1
|
Goggin DE, Taylor CM, Busi R, Flower K. Characterisation of low-level pyrasulfotole resistance and the role of herbicide translocation in wild radish (Raphanus raphanistrum). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106072. [PMID: 39277417 DOI: 10.1016/j.pestbp.2024.106072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/21/2024] [Accepted: 08/03/2024] [Indexed: 09/17/2024]
Abstract
The synthetic auxin 2,4-D and the 4-hydroxyphenylpyruvate dioxygenase inhibitor pyrasulfotole are phloem-mobile post-emergence herbicides, the latter applied in co-formulation with either bromoxynil (a contact herbicide causing leaf desiccation) or MCPA (another synthetic auxin). Previous studies have shown a wide range of 2,4-D translocation phenotypes in resistant populations of the agricultural weed Raphanus raphanistrum, but it was hypothesised that enhanced movement out of the apical meristem could contribute to resistance. Little is known about pyrasulfotole translocation or the effect of bromoxynil on pyrasulfotole movement. Therefore, the behaviour of pyrasulfotole and 2,4-D applied to the growing point of susceptible and resistant R. raphanistrum seedlings was assessed, along with the effect of bromoxynil on pyrasulfotole translocation. The small amount of herbicide directly contacting the growing point after spraying was sufficient to induce herbicide symptoms, and there was no enhancement of translocation away from the growing point in either pyrasulfotole- or 2,4-D-resistant populations. Bromoxynil had a slightly inhibitory effect on pyrasulfotole translocation in some populations, somewhat negating the minor differences observed among populations when pyrasulfotole was applied alone. Resistance to pyrasulfotole could not explained by enhanced metabolism or vacuolar sequestration of the herbicide. Overall, differential translocation in either the treated leaves or apical meristems does not appear to be a major determinant of resistance to pyrasulfotole or 2,4-D.
Collapse
Affiliation(s)
- Danica E Goggin
- Australian Herbicide Resistance Initiative, UWA School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia.
| | - Candy M Taylor
- Australian Herbicide Resistance Initiative, UWA School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - Roberto Busi
- Australian Herbicide Resistance Initiative, UWA School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - Ken Flower
- Australian Herbicide Resistance Initiative, UWA School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| |
Collapse
|
2
|
Dong J, Yu XH, Dong J, Wang GH, Wang XL, Wang DW, Yan YC, Xiao H, Ye BQ, Lin HY, Yang GF. An artificially evolved gene for herbicide-resistant rice breeding. Proc Natl Acad Sci U S A 2024; 121:e2407285121. [PMID: 39133859 PMCID: PMC11348328 DOI: 10.1073/pnas.2407285121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/18/2024] [Indexed: 08/29/2024] Open
Abstract
Discovering and engineering herbicide-resistant genes is a crucial challenge in crop breeding. This study focuses on the 4-hydroxyphenylpyruvate dioxygenase Inhibitor Sensitive 1-Like (HSL) protein, prevalent in higher plants and exhibiting weak catalytic activity against many β-triketone herbicides (β-THs). The crystal structures of maize HSL1A complexed with β-THs were elucidated, identifying four essential herbicide-binding residues and explaining the weak activity of HSL1A against the herbicides. Utilizing an artificial evolution approach, we developed a series of rice HSL1 mutants targeting the four residues. Then, these mutants were systematically evaluated, identifying the M10 variant as the most effective in modifying β-THs. The initial active conformation of substrate binding in HSL1 was also revealed from these mutants. Furthermore, overexpression of M10 in rice significantly enhanced resistance to β-THs, resulting in a notable 32-fold increase in resistance to methyl-benquitrione. In conclusion, the artificially evolved M10 gene shows great potential for the development of herbicide-resistant crops.
Collapse
Affiliation(s)
- Jin Dong
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Xin-He Yu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Jiangqing Dong
- Hubei Shizhen Laboratory, Wuhan430061, People’s Republic of China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan430065, People’s Republic of China
| | - Gao-Hua Wang
- Edgene Biotechnology Co., Ltd., Wuhan430074, People’s Republic of China
| | - Xin-Long Wang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Da-Wei Wang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Yao-Chao Yan
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Han Xiao
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Bao-Qin Ye
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Hong-Yan Lin
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| |
Collapse
|
3
|
Aung KM, Chu SH, Nawade B, Lee CY, Myung EJ, Park YJ. Analyzing the response of rice to tefuryltrione herbicide: Haplotype variation and evolutionary dynamics of the HIS1 gene. ENVIRONMENTAL RESEARCH 2024; 252:118839. [PMID: 38570131 DOI: 10.1016/j.envres.2024.118839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Weeds pose multifaceted challenges in rice cultivation, leading to substantial economic losses through reduced yield and poor grain quality. Harnessing the natural genetic diversity in germplasm collections becomes crucial for identifying novel herbicide resistance loci in crops. A comprehensive analysis was conducted on 475 rice accessions from the KRICE depository, assessing their response to TFT (tefuryltrione) and probing the underlying HIS1 (HPPD INHIBITOR SENSITIVE 1) genotypic variations. The HIS1 gene, responsible for detoxifying benzobicyclon (BBC) and imparting broad-spectrum herbicide resistance, holds significant promise in rice breeding. This study explores the genetic landscape of HIS1 within Korean rice collection (KRICE), aiming to unveil genetic variations, haplotype diversity, and evolutionary relationships across diverse rice ecotypes. The indica ecotype showed the highest nucleotide diversity, while the wild and temperate japonica groups exhibited low diversity, hinting at selective sweeps and possible population expansion. Negative Tajima's D values in temperate japonica and wild groups indicate an excess of low-frequency mutations, potentially resulting from selective sweeps. In contrast, with positive Tajima's D values, admixture, indica, and aus groups suggest balancing selection. Furthermore, haplotype analysis uncovered 42 distinct haplotypes within KRICE, with four shared haplotypes between cultivated and wild accessions, four specific to cultivated accessions, and 34 specific to wild types. Phenotypic assessments of these haplotypes revealed that three haplotypes, viz., Hap_1 (predominant in japonica), Hap_2 (predominant in indica), and Hap_3 (specific to indica), displayed significant differences from aus-specific Hap_4 and indica-specific Hap_5. This study offers insights into genetic diversity, selective pressures, and ecotype-specific responses, ultimately paving the way for developing HPPD-inhibiting herbicide-resistant rice cultivars.
Collapse
Affiliation(s)
- Kyaw Myo Aung
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea
| | - Sang-Ho Chu
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea
| | - Bhagwat Nawade
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea
| | - Chang-Yong Lee
- Department of Industrial and Systems Engineering, College of Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Eul Jai Myung
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea.
| |
Collapse
|
4
|
Zhao A, Teng X, Ma Y, Mu L, Han S, Wang S, Lei K, Ji L, Li P. First Clarification of the Mechanism of Action of the Apple Glycosyltransferase MdUGT91AJ2 Involved in the Detoxification Metabolism of the Triketone Herbicide Sulcotrione. PLANTS (BASEL, SWITZERLAND) 2024; 13:1796. [PMID: 38999636 PMCID: PMC11244407 DOI: 10.3390/plants13131796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Sulcotrione is a member of triketone herbicides, a class of HPPD (4-hydroxyphenylpyruvate dioxygenase) inhibitors with broad-spectrum herbicidal activity. Modifications of glycosylation mediated by glycosyltransferases (GT) are involved in plant detoxification. In this study, we analyzed chip data published online and found that eight glycosyltransferases from group A of the apple glycosyltransferase family 1 may be involved in the metabolic mechanism of detoxification of triketone herbicides. To verify this prediction, we induced apple seedlings with six types of triketone herbicides, and then detected the expression levels of eight glycosyltransferase genes through real-time PCR. We found that triketone herbicides induced up-regulation of eight glycosyltransferase genes to varying degrees, with MdUGT91AJ2 being the most significantly up-regulated by sulcotrione-induced glycosyltransferase gene expression. Then, through in vitro enzymatic reactions and HPLC identification of glycoside substrates, it was found that the glycosyltransferase MdUGT91AJ2 had the highest specific enzyme activity against the triketone herbicide sulcotrione. Furthermore, the in vivo mechanism of the glycosyltransferase MdUGT91AJ2 in the detoxification metabolism of sulcotrione was further validated by overexpressing the strain in the plant. HPLC analysis showed that the content of sulcotrione glycosides in the overexpressing strain of MdUGT91AJ2 was significantly higher than that in the wild type. This result indicated that the apple glycosyltransferase MdUGT91AJ2 can still glycosylate and modify sulfotrione in plants, and participate in its detoxification metabolism. In summary, this study identified for the first time a novel apple glycosyltransferase MdUGT91AJ2 and elucidated its mechanism of action in the detoxification and metabolism of the triketone herbicide sulfotriene.
Collapse
Affiliation(s)
- Aijuan Zhao
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (A.Z.); (Y.M.); (L.M.); (S.H.); (S.W.); (K.L.)
| | - Xiao Teng
- Rizhao Academy of Agricultural Science, Rizhao 276500, China;
| | - Yingxin Ma
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (A.Z.); (Y.M.); (L.M.); (S.H.); (S.W.); (K.L.)
| | - Lijun Mu
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (A.Z.); (Y.M.); (L.M.); (S.H.); (S.W.); (K.L.)
| | - Shibo Han
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (A.Z.); (Y.M.); (L.M.); (S.H.); (S.W.); (K.L.)
| | - Shumin Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (A.Z.); (Y.M.); (L.M.); (S.H.); (S.W.); (K.L.)
| | - Kang Lei
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (A.Z.); (Y.M.); (L.M.); (S.H.); (S.W.); (K.L.)
| | - Lusha Ji
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (A.Z.); (Y.M.); (L.M.); (S.H.); (S.W.); (K.L.)
| | - Pan Li
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (A.Z.); (Y.M.); (L.M.); (S.H.); (S.W.); (K.L.)
| |
Collapse
|
5
|
Concepcion JT, Kaundun SS, Morris JA, Brandenburg AN, Riechers DE. Metabolism of the 4-Hydroxyphenylpyruvate Dioxygenase Inhibitor, Mesotrione, in Multiple-Herbicide-Resistant Palmer amaranth ( Amaranthus palmeri). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5595-5608. [PMID: 38446412 PMCID: PMC10959109 DOI: 10.1021/acs.jafc.3c06903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Metabolic resistance to the maize-selective, HPPD-inhibiting herbicide, mesotrione, occurs via Phase I ring hydroxylation in resistant waterhemp and Palmer amaranth; however, mesotrione detoxification pathways post-Phase I are unknown. This research aims to (1) evaluate Palmer amaranth populations for mesotrione resistance via survivorship, foliar injury, and aboveground biomass, (2) determine mesotrione metabolism rates in Palmer amaranth populations during a time course, and (3) identify mesotrione metabolites including and beyond Phase I oxidation. The Palmer amaranth populations, SYNR1 and SYNR2, exhibited higher survival rates (100%), aboveground biomass (c.a. 50%), and lower injury (25-30%) following mesotrione treatment than other populations studied. These two populations also metabolized mesotrione 2-fold faster than sensitive populations, PPI1 and PPI2, and rapidly formed 4-OH-mesotrione. Additionally, SYNR1 and SYNR2 formed 5-OH-mesotrione, which is not produced in high abundance in waterhemp or naturally tolerant maize. Metabolite features derived from 4/5-OH-mesotrione and potential Phase II mesotrione-conjugates were detected and characterized by liquid chromatography-mass spectrometry (LCMS).
Collapse
Affiliation(s)
| | - Shiv S. Kaundun
- Herbicide
Bioscience, Syngenta, Jealott’s Hill
International Research Centre, Bracknell, Berkshire RG42
6EY, U.K.
| | - James A. Morris
- Herbicide
Bioscience, Syngenta, Jealott’s Hill
International Research Centre, Bracknell, Berkshire RG42
6EY, U.K.
| | - Autumn N. Brandenburg
- Department
of Crop Sciences, University of Illinois
at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Dean E. Riechers
- Department
of Crop Sciences, University of Illinois
at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|