1
|
Ezzine A, Ben Hadj Mohamed S, Bezzine S, Aoudi Y, Hajlaoui MR, Baciou L, Smaali I. Improved Expression of a Thermostable GH18 Bacterial Chitinase in Two Different Escherichia coli Strains and Its Potential Use in Plant Protection and Biocontrol of Phytopathogenic Fungi. Mol Biotechnol 2024; 66:2635-2647. [PMID: 38265740 DOI: 10.1007/s12033-023-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024]
Abstract
Chitinases are enzymes that can break down chitin, a major component of the exoskeleton of insects and fungi. This feature makes them potential biopesticides in agriculture since they are considered a safe and environmentally friendly alternative to synthetic pesticides. In this work, we performed a comparative study between two different bacterial expression strains to produce a recombinant chitinase with improved stability. Escherichia coli strains Origami B and BL21 (DE3) were selected for their distinct cytosolic environment to express BhChitA chitinase of Bacillus halodurans C-125 and to investigate the role of disulfide bond formation and proper folding on its stability and activity. Expression of the recombinant BhChitA in bacterial strain containing oxidative cytosol (Origami B) improved its activity and stability. Although both expression systems have comparable biochemical properties (temperature range 20-80 °C and pH spectrum 3-10), BhChitA expressed in Origami strain seems more stable than expressed in BL21. Furthermore, the optimal expression conditions of the recombinant BhChitA has been carried out at 30 °C during 6 h for the Origami strain, against 20 °C during 2 h for BL21. On the other hand, no significant differences were detected between the two enzymes when the effect of metal ions was tested. These findings correlate with the analysis of the overall structure of BhChitA. The model structure permitted to localize disulfide bond, which form a stable connection between the substrate-binding residues and the hydrophobic core. This link is required for efficient binding of the chitin insertion domain to the substrate. BhChitA exhibited in vitro antifungal effect against phytopathogenic fungi and suppressed necrosis of Botrytis cinerea on detached tomato leaves. In vitro assays showed the influence of BhChitA on growth suppression of Botrytis cinerea (53%) Aspergillus niger (65%), Fusarium graminearum (25%), and Fusarium oxysporum (34%). Our results highlight the importance of the bacterial expression system with oxidative cytosol in producing promising biopesticides that can be applied for post-harvest processing and crop protection.
Collapse
Affiliation(s)
- Aymen Ezzine
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia.
- Higher Institute of Preparatory Studies in Biology and Geology (ISEP-BG), 49 Avenue 13 Août, Choutrana II, 2036, Soukra, Tunisia.
| | - Safa Ben Hadj Mohamed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
| | - Sofiane Bezzine
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
- Higher Institute of Preparatory Studies in Biology and Geology (ISEP-BG), 49 Avenue 13 Août, Choutrana II, 2036, Soukra, Tunisia
| | - Yosra Aoudi
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, 183-8509, Fuchu, Japan
| | - Mohamed Rabeh Hajlaoui
- National Institute of Agronomic Research (INRAT), Laboratory of Biotechnology Applied to Agriculture, 1004, El Menzah, Tunis, Tunisia
| | - Laura Baciou
- Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Issam Smaali
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
| |
Collapse
|
2
|
Abdelrahman MM, Alhidary IA, Alobre MM, Matar AM, Alharthi AS, Faye B, Aljumaah RS. Regional and Seasonal Variability of Mineral Patterns in Some Organs of Slaughtered One-Humped Camels [ Camelus dromedarius] from Saudi Arabia. Animals (Basel) 2022; 12:ani12233343. [PMID: 36496861 PMCID: PMC9736909 DOI: 10.3390/ani12233343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Camel products are receiving great interest worldwide because of their high functional properties and nutritive values. Therefore, this study was focused on the variation of copper [Cu], zinc [Zn], manganese [Mn], selenium [Se], iron [Fe], iodine [I], and some heavy metals, cobalt [Co], lead [Pb], and cadmium [Cd], in the blood and tissues of slaughtered camels from five regions in Saudi Arabia [SA] during the summer and winter seasons, because environmental factors vary from region to region. Whole blood, meat, liver, rumen fluid, and rumen tissues were collected from the slaughterhouse in each region during the two seasons. Moreover, samples were prepared and analyzed for trace mineral and heavy metal concentrations using ICP-MS. The data were statistically analyzed as part of a complete randomized design and correlation analysis for season and location using SAS. The findings revealed a pattern in the minerals, with Ca being the only mineral that was unrelated to other minerals in the liver. For lead and cadmium, our mean value in liver [0.40 µg/g] was below the limit of the EU standard for cadmium [0.50 µg/g], while in meat and liver, lead contents [1.62 µg/g and 2.57 µg/g, respectively] were above the limit of the EU standard [0.10 and 0.20 µg/g, respectively]. For meat, the significantly highest positive correlations were observed between P and Mg [R2 = 0.928], Fe and Mn [R2 = 0.860], and Co and Mn [R2 = 0.821]. For rumen tissues, P and Mg were highly correlated [R2 = 0.958] as well as Zn and Mg [R2 = 0.857], Zn and P [R2 = 0.836], and Fe and Ca [R2 = 0.802]. As a result, a region and season reflect variations in mineral concentrations in SA during the summer and winter seasons. Further intensive research is needed to investigate the minerals' biological mechanisms in camels under different environmental conditions.
Collapse
Affiliation(s)
- Mutassim M. Abdelrahman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
- Correspondence: ; Tel.: +966-56-619-4484
| | - Ibrahim A. Alhidary
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Mohsen M. Alobre
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Abdulkareem M. Matar
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Abdulrahman S. Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Bernard Faye
- CIRAD-ES, UMR SELMET, Campus International de Baillarguet, 34398 Montpellier, France
- Department of Biotechnology, Faculty of Biology and Biotechnology, Kazakh National University Al-Farabi, Almaty 050013, Kazakhstan
| | - Riyadh S. Aljumaah
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| |
Collapse
|
3
|
Boumaiza M, Poli M, Carmona F, Asperti M, Gianoncelli A, Bertuzzi M, Arosio P, Marzouki MN. Cellular binding analysis of recombinant hybrid heteropolymer of camel hepcidin and human ferritin H chain. The unexpected human H-ferritin binding to J774 murine macrophage cells. Mol Biol Rep 2019; 47:1265-1273. [PMID: 31838658 DOI: 10.1007/s11033-019-05234-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/07/2019] [Indexed: 11/24/2022]
Abstract
Ferritin is a molecule with enormous potentiality in biotechnology that have been already used to encapsulate molecules, as contrast in magnetic resonance imaging and to carry epitopes. We proposed to use it to carry another key protein of iron metabolism, hepcidin that is a small hormone peptide that control systemic iron homeostasis. In this work, we purified the previously produced camel hepcidin and human H-ferritin heteropolymer (HepcH-FTH) and to monitor its binding capability toward J744 cell line in presence or absence of ferric ammonium citrate. Fused camel hepcidin and human H-ferritin monomer (HepcH) as well as the assembled HepcH-FTH heteropolymer (ratio 1:5) was easily purified by a one-step purification using size exclusion chromatography. SDS-PAGE electrophoresis of HepcH, purified from soluble and insoluble fractions, showed a single band of 24 kDa with an estimated purity of at least 90%. The purification yields of HepcH from the soluble and insoluble fractions was, respectively, of about 6.80 and 2 mg/L of bacterial culture. Time curse cellular binding assays of HepcH-FTH revealed its great potential to bind the J774 cells after 15 min of incubation. Furthermore, HepcH-FTH was able to degrade ferroportin, the unique hepcidin receptor, even after 30 min of incubation with J774 cells treated with 100 µM ferric ammonium citrate. In conclusion, we proposed ferritin as a peptide carrier to promote the association of the hybrid HepcH-FTH nanoparticle with a particular type of cell for therapeutic or diagnostic.
Collapse
Affiliation(s)
- Mohamed Boumaiza
- Laboratoire d'ingénierie des protéines et des molécules bioactives, Institut Nationale des Sciences Appliquées et de Technologie (I.N.S.A.T.), BP 676, 1080, Tunis Cedex, Tunisia. .,Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Biofermentation Unit, Institut Pasteur de Tunis, 13, place Pasteur, BP. 74, 1002, Tunis, Tunisia.
| | - Maura Poli
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Fernando Carmona
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Michela Asperti
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Alessandra Gianoncelli
- Proteomics Platform, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Michela Bertuzzi
- Proteomics Platform, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Paolo Arosio
- Proteomics Platform, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Mohamed Nejib Marzouki
- Laboratoire d'ingénierie des protéines et des molécules bioactives, Institut Nationale des Sciences Appliquées et de Technologie (I.N.S.A.T.), BP 676, 1080, Tunis Cedex, Tunisia
| |
Collapse
|
4
|
Abstract
Hepcidin, belonging to the β-defensin family, was isolated for the first time from plasma and human urine. It is a cationic peptide, rich in cysteine bound with four disulfide bridges, which plays a major role in innate immunity and iron homeostasis. Some vertebrate species have multiple hepcidin homolog genes and each contains only one copy that functions as an iron regulator except hepcidin sequences in the pigeon (Columba livia). The aim of this chapter is to investigate the molecular evolution of several hepcidin gene from searches of the literature and public genomic databases from 17 different species, all among the vertebrates.
Collapse
Affiliation(s)
- Mohamed Boumaiza
- Laboratoire d'ingénierie des protéines et des molécules bioactives, Institut Nationale des Sciences Appliquées et de Technologie (I.N.S.A.T.), Tunis, Tunisie.
| | - Sondes Abidi
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, Université Carthage, Zarzouna, Tunisie
| |
Collapse
|
5
|
Boumaiza M, Carmona F, Poli M, Asperti M, Gianoncelli A, Bertuzzi M, Ruzzenenti P, Arosio P, Marzouki MN. Production and characterization of functional recombinant hybrid heteropolymers of camel hepcidin and human ferritin H and L chains. Protein Eng Des Sel 2016; 30:77-84. [PMID: 27980120 DOI: 10.1093/protein/gzw066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/24/2016] [Accepted: 11/16/2016] [Indexed: 11/14/2022] Open
Abstract
Hepcidin is a liver-synthesized hormone that plays a central role in the regulation of systemic iron homeostasis. To produce a new tool for its functional properties the cDNA coding for camel hepcidin-25 was cloned at the 5'end of human FTH sequence into the pASK-IBA43plus vector for expression in Escherichia coli The recombinant fusion hepcidin-ferritin-H subunit was isolated as an insoluble iron-containing protein. When alone it did not refold in a 24-mer ferritin molecule, but it did when renatured together with H- or L-ferritin chains. We obtained stable ferritin shells exposing about 4 hepcidin peptides per 24-mer shell. The molecules were then reduced and re-oxidized in a controlled manner to allow the formation of the proper hepcidin disulfide bridges. The functionality of the exposed hepcidin was confirmed by its ability to specifically bind the mouse macrophage cell line J774 that express ferroportin and to promote ferroportin degradation. This chimeric protein may be useful for studying the hepcidin-ferroportin interaction in cells and also as drug-delivery agent.
Collapse
Affiliation(s)
- Mohamed Boumaiza
- Laboratoire d'ingénierie des protéines et des molécules bioactives, Institut Nationale des Sciences Appliquées et de Technologie (I.N.S.A.T.) BP 676, Tunis Cedex 1080, Tunisie
| | - Fernando Carmona
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11 , Brescia, Italy
| | - Maura Poli
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11 , Brescia, Italy
| | - Michela Asperti
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11 , Brescia, Italy
| | - Alessandra Gianoncelli
- Proteomics Platform, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Michela Bertuzzi
- Proteomics Platform, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Paola Ruzzenenti
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11 , Brescia, Italy
| | - Paolo Arosio
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11 , Brescia, Italy
| | - Mohamed Nejib Marzouki
- Laboratoire d'ingénierie des protéines et des molécules bioactives, Institut Nationale des Sciences Appliquées et de Technologie (I.N.S.A.T.) BP 676, Tunis Cedex 1080, Tunisie
| |
Collapse
|
6
|
Boumaiza M, Chahed H, Ezzine A, Jaouen M, Gianoncelli A, Longhi G, Carmona F, Arosio P, Sari MA, Marzouki MN. Recombinant overexpression of camel hepcidin cDNA in Pichia pastoris: purification and characterization of the polyHis-tagged peptide HepcD-His. J Mol Recognit 2016; 30. [PMID: 27507710 DOI: 10.1002/jmr.2561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/20/2016] [Accepted: 07/15/2016] [Indexed: 11/09/2022]
Abstract
Hepcidin, a liver-expressed antimicrobial peptide, has been demonstrated to act as an iron regulatory hormone as well as to exert a wide spectrum of antimicrobial activity. The aim of this work was the expression, as secreted peptide, purification, and characterization of a new recombinant polyHis-tagged camel hepcidin (HepcD-His) in yeast Pichia pastoris. The use of this eukaryotic expression system, for the production of HepcD-His, having 6 histidine residues at its C terminus, was simpler and more efficient compared with the use of the prokaryotic system Escherichia coli. Indeed, a single purification step was required to isolate the soluble hepcidin with purity estimated more that 94% and a yield of 2.8 against 0.2 mg/L for the E coli system. Matrix-assisted laser desorption/ionization time-of-flight (TOF)/TOF mass spectrometry of the purified HepcD-His showed 2 major peaks at m/z 4524.64 and 4634.56 corresponding to camel hepcidin with 39 and 40 amino acids. Evaluation of disulfide bond connectivity with the Ellman method showed an absence of free thiol groups, testifying that the 8 cysteine residues in the peptide are displayed, forming 4 disulfide bridges. Circular dichroism spectroscopy showed that camel hepcidin structure was significantly modified at high temperature of 90°C and returns to its original structure when incubation temperature drops back to 20°C. Interestingly, this peptide showed also a greater bactericidal activity, at low concentration of 9.5μM, against E coli, than the synthetic analog DH3. Thus, the production, at a large scale, of the recombinant camel hepcidin, HepcD-His, may be helpful for future therapeutic applications including bacterial infection diseases.
Collapse
Affiliation(s)
- Mohamed Boumaiza
- Laboratoire d'ingénierie des protéines et des molécules bioactives (LIP-MB), Institut National des Sciences Appliquées et de Technologie, Université de Carthage, BP 676, 1080, Tunis Cedex, Tunis, Tunisia
| | - Haifa Chahed
- Laboratoire d'ingénierie des protéines et des molécules bioactives (LIP-MB), Institut National des Sciences Appliquées et de Technologie, Université de Carthage, BP 676, 1080, Tunis Cedex, Tunis, Tunisia
| | - Aymen Ezzine
- Laboratoire d'ingénierie des protéines et des molécules bioactives (LIP-MB), Institut National des Sciences Appliquées et de Technologie, Université de Carthage, BP 676, 1080, Tunis Cedex, Tunis, Tunisia
| | - Maryse Jaouen
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, Université Paris Descartes, CNRS, 45 rue des Saints Pères, 75270, Paris Cedex 06, Paris, France
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, DMMT, University of Brescia, Viale Europa 11, 25123, Brescia, Brescia, Italy
| | - Giovanna Longhi
- Department of Molecular and Translational Medicine, DMMT, University of Brescia, Viale Europa 11, 25123, Brescia, Brescia, Italy
| | - Fernando Carmona
- Department of Molecular and Translational Medicine, DMMT, University of Brescia, Viale Europa 11, 25123, Brescia, Brescia, Italy
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, DMMT, University of Brescia, Viale Europa 11, 25123, Brescia, Brescia, Italy
| | - Marie-Agnès Sari
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, Université Paris Descartes, CNRS, 45 rue des Saints Pères, 75270, Paris Cedex 06, Paris, France
| | - Mohamed Nejib Marzouki
- Laboratoire d'ingénierie des protéines et des molécules bioactives (LIP-MB), Institut National des Sciences Appliquées et de Technologie, Université de Carthage, BP 676, 1080, Tunis Cedex, Tunis, Tunisia
| |
Collapse
|
7
|
Wronska MA, O'Connor IB, Tilbury MA, Srivastava A, Wall JG. Adding Functions to Biomaterial Surfaces through Protein Incorporation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5485-5508. [PMID: 27164952 DOI: 10.1002/adma.201504310] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 03/16/2016] [Indexed: 06/05/2023]
Abstract
The concept of biomaterials has evolved from one of inert mechanical supports with a long-term, biologically inactive role in the body into complex matrices that exhibit selective cell binding, promote proliferation and matrix production, and may ultimately become replaced by newly generated tissues in vivo. Functionalization of material surfaces with biomolecules is critical to their ability to evade immunorecognition, interact productively with surrounding tissues and extracellular matrix, and avoid bacterial colonization. Antibody molecules and their derived fragments are commonly immobilized on materials to mediate coating with specific cell types in fields such as stent endothelialization and drug delivery. The incorporation of growth factors into biomaterials has found application in promoting and accelerating bone formation in osteogenerative and related applications. Peptides and extracellular matrix proteins can impart biomolecule- and cell-specificities to materials while antimicrobial peptides have found roles in preventing biofilm formation on devices and implants. In this progress report, we detail developments in the use of diverse proteins and peptides to modify the surfaces of hard biomaterials in vivo and in vitro. Chemical approaches to immobilizing active biomolecules are presented, as well as platform technologies for isolation or generation of natural or synthetic molecules suitable for biomaterial functionalization.
Collapse
Affiliation(s)
- Małgorzata A Wronska
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Iain B O'Connor
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Maura A Tilbury
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Akshay Srivastava
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - J Gerard Wall
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| |
Collapse
|
8
|
Chen W, Wang X, Huang LI, Liu BO. Hepcidin in non-alcoholic fatty liver disease regulated by the TLR4/NF-κB signaling pathway. Exp Ther Med 2015; 11:73-76. [PMID: 26889220 PMCID: PMC4726853 DOI: 10.3892/etm.2015.2873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/17/2015] [Indexed: 02/06/2023] Open
Abstract
The aim of our study was to analyze the role of toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signal pathway on Hepcidin regulation in non-alcoholic fatty liver disease (NAFLD). A total of 60 male Sprague-Dawley rats were randomly divided into the control, NAFLD and intervention groups. Rats in the control group were fed with standard laboratory diet, and rats in the NAFLD and intervention groups were fed with a high-fat diet. A final volume of 2 ml of pathenolide (10 µmol/l) was administered intraperitoneally only to the rats in the intervention group. The tissue sections were stained with hematoxylin and eosin and the pathological changes in liver tissues were observed and scored. The levels of TLR4 and NF-κB in liver tissues were quantified by western blotting. NAFLD rats appeared to have typical liver fatty degeneration and the expression of TLR4/NF-κB proteins and Hepcidin mRNA was significantly higher than that in the control group (P<0.05). However, the pathological changes observed in the intervention group had a marked improvement with a significant reduction in the TLR4/NF-κB protein and Hepcidin mRNA expression (P<0.05). In conclusion, the abnormal activation of the TLR4/NF-κB signaling pathway may cause NAFLD through the overexpression of Hepcidin.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Xiangyang Hospital Affiliated to Hubei University of Medicine, Xiangyang, Hubei 441000, P.R China
| | - Xiaowei Wang
- Department of Gastroenterology, Xiangyang Hospital Affiliated to Hubei University of Medicine, Xiangyang, Hubei 441000, P.R China
| | - L I Huang
- Department of Neurology, Xiangyang Hospital Affiliated to Hubei University of Medicine, Xiangyang, Hubei 441000, P.R China
| | - B O Liu
- Department of Gastroenterology, Xiangyang Hospital Affiliated to Hubei University of Medicine, Xiangyang, Hubei 441000, P.R China
| |
Collapse
|
9
|
Boumaiza M, Jaouen M, Deschemin JC, Ezzine A, Khalaf NB, Vaulont S, Marzouki MN, Sari MA. Expression and purification of a new recombinant camel hepcidin able to promote the degradation of the iron exporter ferroportin1. Protein Expr Purif 2015; 115:11-8. [DOI: 10.1016/j.pep.2015.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 01/03/2023]
|
10
|
Insights into the antimicrobial properties of hepcidins: advantages and drawbacks as potential therapeutic agents. Molecules 2015; 20:6319-41. [PMID: 25867823 PMCID: PMC6272296 DOI: 10.3390/molecules20046319] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 01/24/2023] Open
Abstract
The increasing frequency of multi-drug resistant microorganisms has driven research into alternative therapeutic strategies. In this respect, natural antimicrobial peptides (AMPs) hold much promise as candidates for the development of novel antibiotics. However, AMPs have some intrinsic drawbacks, such as partial degradation by host proteases or inhibition by host body fluid composition, potential toxicity, and high production costs. This review focuses on the hepcidins, which are peptides produced by the human liver with a known role in iron homeostasis, as well by numerous other organisms (including fish, reptiles, other mammals), and their potential as antibacterial and antifungal agents. Interestingly, the antimicrobial properties of human hepcidins are enhanced at acidic pH, rendering these peptides appealing for the design of new drugs targeting infections that occur in body areas with acidic physiological pH. This review not only considers current research on the direct killing activity of these peptides, but evaluates the potential application of these molecules as coating agents preventing biofilm formation and critically assesses technical obstacles preventing their therapeutic application.
Collapse
|