1
|
Yang SY, Lin YY, Hao Z, Li ZJ, Peng ZQ, Jin T. Bacterial communities in Asecodes hispinarum (Hymenoptera: Eulophidae) and its host Brontispa longissima (Coleoptera: Chrysomelidae), with comparison of Wolbachia dominance. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2314-2327. [PMID: 39495046 DOI: 10.1093/jee/toae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/05/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024]
Abstract
The endoparasitoid Asecodes hispinarum (Bouček) (Hymenoptera: Eulophidae) serves as an effective biological control agent against Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), a notorious palm pest. Endosymbionts found in parasitoids and their hosts have attracted significant attention due to their substantial influence on biocontrol efficacy. In this study, we employed 16S rRNA sequencing, polymerase chain reaction, and fluorescence in situ hybridization to assess the symbiotic bacteria composition, diversity, phylogeny, and localization in A. hispinarum and its host B. longissima. Our findings showed significant differences in the richness, diversity, and composition of symbiotic bacteria among different life stages of B. longissima. Notably, the bacterial richness, diversity, and composition of A. hispinarum was similar to that of B. longissima. Firmicutes and Proteobacteria were the dominant phyla, while Wolbachia was the dominant genera across the parasitoid and host. It was discovered for the first time that Wolbachia was present in A. hispinarum with a high infection rate at ≥ 96.67%. Notably, the Wolbachia strain in A. hispinarum was placed in supergroup A, whereas it was categorized under supergroup B in B. longissima. Furthermore, Wolbachia is concentrated in the abdomen of A. hispinarum, with particularly high levels observed in the ovipositors of female adults. These findings highlight the composition and diversity of symbiotic bacteria in both A. hispinarum and its host B. longissima, providing a foundation for the development of population regulation strategies targeting B. longissima.
Collapse
Affiliation(s)
- Sheng-Yuan Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests of Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yu-Ying Lin
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests of Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zheng Hao
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests of Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zi-Jie Li
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests of Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zheng-Qiang Peng
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests of Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tao Jin
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests of Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
2
|
Bai J, Zuo Z, DuanMu H, Li M, Tong H, Mei Y, Xiao Y, He K, Jiang M, Wang S, Li F. Endosymbiont Tremblaya phenacola influences the reproduction of cotton mealybugs by regulating the mechanistic target of rapamycin pathway. THE ISME JOURNAL 2024; 18:wrae052. [PMID: 38519099 PMCID: PMC11014885 DOI: 10.1093/ismejo/wrae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 03/24/2024]
Abstract
The intricate evolutionary dynamics of endosymbiotic relationships result in unique characteristics among the genomes of symbionts, which profoundly influence host insect phenotypes. Here, we investigated an endosymbiotic system in Phenacoccus solenopsis, a notorious pest of the subfamily Phenacoccinae. The endosymbiont, "Candidatus Tremblaya phenacola" (T. phenacola PSOL), persisted throughout the complete life cycle of female hosts and was more active during oviposition, whereas there was a significant decline in abundance after pupation in males. Genome sequencing yielded an endosymbiont genome of 221.1 kb in size, comprising seven contigs and originating from a chimeric arrangement between betaproteobacteria and gammaproteobacteria. A comprehensive analysis of amino acid metabolic pathways demonstrated complementarity between the host and endosymbiont metabolism. Elimination of T. phenacola PSOL through antibiotic treatment significantly decreased P. solenopsis fecundity. Weighted gene coexpression network analysis demonstrated a correlation between genes associated with essential amino acid synthesis and those associated with host meiosis and oocyte maturation. Moreover, altering endosymbiont abundance activated the host mechanistic target of rapamycin pathway, suggesting that changes in the amino acid abundance affected the host reproductive capabilities via this signal pathway. Taken together, these findings demonstrate a mechanism by which the endosymbiont T. phenacola PSOL contributed to high fecundity in P. solenopsis and provide new insights into nutritional compensation and coevolution of the endosymbiotic system.
Collapse
Affiliation(s)
- Jianyang Bai
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhangqi Zuo
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haonan DuanMu
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Meizhen Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haojie Tong
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yang Mei
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yiqi Xiao
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Kang He
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mingxing Jiang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuping Wang
- Technical Centre for Animal, Plant & Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Izraeli Y, Lepetit D, Atias S, Mozes-Daube N, Wodowski G, Lachman O, Luria N, Steinberg S, Varaldi J, Zchori-Fein E, Chiel E. Genomic characterization of viruses associated with the parasitoid Anagyrus vladimiri (Hymenoptera: Encyrtidae). J Gen Virol 2022; 103. [PMID: 36748430 DOI: 10.1099/jgv.0.001810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Knowledge on symbiotic microorganisms of insects has increased dramatically in recent years, yet relatively little data are available regarding non-pathogenic viruses. Here we studied the virome of the parasitoid wasp Anagyrus vladimiri Triapitsyn (Hymenoptera: Encyrtidae), a biocontrol agent of mealybugs. By high-throughput sequencing of viral nucleic acids, we revealed three novel viruses, belonging to the families Reoviridae [provisionally termed AnvRV (Anagyrus vladimiri reovirus)], Iflaviridae (AnvIFV) and Dicistroviridae (AnvDV). Phylogenetic analysis further classified AnvRV in the genus Idnoreovirus, and AnvDV in the genus Triatovirus. The genome of AnvRV comprises 10 distinct genomic segments ranging in length from 1.5 to 4.2 kb, but only two out of the 10 ORFs have a known function. AnvIFV and AnvDV each have one polypeptide ORF, which is typical of iflaviruses but very un-common among dicistroviruses. Five conserved domains were found along both the ORFs of those two viruses. AnvRV was found to be fixed in an A. vladimiri population that was obtained from a mass rearing facility, whereas its prevalence in field-collected A. vladimiri was ~15 %. Similarly, the prevalence of AnvIFV and AnvDV was much higher in the mass rearing population than in the field population. The presence of AnvDV was positively correlated with the presence of Wolbachia in the same individuals. Transmission electron micrographs of females' ovaries revealed clusters and viroplasms of reovirus-like particles in follicle cells, suggesting that AnvRV is vertically transmitted from mother to offspring. AnvRV was not detected in the mealybugs, supporting the assumption that this virus is truly associated with the wasps. The possible effects of these viruses on A. vladimiri's biology, and on biocontrol agents in general, are discussed. Our findings identify RNA viruses as potentially involved in the multitrophic system of mealybugs, their parasitoids and other members of the holobiont.
Collapse
Affiliation(s)
- Yehuda Izraeli
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.,Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - David Lepetit
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, Villeurbanne, France
| | - Shir Atias
- Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Netta Mozes-Daube
- Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Gal Wodowski
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.,Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Oded Lachman
- Department of Plant Pathology and Weed Research, ARO, Volcani Research Center, Rishon LeZion, Israel
| | - Neta Luria
- Department of Plant Pathology and Weed Research, ARO, Volcani Research Center, Rishon LeZion, Israel
| | | | - Julien Varaldi
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, Villeurbanne, France
| | - Einat Zchori-Fein
- Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Elad Chiel
- Department of Biology and Environment, University of Haifa - Oranim, Tivon, Israel
| |
Collapse
|
4
|
Favoreto AL, Carvalho VR, Domingues MM, Ribeiro MF, Cavallini G, Lawson SA, Silva WM, Zanuncio JC, Wilcken CF. Wolbachia pipientis: first detection in populations of Glycaspis brimblecombei (Hemiptera: Aphalaridae) and Psyllaephagus bliteus (Hymenoptera: Encyrtidae) in Brazil. BRAZ J BIOL 2022; 82:e264475. [PMID: 36169529 DOI: 10.1590/1519-6984.264475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
The sucking insect, Glycaspis brimblecombei Moore (Hemiptera: Aphalaridae), is originally from Australia and reduces the productivity of Eucalyptus crops. The parasitoid Psyllaephagus bliteus Riek (Hymenoptera: Encyrtidae) is the main agent used in the integrated management of G. brimblecombei. Endosymbionts, in insects, are important in the adaptation and protection of their hosts to the environment. The intracellular symbionts Wolbachia, induces reproductive changes such as cytoplasmic incompatibility, feminization, male death and parthenogenesis. The objective of this study was to report the first record of Wolbachia pipientis in populations of G. brimblecombei and of its parasitoid P. bliteus in the field in Brazil. Branches with adults of G. brimblecombei and P. bliteus were collected from eucalyptus trees in commercial farms in six Brazilian states and, after emergence, the insects obtained were frozen at -20 °C. Polymerase chain reaction (PCR) was performed to detect the Wolbachia endosymbiont. Wolbachia pipientis was identified in individuals of G. brimblecombei and its parasitoid P. bliteus from populations of the counties of Agudos and Mogi-Guaçu (São Paulo State), Itamarandiba (Minas Gerais State) and São Jerônimo da Serra (Paraná State) in Brazil.
Collapse
Affiliation(s)
- A L Favoreto
- Universidade Estadual Paulista - UNESP, Faculdade de Ciências Agronômicas, Departamento de Proteção Vegetal, Botucatu, SP, Brasil
| | - V R Carvalho
- Universidade Estadual Paulista - UNESP, Faculdade de Ciências Agronômicas, Departamento de Proteção Vegetal, Botucatu, SP, Brasil
| | - M M Domingues
- Universidade Estadual Paulista - UNESP, Faculdade de Ciências Agronômicas, Departamento de Proteção Vegetal, Botucatu, SP, Brasil
| | - M F Ribeiro
- Universidade Estadual Paulista - UNESP, Faculdade de Ciências Agronômicas, Departamento de Proteção Vegetal, Botucatu, SP, Brasil
| | - G Cavallini
- Universidade Estadual Paulista - UNESP, Faculdade de Ciências Agronômicas, Departamento de Proteção Vegetal, Botucatu, SP, Brasil
| | - S A Lawson
- University of the Sunshine Coast, Department of Agriculture, Fisheries and Forestry Queensland, Brisbane, Australia
| | - W M Silva
- Universidade Federal de Viçosa - UFV, Departamento de Engenharia Florestal, Viçosa, MG, Brasil
| | - J C Zanuncio
- Universidade Federal de Viçosa - UFV, Departamento de Entomologia/BIOAGRO, Viçosa, MG, Brasil
| | - C F Wilcken
- Universidade Estadual Paulista - UNESP, Faculdade de Ciências Agronômicas, Departamento de Proteção Vegetal, Botucatu, SP, Brasil
| |
Collapse
|
5
|
Bel Mokhtar N, Catalá-Oltra M, Stathopoulou P, Asimakis E, Remmal I, Remmas N, Maurady A, Britel MR, García de Oteyza J, Tsiamis G, Dembilio Ó. Dynamics of the Gut Bacteriome During a Laboratory Adaptation Process of the Mediterranean Fruit Fly, Ceratitis capitata. Front Microbiol 2022; 13:919760. [PMID: 35847076 PMCID: PMC9283074 DOI: 10.3389/fmicb.2022.919760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Laboratory adaptation process used in sterile insect technique (SIT) programs can exert a significant impact on the insect-gut microbiome relationship, which may negatively impact the quality and performance of the fly. In the present study, changes in the gut microbiota that occur through laboratory adaptation of two Ceratitis capitata populations were investigated: Vienna 8 genetic sexing strain (GSS), a long-established control line, and a wild population recently introduced to laboratory conditions. The bacterial profiles were studied for both strains using amplicon sequencing of the 16S rRNA V3-V4 hypervariable region in larvae and in the gastrointestinal tract of teneral (1 day) and adults (5 and 15 days) reared under laboratory conditions for 14 generations (F0-F13). Findings demonstrated the development of distinct bacterial communities across the generations with differences in the bacterial composition, suggesting a strong impact of laboratory adaptation on the fly bacteriome. Moreover, different bacterial profiles were observed between wild and Vienna 8 FD-GSS displaying different patterns between the developmental stages. Proteobacteria, mainly members of the Enterobacteriaceae family, represented the major component of the bacterial community followed by Firmicutes (mainly in Vienna 8 FD-GSS adults) and Chlamydiae. The distribution of these communities is dynamic across the generations and seems to be strain- and age-specific. In the Vienna 8 FD-GSS population, Providencia exhibited high relative abundance in the first three generations and decreased significantly later, while Klebsiella was relatively stable. In the wild population, Klebsiella was dominant across most of the generations, indicating that the wild population was more resistant to artificial rearing conditions compared with the Vienna 8 FD-GSS colony. Analysis of the core bacteriome revealed the presence of nine shared taxa between most of the examined medfly samples including Klebsiella, Providencia, Pantoea, and Pseudomonas. In addition, the operational taxonomic unit co-occurrence and mutual exclusion networks of the wild population indicated that most of the interactions were classified as co-presence, while in the Vienna 8 FD-GSS population, the number of mutual exclusions and co-presence interactions was equally distributed. Obtained results provided a thorough study of the dynamics of gut-associated bacteria during the laboratory adaptation of different Ceratitis capitata populations, serving as guidance for the design of colonization protocols, improving the effectiveness of artificial rearing and the SIT application.
Collapse
Affiliation(s)
- Naima Bel Mokhtar
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | - Marta Catalá-Oltra
- Empresa de Transformación Agraria S.A., S.M.E., M.P. (TRAGSA), Paterna, Spain
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Imane Remmal
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | - Nikolaos Remmas
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| | - Amal Maurady
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
- Faculty of Sciences and Technology of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | - Mohammed Reda Britel
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | | | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Óscar Dembilio
- Empresa de Transformación Agraria S.A., S.M.E., M.P. (TRAGSA), Paterna, Spain
| |
Collapse
|
6
|
Caragata EP, Dutra HLC, Sucupira PHF, Ferreira AGA, Moreira LA. Wolbachia as translational science: controlling mosquito-borne pathogens. Trends Parasitol 2021; 37:1050-1067. [PMID: 34303627 DOI: 10.1016/j.pt.2021.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 01/23/2023]
Abstract
In this review we examine how exploiting the Wolbachia-mosquito relationship has become an increasingly popular strategy for controlling arbovirus transmission. Field deployments of Wolbachia-infected mosquitoes have led to significant decreases in dengue virus incidence via high levels of mosquito population suppression and replacement, emphasizing the success of Wolbachia approaches. Here, we examine how improved knowledge of Wolbachia-host interactions has provided key insight into the mechanisms of the essential phenotypes of pathogen blocking and cytoplasmic incompatibility. And we discuss recent studies demonstrating that extrinsic factors, such as ambient temperature, can modulate Wolbachia density and maternal transmission. Finally, we assess the prospects of using Wolbachia to control other vectors and agricultural pest species.
Collapse
Affiliation(s)
- Eric P Caragata
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, USA.
| | - Heverton L C Dutra
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Pedro H F Sucupira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou - Fiocruz, Belo Horizonte, MG, Brazil
| | - Alvaro G A Ferreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou - Fiocruz, Belo Horizonte, MG, Brazil
| | - Luciano A Moreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou - Fiocruz, Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Corrigendum: Wolbachia influence on the fitness of Anagyrus vladimiri (Hymenoptera: Encyrtidae), a bio-control agent of mealybugs. PEST MANAGEMENT SCIENCE 2021; 77:3025-3025. [PMID: 33555087 DOI: 10.1002/ps.6316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|