1
|
Fiore KE, Francis DY, Casimir SM, Perez RM, Petersson EJ. Modulation of SpyCatcher Ligation Kinetics by SpyTag Thioamide Substitution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617615. [PMID: 39416024 PMCID: PMC11482962 DOI: 10.1101/2024.10.10.617615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Thioamide substitutions have been shown to impart valuable properties on peptides for biophysical experiments as well as cell or in vivo studies, but a rational understanding of thioamide effects on protein structure and protein-protein interactions is lacking. To elucidate their effects in β-sheet structures, we have used SpyCatcher003-SpyTag003 as a host-guest system to study individual thioamide incorporation at eight different positions in the SpyTag peptide. We have demonstrated that incorporating thioamides into SpyTag at specific positions can result in a ∼2-fold faster ligating complex, as well as >2000-fold slower ligating complex. Biophysical analysis and structural modeling provide a reasonable explanation for most of the thioamide effects, altering hydrogen bond networks as well as modulating an n→π* interaction within the SpyTag peptide. Our findings have important implications for potential applications of thioamide SpyTag variants, where the thioamide could impart protease stability in cells while also controlling the rate of ligation to SpyCatcher. These SpyCatcher-SpyTag host-guest experiments will also help to build a database for predicting thioamide effects on protein structure and function.
Collapse
|
2
|
Nagami S, Kaguchi R, Akahane T, Harabuchi Y, Taniguchi T, Monde K, Maeda S, Ichikawa S, Katsuyama A. Photoinduced dual bond rotation of a nitrogen-containing system realized by chalcogen substitution. Nat Chem 2024; 16:959-969. [PMID: 38418536 DOI: 10.1038/s41557-024-01461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Photoinduced concerted multiple-bond rotation has been proposed in some biological systems. However, the observation of such phenomena in synthetic systems, in other words, the synthesis of molecules that undergo photoinduced multiple-bond rotation upon photoirradiation, has been a challenge in the photochemistry field. Here we describe a chalcogen-substituted benzamide system that exhibits photoinduced dual bond rotation in heteroatom-containing bonds. Introduction of the chalcogen substituent into a sterically hindered benzamide system provides sufficient kinetic stability and photosensitivity to enable the photoinduced concerted rotation. The presence of two different substituents on the phenyl ring in the thioamide derivative enables the generation of a pair of enantiomers and E/Z isomers. Using these four stereoisomers as indicators of which bonds are rotated, we monitor the photoinduced C-N/C-C concerted bond rotation in the thioamide derivative depending on external stimuli such as temperature and photoirradiation. Theoretical calculations provide insight on the mechanism of this selective photoinduced C-N/C-C concerted rotation.
Collapse
Affiliation(s)
- Shotaro Nagami
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Rintaro Kaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Taichi Akahane
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- JST, ERATO, Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Sapporo, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Tohru Taniguchi
- Frontier Research Center of Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kenji Monde
- Frontier Research Center of Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- JST, ERATO, Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Sapporo, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Akira Katsuyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
3
|
Byerly-Duke J, O'Brien EA, Wall BJ, VanVeller B. Thioimidates provide general access to thioamide, amidine, and imidazolone peptide-bond isosteres. Methods Enzymol 2024; 698:27-55. [PMID: 38886036 DOI: 10.1016/bs.mie.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Thioamides, amidines, and heterocycles are three classes of modifications that can act as peptide-bond isosteres to alter the peptide backbone. Thioimidate protecting groups can address many of the problematic synthetic issues surrounding installation of these groups. Historically, amidines have received little attention in peptides due to limitations in methods to access them. The first robust and general procedure for the introduction of amidines into peptide backbones exploits the utility of thioimidate protecting groups as a means to side-step reactivity that ultimately renders existing methods unsuitable for the installation of amidines along the main-chain of peptides. Further, amidines formed on-resin can be reacted to form (4H)-imidazolone heteorcycles which have recently been shown to act as cis-amide isosteres. General methods for heterocyclic installation capable of geometrically restricting peptide conformation are also under-developed. This work is significant because it describes a generally applicable and divergent approach to access unexplored peptide designs and architectures.
Collapse
Affiliation(s)
- Jacob Byerly-Duke
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Emily A O'Brien
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Brendan J Wall
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, IA, United States.
| |
Collapse
|
4
|
Byerly-Duke J, VanVeller B. Thioimidate Solutions to Thioamide Problems during Thionopeptide Deprotection. Org Lett 2024; 26:1452-1457. [PMID: 38341867 PMCID: PMC11031844 DOI: 10.1021/acs.orglett.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Thioamides have structural and chemical similarity to peptide bonds, offering valuable insights when probing peptide backbone interactions, but are prone to side reactions during solid-phase peptide synthesis (SPPS). Thioimidates have been demonstrated to be effective protecting groups for thioamides during peptide elongation. We further demonstrate how thioimidates can assist thioamides through the most yield-crippling step of thionopeptide deprotection, allowing for the first isolation of an important benchmark α-helical peptide that had previously eluded synthesis and isolation.
Collapse
Affiliation(s)
- Jacob Byerly-Duke
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
5
|
Fiore KE, Patist MJ, Giannakoulias S, Huang CH, Verma H, Khatri B, Cheng RP, Chatterjee J, Petersson EJ. Structural impact of thioamide incorporation into a β-hairpin. RSC Chem Biol 2022; 3:582-591. [PMID: 35656485 PMCID: PMC9092430 DOI: 10.1039/d1cb00229e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/24/2022] [Indexed: 11/21/2022] Open
Abstract
The thioamide is a naturally-occurring single atom substitution of the canonical amide bond. The exchange of oxygen to sulfur alters the amide's physical and chemical characteristics, thereby expanding its functionality. Incorporation of thioamides in prevalent secondary structures has demonstrated that they can either have stabilizing, destabilizing, or neutral effects. We performed a systematic investigation of the structural impact of thioamide incorporation in a β-hairpin scaffold with nuclear magnetic resonance (NMR). Thioamides as hydrogen bond donors did not increase the foldedness of the more stable "YKL" variant of this scaffold. In the less stable "HPT" variant of the scaffold, the thioamide could be stabilizing as a hydrogen bond donor and destabilizing as a hydrogen bond acceptor, but the extent of the perturbation depended upon the position of incorporation. To better understand these effects we performed structural modelling of the macrocyclic folded HPT variants. Finally, we compare the thioamide effects that we observe to previous studies of both side-chain and backbone perturbations to this β-hairpin scaffold to provide context for our observations.
Collapse
Affiliation(s)
- Kristen E Fiore
- Department of Chemistry, University of Pennsylvania 231 S. 34th Street Philadelphia 19104 USA
| | - Martijn J Patist
- Department of Chemistry, University of Pennsylvania 231 S. 34th Street Philadelphia 19104 USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania 231 S. 34th Street Philadelphia 19104 USA
| | - Cheng-Hsin Huang
- Department of Chemistry, National Taiwan University No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
| | - Hitesh Verma
- Molecular Biophysics Unit, Indian Institute of Science Bangalore 560012 India
| | - Bhavesh Khatri
- Molecular Biophysics Unit, Indian Institute of Science Bangalore 560012 India
| | - Richard P Cheng
- Department of Chemistry, National Taiwan University No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
| | - Jayanta Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science Bangalore 560012 India
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania 231 S. 34th Street Philadelphia 19104 USA
| |
Collapse
|
6
|
Lampkin BJ, VanVeller B. Hydrogen Bond and Geometry Effects of Thioamide Backbone Modifications. J Org Chem 2021; 86:18287-18291. [PMID: 34851645 DOI: 10.1021/acs.joc.1c02373] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thioamide substitution of backbone peptide bonds can probe interactions along the main chain of proteins. Despite theoretical predictions of the enhanced hydrogen bonding propensities of thioamides, previous studies often do not consider the geometric constraints imposed by folded peptide secondary structure. This work addresses drawbacks in previous studies that ignored the geometry dependence and local dielectric properties of thioamide hydrogen bonding and identifies cases where thioamides may be either stronger or weaker hydrogen-bonding partners than amides.
Collapse
Affiliation(s)
- Bryan J Lampkin
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
7
|
Camacho LA, Nguyen YH, Turner J, VanVeller B. Deprotection Strategies for Thioimidates during Fmoc Solid-Phase Peptide Synthesis: A Safe Route to Thioamides. J Org Chem 2019; 84:15309-15314. [DOI: 10.1021/acs.joc.9b02317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Luis A. Camacho
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Yen H. Nguyen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - John Turner
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
8
|
Peddie V, Abell AD. Photocontrol of peptide secondary structure through non-azobenzene photoswitches. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Camacho LA, Lampkin BJ, VanVeller B. A Bottom-Up Approach To Preserve Thioamide Residue Stereochemistry during Fmoc Solid-Phase Peptide Synthesis. Org Lett 2019; 21:7015-7018. [DOI: 10.1021/acs.orglett.9b02598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Luis A. Camacho
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Bryan J. Lampkin
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
10
|
Mahanta N, Szantai-Kis DM, Petersson EJ, Mitchell DA. Biosynthesis and Chemical Applications of Thioamides. ACS Chem Biol 2019; 14:142-163. [PMID: 30698414 PMCID: PMC6404778 DOI: 10.1021/acschembio.8b01022] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thioamidation as a posttranslational modification is exceptionally rare, with only a few reported natural products and exactly one known protein example (methyl-coenzyme M reductase from methane-metabolizing archaea). Recently, there has been significant progress in elucidating the biosynthesis and function of several thioamide-containing natural compounds. Separate developments in the chemical installation of thioamides into peptides and proteins have enabled cell biology and biophysical studies to advance the current understanding of natural thioamides. This review highlights the various strategies used by Nature to install thioamides in peptidic scaffolds and the potential functions of this rare but important modification. We also discuss synthetic methods used for the site-selective incorporation of thioamides into polypeptides with a brief discussion of the physicochemical implications. This account will serve as a foundation for the further study of thioamides in natural products and their various applications.
Collapse
Affiliation(s)
| | - D Miklos Szantai-Kis
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine , University of Pennsylvania , 3700 Hamilton Walk , Philadelphia , Pennsylvania 19104 , United States
| | - E James Petersson
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine , University of Pennsylvania , 3700 Hamilton Walk , Philadelphia , Pennsylvania 19104 , United States
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | | |
Collapse
|
11
|
Abstract
The last few years have witnessed significant advances in the use of light as a stimulus to control biomolecular interactions. Great efforts have been devoted to the development of genetically encoded optobiological and small photochromic switches. Newly discovered small molecules now allow researchers to build molecular systems that are sensitive to a wider range of wavelengths of light than ever before with improved switching fidelities and increased lifetimes of the photoactivated states. Because these molecules are relatively small and adopt predictable conformations they are well suited as tools to interrogate cellular function in a spatially and temporally contolled fashion and for applications in photopharmacology.
Collapse
Affiliation(s)
- Robert J Mart
- School of Chemistry & Cardiff Catalysis Institute, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - Rudolf K Allemann
- School of Chemistry & Cardiff Catalysis Institute, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
12
|
Joy S, Sureshbabu VV, Periyasamy G. Density functional theoretical studies on electronic structural, optical and oxidation properties of thioxylated peptides. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2157-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Joy S, Sureshbabu VV, Periyasamy G. DFT Studies on the Terminal Dependent Reversible Switching of Selenoxo Peptides Induced by Cationization. ChemistrySelect 2017. [DOI: 10.1002/slct.201700480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sherin Joy
- Department of ChemistryBangalore University Bangalore-560001
| | | | | |
Collapse
|
14
|
Joy S, Sureshbabu VV, Periyasamy G. Density functional theoretical studies on photoswitching and charge migration dynamics of thio and selenoureidopeptides. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sherin Joy
- Department of Chemistry; Bangalore University; Bangalore Karnataka India
| | | | - Ganga Periyasamy
- Department of Chemistry; Bangalore University; Bangalore Karnataka India
| |
Collapse
|
15
|
Park HS, Kang YK. Effects of isosteric substitutions on the conformational preference and cis–trans isomerization of proline-containing peptides. NEW J CHEM 2017. [DOI: 10.1039/c7nj01403a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Isosteric substitutions of the peptide CO group by CS and CSe groups increased thetranspopulation and rotational barrier to the prolylcis–transisomerization of proline-containing peptides.
Collapse
Affiliation(s)
- Hae Sook Park
- Department of Nursing
- Cheju Halla University
- Cheju 63092
- Republic of Korea
| | - Young Kee Kang
- Department of Chemistry and BK21 PLUS Research Team
- Chungbuk National University
- Cheongju
- Republic of Korea
| |
Collapse
|
16
|
Mukherjee S, Chatterjee J. Suppressing the epimerization of endothioamide peptides during Fmoc/t-Bu-based solid phase peptide synthesis. J Pept Sci 2016; 22:664-672. [DOI: 10.1002/psc.2929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Somnath Mukherjee
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore 560012 India
| | - Jayanta Chatterjee
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore 560012 India
- NMR Research Centre; Indian Institute of Science; Bangalore 560012 India
| |
Collapse
|
17
|
De Zotti M, Peggion C, Biondi B, Crisma M, Formaggio F, Toniolo C. Endothioxopeptides: A conformational overview. Biopolymers 2016; 106:697-713. [DOI: 10.1002/bip.22899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/08/2016] [Accepted: 06/25/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Marta De Zotti
- Department of Chemical Sciences; University of Padova; Padova 35131 Italy
| | - Cristina Peggion
- Department of Chemical Sciences; University of Padova; Padova 35131 Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR; Padova 35131 Italy
| | - Marco Crisma
- Institute of Biomolecular Chemistry, Padova Unit, CNR; Padova 35131 Italy
| | - Fernando Formaggio
- Department of Chemical Sciences; University of Padova; Padova 35131 Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; Padova 35131 Italy
| | - Claudio Toniolo
- Department of Chemical Sciences; University of Padova; Padova 35131 Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; Padova 35131 Italy
| |
Collapse
|
18
|
Newberry RW, VanVeller B, Raines RT. Thioamides in the collagen triple helix. Chem Commun (Camb) 2016; 51:9624-7. [PMID: 25967743 DOI: 10.1039/c5cc02685g] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To probe noncovalent interactions within the collagen triple helix, backbone amides were replaced with a thioamide isostere. This subtle substitution is the first in the collagen backbone that does not compromise thermostability. A triple helix with a thioamide as a hydrogen bond donor was found to be more stable than triple helices assembled from isomeric thiopeptides.
Collapse
Affiliation(s)
- Robert W Newberry
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA.
| | | | | |
Collapse
|
19
|
Prabhu G, Nagendra G, Sagar NR, Pal R, Guru Row TN, Sureshbabu VV. A Facile Synthesis of 1,5-Disubstituted Tetrazole Peptidomimetics by Desulfurization/Electrocyclization of Thiopeptides. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Girish Prabhu
- #109, Peptide Research Laboratory; Department of Studies in Chemistry; Central College Campus, Dr. B. R. Ambedkar Veedhi; Bangalore University; Bangalore 560001 India
| | - Govindappa Nagendra
- #109, Peptide Research Laboratory; Department of Studies in Chemistry; Central College Campus, Dr. B. R. Ambedkar Veedhi; Bangalore University; Bangalore 560001 India
| | - N. R. Sagar
- #109, Peptide Research Laboratory; Department of Studies in Chemistry; Central College Campus, Dr. B. R. Ambedkar Veedhi; Bangalore University; Bangalore 560001 India
| | - Rumpa Pal
- Solid State and Structural Chemistry Unit; Indian Institute of Science; Bangalore 560 012 India
| | - Tayur N. Guru Row
- Solid State and Structural Chemistry Unit; Indian Institute of Science; Bangalore 560 012 India
| | - Vommina V. Sureshbabu
- #109, Peptide Research Laboratory; Department of Studies in Chemistry; Central College Campus, Dr. B. R. Ambedkar Veedhi; Bangalore University; Bangalore 560001 India
| |
Collapse
|
20
|
Formaggio F, Crisma M, Toniolo C, Peggion C. All-Thioamidated Homo-α-Peptides: Synthesis and Conformation. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Huang Y, Jahreis G, Lücke C, Fischer G. Rapid Nitrogen Inversion Pathway in thecis/transIsomerization of Selenoxo Peptide Bonds. Chemistry 2012; 19:1179-83. [DOI: 10.1002/chem.201203721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Indexed: 01/08/2023]
|
22
|
De Zotti M, Biondi B, Peggion C, De Poli M, Fathi H, Oancea S, Toniolo C, Formaggio F. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on folding and bioactivity. Beilstein J Org Chem 2012; 8:1161-71. [PMID: 23019444 PMCID: PMC3458734 DOI: 10.3762/bjoc.8.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/21/2012] [Indexed: 02/04/2023] Open
Abstract
Backbone modification is a common chemical tool to control the conformation of linear peptides and to explore potentially useful effects on their biochemical and biophysical properties. The thioamide, ψ[CS-NH], group is a nearly isosteric structural mimic of the amide (peptide) functionality. In this paper, we describe the solution synthesis, chemical characterization, preferred conformation, and membrane and biological activities of three, carefully selected, peptide analogues of the lipopeptaibiotic [Leu11-OMe] trichogin GA IV. In each analogue, a single thioamide replacement was incorporated. Sequence positions near the N-terminus, at the center, and near the C-terminus were investigated. Our results indicate that (i) a thioamide linkage is well tolerated in the overall helical conformation of the [Leu11-OMe] lipopeptide analogue and (ii) this backbone modification is compatible with the preservation of its typical membrane leakage and antibiotic properties, although somewhat attenuated.
Collapse
Affiliation(s)
- Marta De Zotti
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Huang Y, Jahreis G, Fischer G, Lücke C. Atomic Polarizability Dominates the Electronic Properties of Peptide Bonds upon Thioxo or Selenoxo Substitution. Chemistry 2012; 18:9841-8. [DOI: 10.1002/chem.201200863] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Indexed: 11/08/2022]
|
24
|
Abstract
Protein conformational switches alter their shape upon receiving an input signal, such as ligand binding, chemical modification, or change in environment. The apparent simplicity of this transformation--which can be carried out by a molecule as small as a thousand atoms or so--belies its critical importance to the life of the cell as well as its capacity for engineering by humans. In the realm of molecular switches, proteins are unique because they are capable of performing a variety of biological functions. Switchable proteins are therefore of high interest to the fields of biology, biotechnology, and medicine. These molecules are beginning to be exploited as the core machinery behind a new generation of biosensors, functionally regulated enzymes, and "smart" biomaterials that react to their surroundings. As inspirations for these designs, researchers continue to analyze existing examples of allosteric proteins. Recent years have also witnessed the development of new methodologies for introducing conformational change into proteins that previously had none. Herein we review examples of both natural and engineered protein switches in the context of four basic modes of conformational change: rigid-body domain movement, limited structural rearrangement, global fold switching, and folding-unfolding. Our purpose is to highlight examples that can potentially serve as platforms for the design of custom switches. Accordingly, we focus on inducible conformational changes that are substantial enough to produce a functional response (e.g., in a second protein to which it is fused), yet are relatively simple, structurally well-characterized, and amenable to protein engineering efforts.
Collapse
Affiliation(s)
| | - Stewart N. Loh
- Department of Biochemistry & Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 (USA), Tel: (315)464-8731, Fax: (315)464-8750
| |
Collapse
|
25
|
Vishwanatha TM, Narendra N, Chattopadhyay B, Mukherjee M, Sureshbabu VV. Synthesis of Selenoxo Peptides and Oligoselenoxo Peptides Employing LiAlHSeH. J Org Chem 2012; 77:2689-702. [DOI: 10.1021/jo2024703] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- T. M. Vishwanatha
- Peptide Research Laboratory,
Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore
560001, India
| | - N. Narendra
- Peptide Research Laboratory,
Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore
560001, India
| | - Basab Chattopadhyay
- Department
of Solid State Physics, Indian Association for the Cultivation of Science,
Jadavpur, Kolkata 700032, India
| | - Monika Mukherjee
- Department
of Solid State Physics, Indian Association for the Cultivation of Science,
Jadavpur, Kolkata 700032, India
| | - Vommina V. Sureshbabu
- Peptide Research Laboratory,
Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore
560001, India
| |
Collapse
|
26
|
Zhang B, Gong J, Yang Y, Dong S. Synthesis and diuretic activities of pseudoproline-containing analogues of the insect kinin core pentapeptide. J Pept Sci 2011; 17:601-3. [DOI: 10.1002/psc.1396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 11/12/2022]
|
27
|
Zhang W, Li J, Liu LW, Wang KR, Song JJ, Yan JX, Li ZY, Zhang BZ, Wang R. A novel analog of antimicrobial peptide Polybia-MPI, with thioamide bond substitution, exhibits increased therapeutic efficacy against cancer and diminished toxicity in mice. Peptides 2010; 31:1832-8. [PMID: 20600424 DOI: 10.1016/j.peptides.2010.06.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/23/2010] [Accepted: 06/23/2010] [Indexed: 10/19/2022]
Abstract
Polybia-MPI (MPI), a short cationic α-helical antimicrobial peptide, exhibited excellent anticancer activity and selectivity in vitro in our previous studies. To improve its in vivo application, we synthesized an analog (MPI-1) of MPI by replacing the C terminal amide -[CO-NH(2)] with thioamide -ψ[CS-NH(2)]. Although there is just one atom difference, the MPI-1 exhibited some surprising properties. In vitro studies revealed that MPI-1 exhibited relatively high lytic activity over MPI, whereas its stability to enzymatic degradation in serum was improved remarkably. Despite the enhanced toxicity in vitro, MPI-1 exhibited significantly lower mortality to mice than MPI at 75 mg/kg. Importantly, in vivo anticancer activity study indicated that MPI-1 could remarkably suppress the growth of sarcoma xenograft tumors more efficiently than MPI. Therefore, the significantly improved anticancer activity and predominantly lower in vivo toxicity might allow MPI-1 to be a good candidate for future anticancer treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, Gansu 730000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Huang Y, Jahreis G, Lücke C, Wildemann D, Fischer G. Modulation of the peptide backbone conformation by the selenoxo photoswitch. J Am Chem Soc 2010; 132:7578-9. [PMID: 20481495 DOI: 10.1021/ja1019386] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photocontrol of the backbone conformation is a useful step forward in regulating the bioactivities of peptides and proteins by means of external signals. In the present work, the selenium analogue of a peptide bond was introduced into tetrapeptides to obtain surprisingly stable selenoxo peptides. Selenoxo peptide bonds allow for a marked increase of cis content in the photostationary state of peptide chains when irradiated with UV light near 290 nm. Slow thermal re-equilibration with rate constants between 9.9 x 10(-4) and 1.3 x 10(-5) s(-1) shows that the transient nonequilibrium conformations exist long enough to monitor the isomer specificity of biochemical reactions.
Collapse
Affiliation(s)
- Yun Huang
- Max-Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle/Saale, Germany
| | | | | | | | | |
Collapse
|
29
|
Cong ZY, Yang LF, Jiang L, Ye D, Dong SL. Comparison of two thioxopeptide bond photoswitches in insect kinin. CHINESE CHEM LETT 2010. [DOI: 10.1016/j.cclet.2009.12.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Mielcarek J, Grobelny P, Osmałek T. Identification of photoproducts of fluvastatin in solutions. JPC-J PLANAR CHROMAT 2009. [DOI: 10.1556/jpc.22.2009.2.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|