from the blend enhanced the attraction of the predator to the resulting four-component blend, suggesting synergism among four monoterpenes. CONCLUSION These findings suggest that a four-component blend of α-pinene, α-phellandrene, 3-carene and β-ocimene could be used as a kairomone-based lure to recruit the predator for the biological control of T. absoluta and T. vaporariorum.
Collapse
Affiliation(s)
- Pascal M Ayelo
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Abdullahi A Yusuf
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Christian Ww Pirk
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Anaïs Chailleux
- UPR HORTSYS, University of Montpellier, CIRAD, Montpellier, France
- Biopass2, Cirad-IRD-ISRA-UGB - Centre de coopération internationale en recherche agronomique pour le développement, Institut de Recherche pour le Développement-Institut Sénégalais de Recherches Agricoles, Université Gaston Berger, Dakar, Senegal
| | - Samira A Mohamed
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Emilie Deletre
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- UPR HORTSYS, University of Montpellier, CIRAD, Montpellier, France
| |
Collapse
|
16
|
Zhang NX, Stephan JG, Björkman C, Puentes A. Global change calls for novel plant protection: reviewing the potential of omnivorous plant-inhabiting arthropods as predators and plant defence inducers. CURRENT OPINION IN INSECT SCIENCE 2021; 47:103-110. [PMID: 34146735 DOI: 10.1016/j.cois.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/29/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Global change poses new challenges for pest management. Omnivorous predatory arthropods play an important role in pest management, yet their potential has not been fully explored. Not only do they consume prey, but their plant-feeding induces plant defences that decrease herbivores' performance, and increases production of volatiles that attract natural enemies. Growing evidence from different plant-arthropod systems indicates the generality of plant defence induction following omnivore plant-feeding. Furthermore, these responses appear to affect other organisms (e.g. plant viruses), altering multi-trophic interactions. Here, we review the dual role of omnivores (as predators and plant inducers), identify knowledge gaps and provide future perspectives to increase our understanding of omnivores' multiple functions, and how this can be applied to advance plant protection strategies.
Collapse
Affiliation(s)
- Nina Xiaoning Zhang
- Swedish University of Agricultural Sciences, Department of Ecology, P.O. Box 7044, SE-750 07 Uppsala, Sweden
| | - Jörg G Stephan
- Swedish University of Agricultural Sciences, SLU Swedish Species Information Centre, Almas allé 8E, SE-756 51 Uppsala, Sweden
| | - Christer Björkman
- Swedish University of Agricultural Sciences, Department of Ecology, P.O. Box 7044, SE-750 07 Uppsala, Sweden
| | - Adriana Puentes
- Swedish University of Agricultural Sciences, Department of Ecology, P.O. Box 7044, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
17
|
D'Esposito D, Manzo D, Ricciardi A, Garonna AP, De Natale A, Frusciante L, Pennacchio F, Ercolano MR. Tomato transcriptomic response to Tuta absoluta infestation. BMC PLANT BIOLOGY 2021; 21:358. [PMID: 34348650 PMCID: PMC8336066 DOI: 10.1186/s12870-021-03129-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The South America pinworm, Tuta absoluta, is a destructive pest of tomato that causes important losses worldwide. Breeding of resistant/tolerant tomato cultivars could be an effective strategy for T. absoluta management but, despite the economic importance of tomato, very limited information is available about its response to this treat. To elucidate the defense mechanisms to herbivore feeding a comparative analysis was performed between a tolerant and susceptible cultivated tomato at both morphological and transcriptome level to highlight constitutive leaf barriers, molecular and biochemical mechanisms to counter the effect of T. absoluta attack. RESULTS The tolerant genotype showed an enhanced constitutive barrier possibly as result of the higher density of trichomes and increased inducible reactions upon mild infestation thanks to the activation/repression of key transcription factors regulating genes involved in cuticle formation and cell wall strength as well as of antinutritive enzymes, and genes involved in the production of chemical toxins and bioactive secondary metabolites. CONCLUSIONS Overall, our findings suggest that tomato resilience to the South America pinworm is achieved by a combined strategy between constitutive and induced defense system. A well-orchestrated modulation of plant transcription regulation could ensure a trade-off between defense needs and fitness costs. Our finding can be further exploited for developing T. absoluta tolerant cultivars, acting as important component of integrated pest management strategy for more sustainable production.
Collapse
Affiliation(s)
- Daniela D'Esposito
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Daniele Manzo
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Alessandro Ricciardi
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Antonio Pietro Garonna
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Antonino De Natale
- Department of Biology, University of Naples "Federico II", Monte Sant' Angelo, Via Cinthia 26, 80126, Naples, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Maria Raffaella Ercolano
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy.
| |
Collapse
|
18
|
Pérez-Hedo M, Gallego C, Roda A, Kostyk B, Triana M, Alférez F, Stansly PA, Qureshi J, Urbaneja A. Biological traits of the predatory mirid Macrolophus praeclarus, a candidate biocontrol agent for the Neotropical region. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:429-437. [PMID: 33583442 DOI: 10.1017/s0007485321000067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The predatory mirid Macrolophus praeclarus is widely distributed throughout the Americas, and is reported to prey upon several horticultural pest species. However, little is known about its biology, thermal requirements, crop odour preferences, phytophagy, and capability to induce defensive responses in plants. When five temperatures studied (20, 25, 30, 33 and 35°C) were tested and Ephestia kuehniella was used as prey, the developmental time from egg to adult on tomato, was longest at 20°C (56.3 d) and shortest at 33°C (22.7 d). The ability of nymphs to develop to adults decreased as the temperature increased, with the highest number of nymphs reaching the adult stage at 20°C (78.0%) and lowest at 35°C (0%). The lower and upper developmental thresholds were estimated at 11.2° and 35.3°C, respectively. The maximum developmental rate occurred at 31.7°C and the thermal constant was 454.0 ± 8.1 degree days. The highest predation rate of E. kuehniella eggs was obtained at 30°C. In Y-tube olfactory choice tests, M. praeclarus selected tomato, sweet pepper and eggplant odours more frequently than no plant control treatment. Macrolophus praeclarus feeding did not damage tomato plants compared to another zoophytophagous mirid, Nesidiocoris tenuis, which caused necrotic rings. The phytophagy of M. praeclarus induced defensive responses in tomato plants through the upregulation of the jasmonic acid metabolic pathway. The implications of the findings for using M. praeclarus in tomato biological control programmes in the Americas are discussed.
Collapse
Affiliation(s)
- Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología. Unidad de Entomología. Carretera CV-315, Km 10'7 - 46113Moncada, Spain
| | - Carolina Gallego
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología. Unidad de Entomología. Carretera CV-315, Km 10'7 - 46113Moncada, Spain
| | - Amy Roda
- United States Department of Agriculture, Animal Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Miami, Florida33158, USA
| | - Barry Kostyk
- Department of Entomology and Nematology, University of Florida, Southwest Florida Research and Education Center, Immokalee, Florida34142, USA
| | - Mónica Triana
- Department of Entomology and Nematology, University of Florida, Southwest Florida Research and Education Center, Immokalee, Florida34142, USA
| | - Fernando Alférez
- University of Florida, Department of Horticultural Sciences, Southwest Florida Research and Education Center, Immokalee, Florida34142, United States of America
| | - Philip A Stansly
- Department of Entomology and Nematology, University of Florida, Southwest Florida Research and Education Center, Immokalee, Florida34142, USA
| | - Jawwad Qureshi
- Department of Entomology and Nematology, University of Florida, Southwest Florida Research and Education Center, Immokalee, Florida34142, USA
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología. Unidad de Entomología. Carretera CV-315, Km 10'7 - 46113Moncada, Spain
| |
Collapse
|
19
|
The pest kill rate of thirteen natural enemies as aggregate evaluation criterion of their biological control potential of Tuta absoluta. Sci Rep 2021; 11:10756. [PMID: 34031491 PMCID: PMC8144571 DOI: 10.1038/s41598-021-90034-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 11/09/2022] Open
Abstract
Ecologists study how populations are regulated, while scientists studying biological pest control apply population regulation processes to reduce numbers of harmful organisms: an organism (a natural enemy) is used to reduce the population density of another organism (a pest). Finding an effective biological control agent among the tens to hundreds of natural enemies of a pest is a daunting task. Evaluation criteria help in a first selection to remove clearly ineffective or risky species from the list of candidates. Next, we propose to use an aggregate evaluation criterion, the pest kill rate, to compare the pest population reduction capacity of species not eliminated during the first selection. The pest kill rate is the average daily lifetime killing of the pest by the natural enemy under consideration. Pest kill rates of six species of predators and seven species of parasitoids of Tuta absoluta were calculated and compared. Several natural enemies had pest kill rates that were too low to be able to theoretically reduce the pest population below crop damaging densities. Other species showed a high pest reduction capacity and their potential for practical application can now be tested under commercial crop production conditions.
Collapse
|
20
|
Hall DR, Harte SJ, Bray DP, Farman DI, James R, Silva CX, Fountain MT. Hero Turned Villain: Identification of Components of the Sex Pheromone of the Tomato Bug, Nesidiocoris tenuis. J Chem Ecol 2021; 47:394-405. [PMID: 33844148 PMCID: PMC8116296 DOI: 10.1007/s10886-021-01270-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae) is a tropical mirid bug used as a biocontrol agent in protected crops, including tomatoes. Although N. tenuis predates important insect pests, especially whitefly, it also causes damage by feeding on tomato plants when prey populations decline, resulting in significant economic losses for growers. The pest is now established in some all-year-round tomato crops in Europe and control measures involve the application of pesticides which are incompatible with current IPM programs. As part of future IPM strategies, the pheromone of N. tenuis was investigated. Volatile collections were made from groups and individuals of mated and unmated, females and males. In analyses of these collections by gas chromatography coupled with electroantennographic (EAG) recording from antennae of male bugs, two EAG-active components were detected and identified as 1-octanol and octyl hexanoate. Unlike other mirids, both male and female N. tenuis produced the two compounds, before and after mating, and both sexes gave EAG responses to both compounds. Furthermore, only octyl hexanoate was detected in whole body solvent washes from both sexes. These compounds are not related to the derivatives of 3-hydroxybutyrate esters found as pheromone components in other members of the Bryocrinae sub-family, and the latter could not be detected in volatiles from N. tenuis and did not elicit EAG responses. Nevertheless, experiments carried out in commercial glasshouses showed that traps baited with a blend of the synthetic pheromone components caught essentially only male N. tenuis, and significantly more than traps baited with octyl hexanoate alone. The latter caught significantly more N. tenuis than unbaited traps which generally caught very few bugs. Traps at plant height caught more N. tenuis males than traps 1 m above or at the base of the plants. The trap catches provided an indication of population levels of N. tenuis and were greatly reduced following an application of insecticide.
Collapse
Affiliation(s)
- David R Hall
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, UK.
| | - Steven J Harte
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, UK
| | - Daniel P Bray
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, UK
| | - Dudley I Farman
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, UK
| | - Rob James
- Thanet Earth Ltd, Barrow Man Road, Birchington, Kent, UK
| | | | | |
Collapse
|
21
|
Sario S, Santos C, Gonçalves F, Torres L. DNA screening of Drosophila suzukii predators in berry field orchards shows new predatory taxonomical groups. PLoS One 2021; 16:e0249673. [PMID: 33831041 PMCID: PMC8031375 DOI: 10.1371/journal.pone.0249673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
Drosophila suzukii (spotted wing drosophila, SWD) is a pandemic quarantine pest that attacks mostly red fruits. The high number of life cycles per year, its ability to rapidly invade and spread across new habitats, and highly polyphagous nature, makes this a particularly aggressive invasive species, for which efficient control methods are currently lacking. The use of native natural predators is particularly promising to anchor sustainable and efficient measures to control SWD. While several field studies have suggested the presence of potential predatory species in infested orchards, only a few confirmed the presence of SWD DNA in predators' gut content. Here, we use a DNA-based approach to identify SWD predators among the arthropod diversity in South Europe, by examining the gut content of potential predator specimens collected in SWD-infested berry fields in North Portugal. These specimens were morphologically identified to the family/order, and their gut content was screened for the presence of SWD DNA using PCR. New SWD predatory taxonomical groups were identified, as Opiliones and Hemerobiidae, in addition to known SWD predators, such as Hemerobiidae, Chrysopidae, Miridae, Carabidae, Formicidae and Araneae. Additionally, the presence of a spider family, Uloboridae, in the orchards was recorded for the first time, posing this family as another SWD-candidate predator. This study sets important bases to further investigate the potential large-scale use of some of these confirmed predator taxa for SWD control in South Europe.
Collapse
Affiliation(s)
- Sara Sario
- Faculty of Sciences of University of Porto (FCUP), iB2Lab, Department of Biology, Rua do Campo Alegre, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Vila Real, Portugal
| | - Conceição Santos
- Faculty of Sciences of University of Porto (FCUP), iB2Lab, Department of Biology, Rua do Campo Alegre, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Fátima Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Vila Real, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Laura Torres
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Vila Real, Portugal
| |
Collapse
|
22
|
Ferguson KB, Visser S, Dalíková M, Provazníková I, Urbaneja A, Pérez‐Hedo M, Marec F, Werren JH, Zwaan BJ, Pannebakker BA, Verhulst EC. Jekyll or Hyde? The genome (and more) of Nesidiocoris tenuis, a zoophytophagous predatory bug that is both a biological control agent and a pest. INSECT MOLECULAR BIOLOGY 2021; 30:188-209. [PMID: 33305885 PMCID: PMC8048687 DOI: 10.1111/imb.12688] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 05/14/2023]
Abstract
Nesidiocoris tenuis (Reuter) is an efficient predatory biological control agent used throughout the Mediterranean Basin in tomato crops but regarded as a pest in northern European countries. From the family Miridae, it is an economically important insect yet very little is known in terms of genetic information and no genomic or transcriptomic studies have been published. Here, we use a linked-read sequencing strategy on a single female N. tenuis. From this, we assembled the 355 Mbp genome and delivered an ab initio, homology-based and evidence-based annotation. Along the way, the bacterial "contamination" was removed from the assembly. In addition, bacterial lateral gene transfer (LGT) candidates were detected in the N. tenuis genome. The complete gene set is composed of 24 688 genes; the associated proteins were compared to other hemipterans (Cimex lectularis, Halyomorpha halys and Acyrthosiphon pisum). We visualized the genome using various cytogenetic techniques, such as karyotyping, CGH and GISH, indicating a karyotype of 2n = 32. Additional analyses include the localization of 18S rDNA and unique satellite probes as well as pooled sequencing to assess nucleotide diversity and neutrality of the commercial population. This is one of the first mirid genomes to be released and the first of a mirid biological control agent.
Collapse
Affiliation(s)
- K. B. Ferguson
- Laboratory of GeneticsWageningen UniversityWageningenThe Netherlands
| | - S. Visser
- Biology Centre CASInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - M. Dalíková
- Biology Centre CASInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - I. Provazníková
- Biology Centre CASInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- European Molecular Biology LaboratoryHeidelbergGermany
| | - A. Urbaneja
- Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones Agrarias (IVIA)MoncadaSpain
| | - M. Pérez‐Hedo
- Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones Agrarias (IVIA)MoncadaSpain
| | - F. Marec
- Biology Centre CASInstitute of EntomologyČeské BudějoviceCzech Republic
| | - J. H. Werren
- Department of BiologyUniversity of RochesterRochesterNew YorkUSA
| | - B. J. Zwaan
- Laboratory of GeneticsWageningen UniversityWageningenThe Netherlands
| | - B. A. Pannebakker
- Laboratory of GeneticsWageningen UniversityWageningenThe Netherlands
| | - E. C. Verhulst
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
23
|
Sarmah N, Kaldis A, Taning CNT, Perdikis D, Smagghe G, Voloudakis A. dsRNA-Mediated Pest Management of Tuta absoluta Is Compatible with Its Biological Control Agent Nesidiocoris tenuis. INSECTS 2021; 12:insects12040274. [PMID: 33804809 PMCID: PMC8063791 DOI: 10.3390/insects12040274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/14/2023]
Abstract
Simple Summary The zoophytophagous mirid bug Nesidiocoris tenuis is an efficient predator of the tomato leafminer, Tuta absoluta. RNA interference (RNAi) targeting the alphaCOP (αCOP) (Coatomer subunit alpha protein) gene of N. tenuis (Nt-αCOP) was proven to be functional in N. tenuis, causing downregulation of gene expression, mortality and sub-lethal effects. In contrast, when N. tenuis were fed with dsRNA (dsTa-αCOP) targeting the ortholog αCOP gene of T. absoluta, no lethal nor sub-lethal effects were observed. These results indicate the compatibility of this biocontrol agent along with RNAi-mediated management in order to suppress T. absoluta efficiently in tomato crop. Abstract RNAi-mediated insect pest management has recently shown promising results against the most serious pest of tomato, the tomato leafminer, Tuta absoluta. This study aimed to investigate whether dsRNA (dsTa-αCOP) designed to target the T. absoluta-αCOP gene could cause adverse effects to its biocontrol agent, the mirid predator, Nesidiocoris tenuis. Oral exposure of N. tenuis to dsRNA (dsNt-αCOP) designed to target N. tenuis-αCOP resulted in a 61%, 67% and 55% reduction in its transcript level in comparison to the sucrose, dsGFP and dsTa-αCOP treatments, respectively. In addition, significantly higher mortality of 57% was recorded in dsNt-αCOP-treated N. tenuis when compared to the sucrose (7%), dsGFP (10%) and dsTa-αCOP (10%) treatments. Moreover, the predation rate of ~33–39 Ephestia kuehniella eggs per N. tenuis adult dramatically reduced to almost half in the surviving dsNt-αCOP-treated N. tenuis. This worst-case exposure scenario confirmed for the first time that the RNAi machinery is functional in this species and that the risk of exposure through the oral route is possible. In contrast, dsTa-αCOP did not cause any sub-lethal effects to N. tenuis upon oral exposure. Oral exposure of T. absoluta to dsTa-αCOP resulted in 50% mortality. In the context of a biosafety risk assessment of RNAi-mediated insect management, investigating the effects on non-target organisms is essential in order to include this method as part of an integrated pest management strategy. Based on our laboratory assays, RNAi-mediated control is compatible with the biological control of T. absoluta by its natural enemy N. tenuis, adding the RNAi approach in the armoire of integrated pest management of T. absoluta.
Collapse
Affiliation(s)
- Nomi Sarmah
- Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, 11855 Athens, Greece; (N.S.); (D.P.)
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 11855 Athens, Greece;
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 11855 Athens, Greece;
| | - Clauvis Nji Tizi Taning
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Correspondence: (C.N.T.T.); (G.S.); (A.V.)
| | - Dionysios Perdikis
- Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, 11855 Athens, Greece; (N.S.); (D.P.)
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Correspondence: (C.N.T.T.); (G.S.); (A.V.)
| | - Andreas Voloudakis
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 11855 Athens, Greece;
- Correspondence: (C.N.T.T.); (G.S.); (A.V.)
| |
Collapse
|
24
|
Roda A, Castillo J, Allen C, Urbaneja A, Pérez-Hedo M, Weihman S, Stansly PA. Biological Control Potential and Drawbacks of Three Zoophytophagous Mirid Predators against Bemisia tabaci in the United States. INSECTS 2020; 11:E670. [PMID: 33019565 PMCID: PMC7600543 DOI: 10.3390/insects11100670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 02/02/2023]
Abstract
Miridae (Hemiptera) of the tribe Dicyphini are important zoophytophagous predators use to control pest arthropods in vegetable crops. However, the risk that their herbivory may cause economic damage could hinder their application as useful biocontrol agents and may limit the likelihood they would meet regulatory requirements for importation. We conducted field cage studies to assess the predation capacity and tomato plant damage of three mirid species established in south USA, a known biocontrol agent (Nesidiocoris tenuis), and two native species (Macrolophus praeclarus and Engytatus modestus). All three species significantly reduced the number of whiteflies (Bemisia tabaci) on tomato plants compared to tomato plants without mirids. More damage, evaluated as the number of necrotic rings, was observed on tomato plants with E. modestus and N. tenuis compared to M. praeclarus. In our experiments that included sesame plants (Sesamum indicum) with tomato plants, mirid numbers increased despite a low number of prey, thus showing a benefit of the plant-feeding habit of these predators. USA's established mirids may therefore prove to be immediately available biological agents for the management of present and future tomato pests.
Collapse
Affiliation(s)
- Amy Roda
- United States Department of Agriculture, Animal Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Miami, FL 33158, USA; (C.A.); (S.W.)
| | - Jose Castillo
- Department of Entomology and Nematology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL 34142, USA; (J.C.); (P.A.S.)
| | - Carina Allen
- United States Department of Agriculture, Animal Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Miami, FL 33158, USA; (C.A.); (S.W.)
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Unidad de Entomología, Carretera CV-315, Km 10′7, 46113 Moncada, Spain; (A.U.); (M.P.-H.)
| | - Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Unidad de Entomología, Carretera CV-315, Km 10′7, 46113 Moncada, Spain; (A.U.); (M.P.-H.)
| | - Scott Weihman
- United States Department of Agriculture, Animal Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Miami, FL 33158, USA; (C.A.); (S.W.)
| | - Philip A. Stansly
- Department of Entomology and Nematology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL 34142, USA; (J.C.); (P.A.S.)
| |
Collapse
|