1
|
Harrison C, Boonham N, Macarthur R, Parr MD, van den Berg F. Appropriate sampling to aid on-farm assessments of the haplotype composition of Zymoseptoria tritici populations. PEST MANAGEMENT SCIENCE 2024. [PMID: 39390891 DOI: 10.1002/ps.8454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Zymoseptoria tritici causes Septoria tritici blotch (STB), which is the biggest threat to wheat in the UK. Azole fungicides have been used since the 1980s to control STB, but resistance to these chemicals is now widespread. The main resistance mechanism is based on the accumulation of CYP51 mutations, with 33 mutations reported. Hence, farmers need an accurate estimate of the haplotype composition of Z. tritici populations to develop effective fungicide treatments and resistance management. RESULTS Isolates from Z. tritici lesions were collected from three fields across three commercial farms using two sampling approaches. Analysis of the isolate sequences revealed that the number of distinct haplotypes and the haplotype composition of the most dominant haplotypes varied only between and not within farms. Conventional W-shaped and point sampling both found the same percentage of distinct haplotypes and frequencies of the six most dominant haplotypes. CONCLUSION The results from this survey suggest that farm-resistance-management strategies should be based on farm-specific rather than national data, and that sampling within a single field is sufficient. W-shaped sampling is often recommended in sampling approaches, but this survey finds no evidence of this approach being more appropriate for detecting a greater percentage of distinct haplotypes which may aid the discovery of potential new resistance threats. © 2024 Fera Science Ltd. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Neil Boonham
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Roy Macarthur
- Plants Program, Fera Science Ltd., York Biotech Campus, York, UK
| | | | - Femke van den Berg
- Plants Program, Fera Science Ltd., York Biotech Campus, York, UK
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Wang M, Li G, Zhou L, Hao Y, Wang L, Mao X, Zhang G, Zhao C. Design, synthesis and bioactivity of a new class of antifungal amino acid-directed phthalide compounds. PEST MANAGEMENT SCIENCE 2024; 80:3182-3193. [PMID: 38358013 DOI: 10.1002/ps.8028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Peanut southern blight disease, caused by Sclerotium rolfsii, is a destructive soil-borne fungal disease. The current control measures, which mainly employ succinate dehydrogenase inhibitors, are prone to resistance and toxicity to non-target organisms. As a result, it is necessary to explore the potential of eco-friendly fungicides for this disease. RESULTS Fourteen novel phthalide compounds incorporating amino acid moieties were designed and synthesized. The in vitro activity of analog A1 [half maximal effective concentration (EC50) = 332.21 mg L-1] was slightly lower than that of polyoxin (EC50 = 284.32 mg L-1). It was observed that on the seventh day, the curative activity of A1 at a concentration of 600.00 mg L-1 was 57.75%, while the curative activity of polyoxin at a concentration of 300.00 mg L-1 was 42.55%. These results suggested that our compound exhibited in vivo activity. Peanut plants treated with A1 showed significant agronomic improvements compared to the untreated control. Several compounds in this series exhibited superior root absorption and conduction in comparison to the endothermic fungicide thifluzamide. The growth promotion and absorption-conduction experiments demonstrated the reason for the superior in vivo activity of the target compound. Cytotoxic assays have demonstrated that this series of targeted compounds exhibit low toxicity levels toward human lo2 liver cells. CONCLUSION Our results provide a new strategy for the design and synthesis of novel green compounds. Furthermore, the target compound A1 can serve as a lead for further development of green fungicides. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meizi Wang
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Guangyao Li
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhou
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Youwu Hao
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Longfei Wang
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xuewei Mao
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Guoyan Zhang
- Plant Protection and Quarantine Station of Henan Province, Zhengzhou, China
| | - Chenxiang Zhao
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Hamilton R, Jacobs JL, McCoy AG, Kelly HM, Bradley CA, Malvick DK, Rojas JA, Chilvers MI. Multistate Sensitivity Monitoring of Fusarium virguliforme to the SDHI Fungicides Fluopyram and Pydiflumetofen in the United States. PLANT DISEASE 2024; 108:1602-1611. [PMID: 38127633 DOI: 10.1094/pdis-11-23-2465-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Sudden death syndrome (SDS), caused by Fusarium virguliforme, is an important yield-limiting disease of soybean (Glycine max). From 1996 to 2022, cumulative yield losses attributed to SDS in North America totaled over 25 million metric tons, which was valued at over US $7.8 billion. Seed treatments are widely used to manage SDS by reducing early season soybean root infection by F. virguliforme. Fluopyram (succinate dehydrogenase inhibitor [SDHI] - FRAC 7), a fungicide seed treatment for SDS management, has been registered for use on soybean in the United States since 2014. A baseline sensitivity study conducted in 2014 evaluated 130 F. virguliforme isolates collected from five states to fluopyram in a mycelial growth inhibition assay and reported a mean EC50 of 3.35 mg/liter. This baseline study provided the foundation for the objectives of this research: to detect any statistically significant change in fluopyram sensitivity over time and geographical regions within the United States and to investigate sensitivity to the fungicide pydiflumetofen. We repeated fluopyram sensitivity testing on a panel of 80 historical F. virguliforme isolates collected from 2006 to 2013 (76 of which were used in the baseline study) and conducted testing on 123 contemporary isolates collected from 2016 to 2022 from 11 states. This study estimated a mean absolute EC50 of 3.95 mg/liter in isolates collected from 2006 to 2013 and a mean absolute EC50 of 4.19 mg/liter in those collected in 2016 to 2022. There was no significant change in fluopyram sensitivity (P = 0.1) identified between the historical and contemporary isolates. A subset of 23 isolates, tested against pydiflumetofen under the same conditions, estimated an absolute mean EC50 of 0.11 mg/liter. Moderate correlation was detected between fluopyram and pydiflumetofen sensitivity estimates (R = 0.53; P < 0.001). These findings enable future fluopyram and pydiflumetofen resistance monitoring and inform current soybean SDS management strategies in a regional and national context.
Collapse
Affiliation(s)
- Ryan Hamilton
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Janette L Jacobs
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Austin G McCoy
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Heather M Kelly
- Department of Entomology and Plant Pathology, The University of Tennessee Institute of Agriculture, Jackson, TN 38301
| | - Carl A Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445
| | - Dean K Malvick
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - J Alejandro Rojas
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701
| | - Martin I Chilvers
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
4
|
Zulak KG, Farfan-Caceres L, Knight NL, Lopez-Ruiz FJ. Exploiting long read sequencing to detect azole fungicide resistance mutations in Pyrenophora teres using unique molecular identifiers. Sci Rep 2024; 14:6285. [PMID: 38491078 PMCID: PMC10943121 DOI: 10.1038/s41598-024-56801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Resistance to fungicides is a global challenge as target proteins under selection can evolve rapidly, reducing fungicide efficacy. To manage resistance, detection technologies must be fast and flexible enough to cope with a rapidly increasing number of mutations. The most important agricultural fungicides are azoles that target the ergosterol biosynthetic enzyme sterol 14α-demethylase (CYP51). Mutations associated with azole resistance in the Cyp51 promoter and coding sequence can co-occur in the same allele at different positions and codons, increasing the complexity of resistance detection. Resistance mutations arise rapidly and cannot be detected using traditional amplification-based methods if they are not known. To capture the complexity of azole resistance in two net blotch pathogens of barley we used the Oxford Nanopore MinION to sequence the promoter and coding sequence of Cyp51A. This approach detected all currently known mutations from biologically complex samples increasing the simplicity of resistance detection as multiple alleles can be profiled in a single assay. With the mobility and decreasing cost of long read sequencing, we demonstrate this approach is broadly applicable for characterizing resistance within known agrochemical target sites.
Collapse
Affiliation(s)
- Katherine G Zulak
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
| | - Lina Farfan-Caceres
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Noel L Knight
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Francisco J Lopez-Ruiz
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|
5
|
Miao J, Li Y, Hu S, Li G, Gao X, Dai T, Liu X. Resistance risk, resistance mechanism and the effect on DON production of a new SDHI fungicide cyclobutrifluram in Fusarium graminearum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105795. [PMID: 38458689 DOI: 10.1016/j.pestbp.2024.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 03/10/2024]
Abstract
Fusarium head blight in wheat is caused by Fusarium graminearum, resulting in significant yield losses and grain contamination with deoxynivalenol (DON), which poses a potential threat to animal health. Cyclobutrifluram, a newly developed succinate dehydrogenase inhibitor, has shown excellent inhibition of Fusarium spp. However, the resistance risk of F. graminearum to cyclobutrifluram and the molecular mechanism of resistance have not been determined. In this study, we established the average EC50 of a range of F. graminearum isolates to cyclobutrifluram to be 0.0110 μg/mL. Six cyclobutrifluram-resistant mutants were obtained using fungicide adaptation. All mutants exhibited impaired fitness relative to their parental isolates. This was evident from measurements of mycelial growth, conidiation, conidial germination, virulence, and DON production. Interestingly, cyclobutrifluram did not seem to affect the DON production of either the sensitive isolates or the resistant mutants. Furthermore, a positive cross-resistance was observed between cyclobutrifluram and pydiflumetofen. These findings suggest that F. graminearum carries a moderate to high risk of developing resistance to cyclobutrifluram. Additionally, point mutations H248Y in FgSdhB and A73V in FgSdhC1 of F. graminearum were observed in the cyclobutrifluram-resistant mutants. Finally, an overexpression transformation assay and molecular docking indicated that FgSdhBH248Y or FgSdhC1A73V could confer resistance of F. graminearum to cyclobutrifluram.
Collapse
Affiliation(s)
- Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Yiwen Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Shiping Hu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Guixiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Xuheng Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Tan Dai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China.
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China; Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China.
| |
Collapse
|
6
|
Kildea S, Hellin P, Heick TM, Byrne S, Hutton F. Mefentrifluconazole sensitivity amongst European Zymoseptoria tritici populations and potential implications for its field efficacy. PEST MANAGEMENT SCIENCE 2024; 80:533-543. [PMID: 37759353 DOI: 10.1002/ps.7795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Septoria tritici blotch caused by Zymoseptoria tritici continues to be one of the most economically destructive diseases of winter wheat in north-western Europe. Control is heavily reliant on the application of fungicides, in particular those belonging to the azole group. Here we describe the sensitivity of European Z. tritici populations to the novel azole mefentrifluconazole and the analysis of associated mechanisms of resistance. RESULTS A wide range of sensitivity to mefentrifluconazole was observed amongst the Z. tritici collections examined, with strong cross-resistances also observed between mefentrifluconazole, difenoconazole and tebuconazole. Overall, the Irish population displayed the lowest sensitivity to all azoles tested. Further detailed analysis of the Irish population in 2021 demonstrated differences in sensitivity occurred between sampling sites, with these differences associated with the frequencies of key resistance mechanisms (CYP51 alterations and MFS1 promoter inserts linked to overexpression). Under glasshouse conditions reductions in the efficacy of mefentrifluconazole were observed towards those strains exhibiting the lowest in vitro sensitivities. CONCLUSIONS This study demonstrates that a large range of sensitivity to mefentrifluconazole exists in European Z. tritici populations. Those strains exhibiting the lowest sensitivity to the azoles tested had the most complex CYP51 haplotypes in combination with the 519 bp insert, associated with enhanced activity of MFS1. The future use of mefentrifluconazole should take these findings into consideration to minimise the selection of these strains. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Steven Kildea
- Teagasc, The Agriculture and Food Development Authority, Carlow, Ireland
| | - Pierre Hellin
- Plant and Forest Health Unit, Walloon Agricultural Research Center, Gembloux, Belgium
| | - Thies M Heick
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Stephen Byrne
- Teagasc, The Agriculture and Food Development Authority, Carlow, Ireland
| | - Fiona Hutton
- Teagasc, The Agriculture and Food Development Authority, Carlow, Ireland
| |
Collapse
|
7
|
Li M, Wang W, Cheng X, Wang Y, Chen Y, Gong J, Chang X, Lv X. Design, Synthesis, and Evaluation of Antifungal Bioactivity of Novel Pyrazole Carboxamide Thiazole Derivatives as SDH Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37463492 DOI: 10.1021/acs.jafc.3c02671] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Agricultural production is seriously threatened by plant pathogens. The development of new fungicides with high efficacy and low toxicity is urgently needed. In this study, a series of pyrazole carboxamide thiazole derivatives were designed, synthesized, and evaluated for their antifungal activities against nine plant pathogens in vitro. Bioassay results showed that most compounds (3i, 5i, 6i, 7i, 9i, 12i, 16i, 19i, and 23i) exhibited good antifungal activities against Valsa mali. In particular, compounds 6i and 19i exhibited better antifungal activities against Valsa mali with EC50 values of 1.77 and 1.97 mg/L, respectively, than the control drug boscalid (EC50 = 9.19 mg/L). Additionally, compound 23i exhibited excellent inhibitory activity against Rhizoctonia solani, with an EC50 value of 3.79 mg/L. Compound 6i at 40 mg/L showed a satisfactory in vivo protective effect against Valsa mali. Scanning electron microscopy analyses revealed that compound 6i could significantly damage the surface morphology to interfere with the growth of Valsa mali. In molecular docking, the results showed that compound 6i interacts with TRP O: 173, SER P: 39, TYR Q: 58, and ARG P: 43 of succinate dehydrogenase (SDH) through hydrogen bonding and σ-π interaction, and its binding mode is similar to that of boscalid and SDH. The enzyme activity experiment also further verified its action mode. Our studies suggested that pyrazole carboxamide thiazole derivative 6i provided a valuable reference for the further development of succinate dehydrogenase inhibitors.
Collapse
Affiliation(s)
- Meng Li
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Weiwei Wang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Yunxiao Wang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Yao Chen
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Jiexiu Gong
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xihao Chang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
8
|
Lavrukaitė K, Heick TM, Ramanauskienė J, Armonienė R, Ronis A. Fungicide sensitivity levels in the Lithuanian Zymoseptoria tritici population in 2021. FRONTIERS IN PLANT SCIENCE 2023; 13:1075038. [PMID: 36714691 PMCID: PMC9875010 DOI: 10.3389/fpls.2022.1075038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Zymoseptoria tritici causes the disease known as septoria leaf blotch in winter wheat and is a major factor in yield loss worldwide. Farmers are inclined to use fungicides to protect their crops; however, the efficacy of these measures is rapidly decreasing due to the natural mechanisms of mutation emergence in pathogen populations. Increasing fungicide resistance is being recorded worldwide, therefore, screening of the current situation in Lithuania is essential to determine the subsequent steps of crop protection strategies. In this study, in vitro fungicide sensitivity tests, mutation detection, and field experiments were carried out. The mean EC50 values for prothioconazole-desthio and mefentrifluconazole were 0.14 and 0.28 mg/l, respectively. Increased frequency of the mutation S524T, linked to DMIs resistance, was observed. Results revealed that the dominant point mutation in the gene CYP51 was I381V, and the most frequent CYP51 haplotype was D13 (V136C, I381V, Y461H, S524T). The mutation G143A, linked to QoI resistance, was detected in ¾ of the population. Mutations conferring resistance to SDHIs were not detected in single pycnidium isolates. Two-year field experiments likewise showed no decline in field efficacy of SDHI fungicide in Lithuania. Moreover, the baseline sensitivity of the Lithuanian Z. tritici population to QiI fungicide fenpicoxamid was established. The findings of this study provide an update on the current status of fungicide resistance in the Lithuanian Z. tritici population.
Collapse
Affiliation(s)
- Karolina Lavrukaitė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Akademija, Lithuania
| | - Thies M. Heick
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Jūratė Ramanauskienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Akademija, Lithuania
| | - Rita Armonienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Akademija, Lithuania
| | - Antanas Ronis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Akademija, Lithuania
| |
Collapse
|
9
|
Jørgensen LN, Matzen N, Heick TM, O’Driscoll A, Clark B, Waite K, Blake J, Glazek M, Maumene C, Couleaud G, Rodemann B, Weigand S, Bataille C, R B, Hellin P, Kildea S, Stammler G. Shifting sensitivity of septoria tritici blotch compromises field performance and yield of main fungicides in Europe. FRONTIERS IN PLANT SCIENCE 2022; 13:1060428. [PMID: 36483948 PMCID: PMC9723467 DOI: 10.3389/fpls.2022.1060428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Septoria tritici blotch (STB; Zymoseptoria tritici) is a severe leaf disease on wheat in Northern Europe. Fungicide resistance in the populations of Z. tritici is increasingly challenging future control options. Twenty-five field trials were carried out in nine countries across Europe from 2019 to 2021 to investigate the efficacy of specific DMI and SDHI fungicides against STB. During the test period, two single DMIs (prothioconazole and mefentrifluconazole) and four different SDHIs (fluxapyroxad, bixafen, benzovindiflupyr and fluopyram) along with different co-formulations of DMIs and SDHIs applied at flag leaf emergence were tested. Across all countries, significant differences in azole performances against STB were seen; prothioconazole was outperformed in all countries by mefentrifluconazole. The effects also varied substantially between the SDHIs, with fluxapyroxad providing the best efficacy overall, while the performance of fluopyram was inferior to other SDHIs. In Ireland and the UK, the efficacy of SDHIs was significantly lower compared with results from continental Europe. This reduction in performances from both DMIs and SDHIs was reflected in yield responses and also linked to decreased sensitivity of Z. tritici isolates measured as EC50 values. A clear and significant gradient in EC50 values was seen across Europe. The lower sensitivity to SDHIs in Ireland and the UK was coincident with the prevalence of SDH-C-alterations T79N, N86S, and sporadically of H152R. The isolates' sensitivity to SDHIs showed a clear cross-resistance between fluxapyroxad, bixafen, benzovindiflupyr and fluopyram, although the links with the latter were less apparent. Co-formulations of DMIs + SDHIs performed well in all trials conducted in 2021. Only minor differences were seen between fluxapyroxad + mefentrifluconazole and bixafen + fluopyram + prothioconazole; the combination of benzovindiflupyr + prothioconazole gave an inferior performance at some sites. Fenpicoxamid performed in line with the most effective co-formulations. This investigation shows a clear link between reduced field efficacy by solo SDHIs as a result of increasing problems with sensitivity shifting and the selection of several SDH-C mutations. The presented data stress the need to practice anti-resistance strategies to delay further erosion of fungicide efficacy.
Collapse
Affiliation(s)
| | - Niels Matzen
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | | | | | | | | | | | - Claude Maumene
- Arvalis Institut du végétal, Station Expérimentale, Boigneville, France
| | - Gilles Couleaud
- Arvalis Institut du végétal, Station Expérimentale, Boigneville, France
| | | | - Stephan Weigand
- Institut für Pflanzenschutz, Bayerische Landesanstalt für Landwirtschaft, Freising-Weihenstephan, Germany
| | | | - Bán R
- Institute of Plant Protection, Department of Integrated Plant Protection, Hungarian University of Agriculture and Life Sciences (MATE), Gödöllő, Hungary
| | - Pierre Hellin
- CRA-W, Plant and Forest Health Unit, Gembloux, Belgium
| | | | | |
Collapse
|
10
|
Cheng X, Xu Z, Luo H, Chang X, Lv X. Design, Synthesis, and Biological Evaluation of Novel Pyrazol-5-yl-benzamide Derivatives Containing Oxazole Group as Potential Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13839-13848. [PMID: 36270026 DOI: 10.1021/acs.jafc.2c04708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A series of pyrazol-5-yl-benzamide derivatives containing the oxazole group were designed and synthesized as potential SDH inhibitors. According to the results of the bioassays, most target compounds displayed moderate-to-excellent in vitro antifungal activities against Valsa mali, Sclerotinia scleotiorum, Alternaria alternata, and Botrytis cinerea. Among them, compounds C13, C14, and C16 exhibited more excellently inhibitory activities against S. sclerotiorum than boscalid (EC50 = 0.96 mg/L), with EC50 values of 0.69, 0.26, and 0.95 mg/L, respectively. In vivo experiments on rape leaves and cucumber leaves showed that compounds C13 and C14 exhibited considerable protective effects against S. sclerotiorum than boscalid. SEM analysis indicated that compounds C13 and C14 significantly destroyed the typical structure and morphology of S. scleotiorum hyphae. In the respiratory inhibition effect assays, compounds C13 (28.0%) and C14 (33.9%) exhibited a strong inhibitory effect on the respiration rate of S. sclerotiorum mycelia, which was close to boscalid (30.6%). The results of molecular docking indicated that compounds C13 and C14 could form strong interactions with the key residues TRP O:173, ARG P:43, TYR Q:58, and MET P:43 of the SDH. Furthermore, the antifungal mechanism of these derivatives was demonstrated by the SDH enzymatic inhibition assay. These results demonstrate that compounds C13 and C14 can be developed into novel SDH inhibitors for crop protection.
Collapse
Affiliation(s)
- Xiang Cheng
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Zonghan Xu
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Huisheng Luo
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xihao Chang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
11
|
Kildea S, Hellin P, Heick TM, Hutton F. Baseline sensitivity of European Zymoseptoria tritici populations to the complex III respiration inhibitor fenpicoxamid. PEST MANAGEMENT SCIENCE 2022; 78:4488-4496. [PMID: 35797347 PMCID: PMC9796354 DOI: 10.1002/ps.7067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Fenpicoxamid is a recently developed fungicide belonging to the quinone inside inhibitor (QiI) group. This is the first fungicide within this group to be active against the Zymoseptoria tritici, which causes Septoria tritici blotch on wheat. The occurrence of pre-existing resistance mechanisms was monitored, using sensitivity assays and Illumina sequencing, in Z. tritici populations sampled in multiple European countries before the introduction of fenpicoxamid. RESULTS Although differences in sensitivity to all three fungicides tested (fenpicoxamid, fentin chloride and pyraclostrobin) existed between the isolate collections, no alterations associated with QiI resistance were detected. Among the isolates, a range in sensitivity to fenpicoxamid was observed (ratio between most sensitive/least sensitive = 53.1), with differences between the most extreme isolates when tested in planta following limited fenpicoxamid treatment. Sensitivity assays using fentin chloride suggest some of the observed differences in fenpicoxamid sensitivity are associated with multi-drug resistance. Detailed monitoring of the wider European population using Illumina-based partial sequencing of the Z. tritici also only detected the presence of G143A, with differences in frequencies of this alteration observed across the region. CONCLUSIONS This study provides a baseline sensitivity for European Z. tritici populations to fenpicoxamid. Target-site resistance appears to be limited or non-existing in European Z. tritici populations prior to the introduction of fenpicoxamid. Non-target site resistance mechanisms exist, but their impact in the field is predicted to be limited. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Steven Kildea
- Teagasc, The Agriculture and Food Development AuthorityCarlowIreland
| | - Pierre Hellin
- Plant and Forest Health Unit, Walloon Agricultural Research CenterGemblouxBelgium
| | - Thies M. Heick
- Department of AgroecologyAarhus UniversitySlagelseDenmark
| | - Fiona Hutton
- Teagasc, The Agriculture and Food Development AuthorityCarlowIreland
| |
Collapse
|
12
|
Ke D, Meng H, Lei W, Zheng Y, Li L, Wang M, Zhong R, Wang M, Chen F. Prevalence of H6Y mutation in β-tubulin causing thiophanate-methyl resistant in Monilinia fructicola from Fujian, China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105262. [PMID: 36464367 DOI: 10.1016/j.pestbp.2022.105262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 06/17/2023]
Abstract
Brown rot disease broke out in stone fruit orchards of Fujian, China in 2019, despite pre-harvest application of methyl benzimidazole carbamate (MBC). To determine the reason, a total of 44 Monilinia fructicola strains were collected from nectarine, plum and peach fruits in this study, among which 79.5% strains were resistant to thiophanate-methyl, indicated by discriminatory dose of 5 μg/mL. The resistance of these strains was confirmed by treating detached peach fruit with label rates of formulated thiophanate-methyl which only completely inhibit infection of the sensitive strains, but not the resistant strains. Further analysis of the mechanism of MBC resistance revealed that all resistant strains carry a H6Y mutation in β-tubulin protein Tub2, which was only reported previously in the M. fructicola strains from California, USA, and do not display obvious fitness penalties, as no significant defects in mycelial growth rate, sporulation, conidia germination, aggressiveness on detached peach fruit and temperature sensitivity was detected. In addition, we found that diethofencarb, the agent for managing MBC-resistance strains, was unable to inhibit growth of the H6Y strains. Taken together, our study, for the first time, identified a mutation form of H6Y in the β-tubulin protein of M. fructicola in China, rendering the strains wide resistance to thiophanate-methyl. This mechanism of M. fructicola gaining resistance to MBC fungicides needs to be fully considered, when designing management strategies to control brown rot disease in stone fruit orchards.
Collapse
Affiliation(s)
- Dufang Ke
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Han Meng
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Universities Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenting Lei
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yulong Zheng
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linhan Li
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingyi Wang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Zhong
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mo Wang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Universities Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengping Chen
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
13
|
Zhu J, Li J, Ma D, Gao Y, Cheng J, Mu W, Li B, Liu F. SDH mutations confer complex cross-resistance patterns to SDHIs in Corynespora cassiicola. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105157. [PMID: 35973770 DOI: 10.1016/j.pestbp.2022.105157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) are one of the most frequently used fungicides in cucumber fields in China. Our previous studies indicated that the sensitivity profile of Corynespora cassiicola, the causal agent of Corynespora leaf spot, to different SDHIs varied greatly; however, the underlying mechanism remains unclear. The 50% effective concentration (EC50) values of boscalid, fluopyram, fluxapyroxad and isopyrazam in C. cassiicola collected from 2017 to 2020 shifted, with resistance frequencies of 79.83%, 78.43%, 83.19% and 49.86%, respectively. The sequence alignment of sdhB/C/D of resistant strains revealed that eight single amino acid mutations (B-H278Y/L, B-I280V, C-S73P, C-N75S, C-H134R, D-D95E and D-G109V), and three dual-mutations (B-I280V&C-S73P, B-I280V&C-N75S and C-S73P&C-N75S) conferred various SDHI resistance levels and cross-resistance profiles. The expression level of the sdhB/C/D gene and succinate dehydrogenase (SDH) activity in the mutants were significantly altered by the presence of SDHIs, compared with the wild type strain. Additionally, molecular docking results suggested that the missense mutation influenced the crystal structure of SDH and subsequently interfered with the interaction bonds and bond distances among the target protein and chemicals. In brief, amino acid mutations altered the fungicide response of target gene expression, SDH activity and the binding features of SDH-ligand complexes and subsequently conferred multiple resistance levels and complex cross-resistance patterns to SDHIs in C. cassiicola. The evaluation of C. cassiicola resistance to SDHIs provided a significant foundation for efficient chemical development and integrated CLS management strategies.
Collapse
Affiliation(s)
- Jiamei Zhu
- Shandong Provincial Key Laboratory for the Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, China
| | - Jin Li
- Shandong Provincial Key Laboratory for the Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, China
| | - Dicheng Ma
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Yangyang Gao
- Shandong Provincial Key Laboratory for the Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wei Mu
- Shandong Provincial Key Laboratory for the Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, China
| | - Beixing Li
- Shandong Provincial Key Laboratory for the Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, China
| | - Feng Liu
- Shandong Provincial Key Laboratory for the Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, China.
| |
Collapse
|