1
|
Savich V, Akhremchuk A, Herasimovich A, Leanovich S, Valentovich L, Sidarenka A. Isolation, characterization, and whole-genome analysis of the novel temperate bacteriophage Ph-p5 infecting Glutamicibacter halophytocola. Arch Virol 2025; 170:46. [PMID: 39907824 DOI: 10.1007/s00705-025-06225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/19/2024] [Indexed: 02/06/2025]
Abstract
Bacteria of the genus Glutamicibacter, due to their ubiquity, nutritional versatility, and ability to adapt to environmental stresses, play an important role in natural ecosystems and have been extensively studied. Nevertheless, there remains a significant gap in our knowledge regarding Glutamicibacter phages, particularly in comparison to those of the related actinobacteria. To date, only two virulent phages infecting G. arilaitensis have been described. To our knowledge, this is the first report on the isolation, characterization, and genome analysis of a temperate phage targeting G. halophytocola, an endophytic bacterium known for its plant-growth-promoting effect. The phage Ph-p5, with siphovirus structure, was isolated from soil. It exhibited a long latent period (120 min), a moderate burst size (87 ± 3 PFU/infected cell), and stability over a wide range of pH and temperature. The circularly permuted linear double-stranded DNA genome of phage Ph-p5, comprising 43,694 bp with a G + C content of 57.1%, contains 65 putative protein-coding sequences and one sequence encoding tRNA. Of the identified open reading frames, 33 were of unknown function, while the remaining ones were grouped into functional modules, including structural proteins, DNA replication and regulation, lysogeny, and lysis. The presence of intact lysogeny-related genes, together with the capacity for lysogenisation of the host strain G. halophytocola BIM B-1594, provides evidence that Ph-p5 is a temperate phage. Phylogenetic analysis demonstrated that phage Ph-p5 belongs to the class Caudoviricetes but exhibits significant divergence from known phages and may be assigned to a new genus, for which we propose the name "Petuglutavirus".
Collapse
Affiliation(s)
- Viktoryia Savich
- The Institute of Microbiology of the National Academy of Sciences of Belarus, 220084, Minsk, Belarus.
| | - Artur Akhremchuk
- The Institute of Microbiology of the National Academy of Sciences of Belarus, 220084, Minsk, Belarus
| | - Aliaksandra Herasimovich
- The Institute of Microbiology of the National Academy of Sciences of Belarus, 220084, Minsk, Belarus
| | - Sviatlana Leanovich
- The Institute of Microbiology of the National Academy of Sciences of Belarus, 220084, Minsk, Belarus
| | - Leonid Valentovich
- The Institute of Microbiology of the National Academy of Sciences of Belarus, 220084, Minsk, Belarus
| | - Anastasiya Sidarenka
- The Institute of Microbiology of the National Academy of Sciences of Belarus, 220084, Minsk, Belarus.
| |
Collapse
|
2
|
Rogowska-van der Molen MA, Savova HV, Janssen EAT, van Alen T, Coolen S, Jansen RS, Welte CU. Unveiling detoxifying symbiosis and dietary influence on the Southern green shield bug microbiota. FEMS Microbiol Ecol 2024; 100:fiae150. [PMID: 39510962 PMCID: PMC11585277 DOI: 10.1093/femsec/fiae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/13/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024] Open
Abstract
The Southern green shield bug, Nezara viridula, is an invasive piercing and sucking pest insect that feeds on crops and poses a threat to global food production. Insects live in close relationships with microorganisms providing their host with unique capabilities, such as resistance to toxic plant metabolites. In this study, we investigated the resistance to and detoxification of the plant metabolite 3-nitropropionic acid (NPA) by core and transient members of the N. viridula microbial community. Microbial community members showed a different tolerance to the toxin and we determined that six out of eight strains detoxified NPA. Additionally, we determined that NPA might interfere with the biosynthesis and transport of l-leucine. Moreover, our study explored the influence of diet on the gut microbial composition of N. viridula, demonstrating that switching to a single-plant diet shifts the abundance of core microbes. In line with this, testing pairwise microbial interactions revealed that core microbiota members support each other and repress the growth of transient microorganisms. With this work, we provide novel insights into the factors shaping the insect gut microbial communities and demonstrate that N. viridula harbours many toxin-degrading bacteria that could support its resistance to plant defences.
Collapse
Affiliation(s)
- Magda A Rogowska-van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Hristina V Savova
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Elke A T Janssen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Theo van Alen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
- Translational Plant Biology, Department of Biology, Faculty of Science, Utrecht University, P.Box 800.56, 3508 TB Utrecht, The Netherlands
| | - Robert S Jansen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
3
|
Han S, Akhtar MR, Xia X. Functions and regulations of insect gut bacteria. PEST MANAGEMENT SCIENCE 2024; 80:4828-4840. [PMID: 38884497 DOI: 10.1002/ps.8261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
The insect gut is a complicated ecosystem that inhabits a large number of symbiotic bacteria. As an important organ of the host insect, the symbiotic bacteria of the insect gut play very important roles in regulating physiological and metabolic processes. Recently, much progress has been made in the study of symbiotic bacteria in insect guts with the development of high-throughput sequencing technology and molecular biology. This review summarizes the primary functions of symbiotic bacteria in insect guts, such as enhancing insecticide resistance, facilitating food digestion, promoting detoxification, and regulating mating behavior and egg hatching. It also addresses some possible pathways of gut bacteria symbiont regulation governed by external habitats, physiological conditions and immunity of the host insect. This review provides solid foundations for further studies on novel theories, new technologies and practical applications of symbiotic bacteria in insect guts. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuncai Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| | - Muhammad Rehan Akhtar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| |
Collapse
|
4
|
Cao S, Ren X, Zhang G, Wang H, Wei B, Niu C. Gut microbiota metagenomics and mediation of phenol degradation in Bactrocera minax (Diptera, Tephritidae). PEST MANAGEMENT SCIENCE 2024; 80:3935-3944. [PMID: 38520323 DOI: 10.1002/ps.8096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Gut microbiota mediating insect-plant interactions have many manifestations, either by provisioning missing nutrients, or by overcoming plant defensive reactions. However, the mechanism by which gut microbiota empower insects to survive by overcoming a variety of plant secondary metabolites remains largely unknown. Bactrocera minax larvae develop in immature citrus fruits, which present numerous phenolic compounds that challenge the larvae. To explore the role of gut microbes in host use and adaptability, we uncovered the mechanisms of phenol degradation by gut microbes using metagenomic and metatranscriptomic analyses, and verified the degradation ability of isolated and cultured bacteria. Research on this subject can help develop potential strain for the environmental friendly pest management operations. RESULTS We demonstrated the ability of gut microbes in B. minax larvae to degrade phenols in unripe citrus. After antibiotic treatment, coniferyl alcohol and coumaric aldehyde significantly reduced the survival rate, body length and body weight of the larvae. The metagenomic and metatranscriptomic analyses in B. minax provided evidence for the presence of genes in bacteria and the related pathway involved in phenol degradation. Among them, Enterococcus faecalis and Serratia marcescens, isolated from the gut of B. minax larvae, played critical roles in phenol degradation. Furthermore, supplementation of E. faecalis and S. marcescens in artificial diets containing coniferyl alcohol and coumaric aldehyde increased the survival rate of larvae. CONCLUSION In summary, our results provided the first comprehensive analysis of gut bacterial communities by high-throughput sequencing and elucidated the role of bacteria in phenol degradation in B. minax, which shed light on the mechanism underlying specialist insect adaption to host secondary metabolites via gut bacteria. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuai Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueming Ren
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Guijian Zhang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Haoran Wang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Bingbing Wei
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Zhang Y, Zhang S, Xu L. The pivotal roles of gut microbiota in insect plant interactions for sustainable pest management. NPJ Biofilms Microbiomes 2023; 9:66. [PMID: 37735530 PMCID: PMC10514296 DOI: 10.1038/s41522-023-00435-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The gut microbiota serves as a critical "organ" in the life cycle of animals, particularly in the intricate interplay between herbivorous pests and plants. This review summarizes the pivotal functions of the gut microbiota in mediating the insect-plant interactions, encompassing their influence on host insects, modulation of plant physiology, and regulation of the third trophic level species within the ecological network. Given these significant functions, it is plausible to harness these interactions and their underlying mechanisms to develop novel eco-friendly pest control strategies. In this context, we also outline some emerging pest control methods based on the intestinal microbiota or bacteria-mediated interactions, such as symbiont-mediated RNAi and paratransgenesis, albeit these are still in their nascent stages and confront numerous challenges. Overall, both opportunities and challenges coexist in the exploration of the intestinal microbiota-mediated interactions between insect pests and plants, which will not only enrich the fundamental knowledge of plant-insect interactions but also facilitate the development of sustainable pest control strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, 311300, Hangzhou, China.
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China.
| |
Collapse
|
6
|
ElKraly OA, Awad M, El-Saadany HM, Hassanein SE, Elrahman TA, Elnagdy SM. Impact of gut microbiota composition on black cutworm, Agrotis ipsilon (hufnagel) metabolic indices and pesticide degradation. Anim Microbiome 2023; 5:44. [PMID: 37715236 PMCID: PMC10504801 DOI: 10.1186/s42523-023-00264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/03/2023] [Indexed: 09/17/2023] Open
Abstract
Endosymbionts are known to have significant effects on their insect hosts, including nutrition, reproduction, and immunity. Insects gut microbiota is a critical component that affects their physiological and behavioral characteristics. The black cutworm (BCW), Agrotis ipsilon, is an economically important lepidopteran pest that has a diverse gut microbiome composed of nine species belonging to three phyla: Proteobacteria, Actinobacteria, and Firmicutes. This study was conducted to investigate the diversity of gut bacteria isolated from BCW larvae and moths and their effects on metabolism and pesticide degradation. The bacterial isolates were identified using the 16 S rRNA gene. The study showed that the gut microbiome composition significantly affected the metabolism of BCW larvae. Based on the screening results of synthesis of digestive enzymes and pesticide degradation, Brachybacterium conglomeratum and Glutamicibacter sp were selected to perform the remaining experiments as single isolates and consortium. The consortium-fed larvae showed high metabolic indices compared to antibiotic-fed larvae and the control. The gut bacteria were also shown to degrade three pesticide groups. Concerns regarding the health risk of chlorpyrifos have been raised due to its extensive use in agriculture. The isolated B. conglomeratum was more effective in chlorpyrifos degradation than the consortium. Furthermore, the study also examined the presence of sex related endosymbionts (Wolbachia, Spiroplasma, and Rickettsia) in the reproductive tissues of adults. The outcomes demonstrated that none of the examined endosymbionts existed. In conclusion, the study highlights the importance of the gut microbiome in insect physiology and behavior and its potential applications in biotechnology. It provides insights into developing eco-friendly pest control and bioremediation strategies using gut bacteria.
Collapse
Affiliation(s)
- Omnia Abdullah ElKraly
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamma St, Giza, 12613, Giza, Egypt
- Bio-insecticides Production Unit, Plant Protection Research Institute (PPRI), Agricultural Research Center (ARC), Ministry of Agriculture, Dokki, Giza, Egypt
| | - Mona Awad
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Cairo, Egypt.
| | - Hassan Mohamed El-Saadany
- Bio-insecticides Production Unit, Plant Protection Research Institute (PPRI), Agricultural Research Center (ARC), Ministry of Agriculture, Dokki, Giza, Egypt
| | - Sameh E Hassanein
- College of Biotechnology, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Tahany Abd Elrahman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamma St, Giza, 12613, Giza, Egypt
| | - Sherif M Elnagdy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamma St, Giza, 12613, Giza, Egypt.
| |
Collapse
|
7
|
Peng Y, Wen S, Wang G, Zhang X, Di T, Du G, Chen B, Zhang L. Reconstruction of Gut Bacteria in Spodoptera frugiperda Infected by Beauveria bassiana Affects the Survival of Host Pest. J Fungi (Basel) 2023; 9:906. [PMID: 37755014 PMCID: PMC10532432 DOI: 10.3390/jof9090906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Spodoptera frugiperda (Lepidoptera: Noctuidae) is a migratory agricultural pest that is devastating on a global scale. Beauveria bassiana is a filamentous entomopathogenic fungus that has a strong pathogenic effect on Lepidoptera pests but little is known about the microbial community in the host gut and the dominant populations in fungus-infected insects. B. bassiana AJS91881 was isolated and identified from the infected larvae of Spodoptera litura. The virulence of AJS91881 to the eggs, larvae, pupae and adults of S. frugiperda was measured. Moreover, the gut microbial community diversity of healthy and fungus-infected insects was analyzed. Our results showed that after treatment with B. bassiana AJS91881, the egg hatching rate, larval survival rate and adult lifespan of the insects were significantly reduced, and the pupae rigor rate was significantly increased compared to that of the control group. Additionally, the gut microbial community was reconstructed after B. bassiana infection. At the phylum and genus level, the relative abundance of the Proteobacteria and Serratia increased significantly in the B. bassiana treatment group. The KEGG function prediction results showed that fungal infection affected insect gut metabolism, environmental information processing, genetic information processing, organism systems and cellular processes. Fungal infection was closely related to the metabolism of various substances in the insect gut. Serratia marcescens was the bacterium with the highest relative abundance after infection by B. bassiana; intestinal bacteria S. marcescens inhibited the infection of insect fungi B. bassiana against the S. frugiperda. The presence of gut bacteria also significantly reduced the virulence of the fungi against the insects when compared to the group with the larvae fed antibiotics that were infected with fungal suspension (Germfree, GF) and healthy larvae that were infected with fungal suspension prepared with an antibiotic solution (+antibiotic). In conclusion, the reconstruction of the insect intestinal bacterial community is an indispensable link for understanding the pathogenicity of B. bassiana against S. frugiperda. Most importantly, in the later stage of fungal infection, the increased abundance of S. marcescens in the insect intestine inhibited the virulence of B. bassiana to some extent. The findings aid in understanding changes in the gut microbiota during the early stages of entomopathogenic fungal infection of insects and the involvement of insect gut microbes in host defense mediated by pathogenic fungal infection. This study is also conducive to understanding the interaction between entomopathogenic fungi, hosts and gut microbes, and provides a new idea for the joint use of entomopathogenic fungi and gut bacteria to control pests.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.P.); (S.W.); (G.W.); (X.Z.); (T.D.); (G.D.)
| | - Limin Zhang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.P.); (S.W.); (G.W.); (X.Z.); (T.D.); (G.D.)
| |
Collapse
|
8
|
Karthik Y, Ishwara Kalyani M, Krishnappa S, Devappa R, Anjali Goud C, Ramakrishna K, Wani MA, Alkafafy M, Hussen Abduljabbar M, Alswat AS, Sayed SM, Mushtaq M. Antiproliferative activity of antimicrobial peptides and bioactive compounds from the mangrove Glutamicibacter mysorens. Front Microbiol 2023; 14:1096826. [PMID: 36876075 PMCID: PMC9982118 DOI: 10.3389/fmicb.2023.1096826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023] Open
Abstract
The Glutamicibacter group of microbes is known for antibiotic and enzyme production. Antibiotics and enzymes produced by them are important in the control, protection, and treatment of chronic human diseases. In this study, the Glutamicibacter mysorens (G. mysorens) strain MW647910.1 was isolated from mangrove soil in the Mangalore region of India. After optimization of growth conditions for G. mysorens on starch casein agar media, the micromorphology of G. mysorens was found to be spirally coiled spore chain, each spore visualized as an elongated cylindrical hairy appearance with curved edges visualized through Field Emission Scanning Electron Microscopy (FESEM) analysis. The culture phenotype with filamentous mycelia, brown pigmentation, and ash-colored spore production was observed. The intracellular extract of G. mysorens characterized through GCMS analysis detected bioactive compounds reported for pharmacological applications. The majority of bioactive compounds identified in intracellular extract when compared to the NIST library revealed molecular weight ranging below 1kgmole-1. The Sephadex G-10 could result in 10.66 fold purification and eluted peak protein fraction showed significant anticancer activity on the prostate cancer cell line. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis revealed Kinetin-9-ribose and Embinin with a molecular weight below 1 kDa. This study showed small molecular weight bioactive compounds produced from microbial origin possess dual roles, acting as antimicrobial peptides (AMPs) and anticancer peptides (ACPs). Hence, the bioactive compounds produced from microbial origin are a promising source of future therapeutics.
Collapse
Affiliation(s)
- Yalpi Karthik
- Department of Studies and Research in Microbiology, Mangalore University, Mangalore, Karnataka, India
| | - Manjula Ishwara Kalyani
- Department of Studies and Research in Microbiology, Mangalore University, Mangalore, Karnataka, India
| | - Srinivasa Krishnappa
- Department of Studies and Research in Biochemistry, Mangalore University, Mangalore, Karnataka, India
| | - Ramakrishna Devappa
- Dr. C.D Sagar Centre for Life Sciences, Biotechnology Department, Dayananda Sagar College of Engineering, Dayananda Sagar Institutions, Bengaluru, India
| | - Chengeshpur Anjali Goud
- Department of Plant Biotechnology, School of Agricultural Sciences, Malla Reddy University, Hyderabad, India
| | - Krishnaveni Ramakrishna
- Department of Studies and Research in Microbiology, Vijayanagara Sri Krishnadevaraya University, Ballari, Karnataka, India
| | - Muneeb Ahmad Wani
- Division of Floriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Mohamed Alkafafy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Maram Hussen Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Amal S Alswat
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Samy M Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Muntazir Mushtaq
- ICAR-National Bureau of Plant Genetic Resources, Division of Germplasm Evaluation, New Delhi, India.,MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management, Bajhol, Himachal Pradesh, India
| |
Collapse
|
9
|
Li Y, Wang Q, Xu X, Guo H. UHPLC-MS/MS Analysis of the Accumulation and Excretion of Steroidal Glycoalkaloids Consumed by Potato Tuber Moth ( Phthorimaea operculella) Larvae under Different Feeding Treatments. INSECTS 2022; 14:26. [PMID: 36661954 PMCID: PMC9866554 DOI: 10.3390/insects14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Food poisoning caused by potato glycoside alkaloids (SGA) remains a critical factor that affects potato production safety. The potato tuber moth (Phthorimaea operculella) is a notorious pest that displays good adaptability to SGA in potato tissues. Studies that explore the mechanisms underlying SGA homeostasis in potato tuber moth larvae are urgently needed. In this study, ultra-high-performance liquid chromatography (UHPLC)-triple quadrupole mass spectrometry (MS/MS) was applied to detect the dominant SGA substances α-solanine and α-chaconine in potato leaves and PTM larval tissues. From the highest to lowest SGA concentrations, the potato cultivars studied were ranked as follows: DS47, LS6, DS23 and QS9. To exclude the influence of nutrients within different potato varieties, different SGA containing (0%, 0.1%, 0.2%, 0.3% and 0.4%) the artificial diet treatment groups were added. DS47 and 0.3% SGA-containing artificial diets presented the best conditions for PTM growth, development and reproduction compared to other potato cultivars and artificial diet controls. The potato tuber moth larva tissues were dissected and the SGA content within different tissues were detected using an UHPLC machine. The results showed that α-chaconine was dispersed in the feces, midgut, hindgut, head and cuticle, and α-solanine was distributed only in the feces and midgut. Antibiotic-treated insects exhibited higher concentrations of SGA than the normal microbiome group. Furthermore, the SGA concentrations of 100 newly-hatched PTM larvae and puparia were detected, with both of them found to contain small amounts of SGA. The results showed that ecdysis and the excretion process were effective approaches used by the potato tuber moth to equilibrate internal SGA accumulation. The microorganism-decreased SGA concentrations were excited in their gut. SGA may transfer from adults to the next generation, and SGAs in PTM are inheritable. In this study, we demonstrated that the potato tuber moth possessed an effective method to preliminarily decrease high SGA accumulation in potato.
Collapse
Affiliation(s)
- Yajin Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
- Plant Protection College, Yunnan Agricultural University, Kunming 650201, China
- Tuber and Root Crops Research Institute, Kunming 650201, China
| | - Qiong Wang
- Tuber and Root Crops Research Institute, Kunming 650201, China
| | - Xiaoyu Xu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
- Tuber and Root Crops Research Institute, Kunming 650201, China
| | - Huachun Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
- Tuber and Root Crops Research Institute, Kunming 650201, China
| |
Collapse
|
10
|
Wang W, Du G, Yang G, Zhang K, Chen B, Xiao G. A multifunctional enzyme portfolio for α-chaconine and α-solanine degradation in the Phthorimaea operculella gut bacterium Glutamicibacter halophytocola S2 encoded in a trisaccharide utilization locus. Front Microbiol 2022; 13:1023698. [PMID: 36312939 PMCID: PMC9597252 DOI: 10.3389/fmicb.2022.1023698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 09/30/2023] Open
Abstract
Steroidal glycoalkaloids (SGAs) are secondary metabolites commonly found in members of the family Solanaceae, including potatoes, and are toxic to pests and humans. The predominant SGAs in potato are α-chaconine and α-solanine. We previously reported that Glutamicibacter halophytocola S2, a gut bacterium of the pest Phthorimaea operculella (potato tuber moth), can degrade α-chaconine and α-solanine in potatoes, which can improve the fitness of P. operculella to feed on potatoes with a high content of toxic SGAs. Glutamicibacter halophytocola S2 harbored a gene cluster containing three deglycosylase genes-GE000599, GE000600, and GE000601-that were predicted encode α-rhamnosidase (RhaA), β-glucosidase (GluA), and β-galactosidase (GalA). However, there is limited information is available on the enzyme activities of the three enzymes expressed by this gene cluster and how they degrade the major toxic α-chaconine and α-solanine. In the current study, each enzyme of this gene cluster was produced by a prokaryotic expression approach and the activity of the recombinant enzymes for their target substrate and α-chaconine and α-solanine were evaluated by EPOCH microplate spectrophotometer and liquid chromatography mass spectrometry (LC-MS). The three enzymes had multifunctional activities, with RhaA and GluA could hydrolyze α-rhamnose, β-glucose, and β-galactose, while GalA can hydrolyze β-glucose and β-galactose. The degradation of α-chaconine and α-solanine was consistent with the results of the enzyme activity assays. The final product solanidine could be generated by adding RhaA or GluA alone. In conclusion, this study characterized the multifunctional activity and specific degradation pathway of these three enzymes in G. halophytocola S2. The three multifunctional enzymes have high glycosidic hydrolysis activity and clear gene sequence information, which help facilitates understanding the detoxification mechanism of insect gut microbes. The enzymes have a broad application potential and may be valuable in the removal of toxic SGAs from for potato food consumption.
Collapse
Affiliation(s)
- Wenqian Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Guangzu Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Guangyuan Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Ke Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Bin Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Guanli Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
11
|
Gao Y, Alyokhin A, Nauen R, Guedes RNC, Palli SR. Challenges and opportunities in managing pests of potato. PEST MANAGEMENT SCIENCE 2022; 78:3729-3730. [PMID: 35932235 DOI: 10.1002/ps.7081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Andrei Alyokhin
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - Raul N C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|