1
|
Mukherjee J, Sharma R, Dutta P, Bhunia B. Artificial intelligence in healthcare: a mastery. Biotechnol Genet Eng Rev 2024; 40:1659-1708. [PMID: 37013913 DOI: 10.1080/02648725.2023.2196476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
There is a vast development of artificial intelligence (AI) in recent years. Computational technology, digitized data collection and enormous advancement in this field have allowed AI applications to penetrate the core human area of specialization. In this review article, we describe current progress achieved in the AI field highlighting constraints on smooth development in the field of medical AI sector, with discussion of its implementation in healthcare from a commercial, regulatory and sociological standpoint. Utilizing sizable multidimensional biological datasets that contain individual heterogeneity in genomes, functionality and milieu, precision medicine strives to create and optimize approaches for diagnosis, treatment methods and assessment. With the arise of complexity and expansion of data in the health-care industry, AI can be applied more frequently. The main application categories include indications for diagnosis and therapy, patient involvement and commitment and administrative tasks. There has recently been a sharp rise in interest in medical AI applications due to developments in AI software and technology, particularly in deep learning algorithms and in artificial neural network (ANN). In this overview, we enlisted the major categories of issues that AI systems are ideally equipped to resolve followed by clinical diagnostic tasks. It also includes a discussion of the future potential of AI, particularly for risk prediction in complex diseases, and the difficulties, constraints and biases that must be meticulously addressed for the effective delivery of AI in the health-care sector.
Collapse
Affiliation(s)
- Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy Affiliated to Jawaharlal Nehru Technological University, Hyderabad, Telangana, India
| | - Ramesh Sharma
- Department of Bioengineering, National Institute of Technology, Agartala, India
| | - Prasenjit Dutta
- Department of Production Engineering, National Institute of Technology, Agartala, India
| | - Biswanath Bhunia
- Department of Bioengineering, National Institute of Technology, Agartala, India
| |
Collapse
|
2
|
Deep Learning Based-Virtual Screening Using 2D Pharmacophore Fingerprint in Drug Discovery. Neural Process Lett 2022. [DOI: 10.1007/s11063-022-10879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Lin X, Li X, Lin X. A Review on Applications of Computational Methods in Drug Screening and Design. Molecules 2020; 25:E1375. [PMID: 32197324 PMCID: PMC7144386 DOI: 10.3390/molecules25061375] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Drug development is one of the most significant processes in the pharmaceutical industry. Various computational methods have dramatically reduced the time and cost of drug discovery. In this review, we firstly discussed roles of multiscale biomolecular simulations in identifying drug binding sites on the target macromolecule and elucidating drug action mechanisms. Then, virtual screening methods (e.g., molecular docking, pharmacophore modeling, and QSAR) as well as structure- and ligand-based classical/de novo drug design were introduced and discussed. Last, we explored the development of machine learning methods and their applications in aforementioned computational methods to speed up the drug discovery process. Also, several application examples of combining various methods was discussed. A combination of different methods to jointly solve the tough problem at different scales and dimensions will be an inevitable trend in drug screening and design.
Collapse
Affiliation(s)
- Xiaoqian Lin
- Institute of Single Cell Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China;
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiu Li
- School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China;
| | - Xubo Lin
- Institute of Single Cell Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China;
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
Saxena D, Sharma A, Siddiqui MH, Kumar R. Blood Brain Barrier Permeability Prediction Using Machine Learning Techniques: An Update. Curr Pharm Biotechnol 2019; 20:1163-1171. [DOI: 10.2174/1389201020666190821145346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/01/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
Abstract
Blood Brain Barrier (BBB) is the collection of vessels of blood with special properties of
permeability that allow a limited range of drug and compounds to pass through it. The BBB plays a vital
role in maintaining balance between intracellular and extracellular environment for brain. Brain Capillary
Endothelial Cells (BECs) act as vehicle for transport and the transport mechanisms across BBB
involve active and passive diffusion of compounds. Efficient prediction models of BBB permeability
can be vital at the preliminary stages of drug development. There have been persistent efforts in identifying
the prediction of BBB permeability of compounds employing multiple machine learning methods
in an attempt to minimize the attrition rate of drug candidates taking up preclinical and clinical trials.
However, there is an urgent need to review the progress of such machine learning derived prediction
models in the prediction of BBB permeability. In the current article, we have analyzed the recently developed
prediction model for BBB permeability using machine learning.
Collapse
Affiliation(s)
- Deeksha Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow-226028, Uttar Pradesh, India
| | - Anju Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow-226028, Uttar Pradesh, India
| | - Mohammed H. Siddiqui
- Department of Bioengineering, Integral University, Dasauli, P.O. Basha, Kursi Road, Lucknow, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow-226028, Uttar Pradesh, India
| |
Collapse
|
5
|
Mousavizadegan M, Mohabatkar H. Computational prediction of antifungal peptides via Chou’s PseAAC and SVM. J Bioinform Comput Biol 2018; 16:1850016. [PMID: 30105927 DOI: 10.1142/s0219720018500166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
With the increase in immunocompromised patients in the recent years, fungal infections have emerged as new and serious threat in hospitals. This, and the insufficiency of current antifungal therapies alongside their toxic effects on patients, has led to the increased interest in seeking new antifungal peptides. In the present study, we have developed a prediction method for screening of antifungal peptides. For this, we have chosen Chou’s pseudo amino acid composition (PseAAC) to translate peptide sequences into numeric values. Thus, the SVM classifier was performed for binomial classification of antifungal peptides. The performance of the classifier was evaluated via ten-fold cross-validation and an independent dataset. For further validation of the model developed, 22 P24-derived peptides were predicted using the classifier and in vitro assays were performed on the three peptides with the highest prediction score. The results showed that the PseAAC [Formula: see text] SVM method is able to predict AFPs with ACC of 94.76%. In vitro results also validate the SEN and SPC of the classifier. The results suggest that the computational approach used in this study is highly efficient for prediction of antifungal peptides, which can save time and money in AFP screening and synthesis of novel peptides.
Collapse
Affiliation(s)
- Maryam Mousavizadegan
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| |
Collapse
|
6
|
Poorinmohammad N, Hamedi J, Moghaddam MHAM. Sequence-based analysis and prediction of lantibiotics: A machine learning approach. Comput Biol Chem 2018; 77:199-206. [PMID: 30342319 DOI: 10.1016/j.compbiolchem.2018.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/15/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
Abstract
Lantibiotics, an important group of ribosomally synthesized peptides, represent an important arsenal of novel promising antimicrobials showing high potency in fighting against the prevalence of antibiotic resistance among microbial pathogens. However, due to the lack of high throughput strategies for the isolation and identification of these compounds, our information regarding their structure and especially sequence-based properties is far from complete. Therefore, in the present study, a comprehensive sequence-based analysis of these peptides was performed with the help of machine learning approach together with a feature selection technique. Meanwhile, an attempt to develop an accurate computational model for prediction of lantibiotics was made via constructing two datasets of 280 and 190 lantibiotic and non-lantibiotic antimicrobial peptide sequences, respectively. Based on the conducted approach and as a result of our search for a subset of relevant features of lantibiotics, particular types of sequenced-based features were observed to be preferred in lantibiotics, the knowledge-based implementation of which can be used as strategies for lantibiotic bioengineering purposes. Moreover, a SMO-based classifier was developed for the prediction of lantibiotics with the accuracy and specificity values of 88.5% and 94%, respectively which shows the great potential of the developed algorithm for the prediction of lantibiotcs. Conclusively, the accurate predictor algorithm as well as the identified sequence-based distinctiveness properties of lantibiotics can give valuable information in both the fields of lantibiotic discovery and bioengineering.
Collapse
Affiliation(s)
- Naghmeh Poorinmohammad
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran; Microbial Technology and Products Research Center, University of Tehran, Tehran, Iran
| | - Javad Hamedi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran; Microbial Technology and Products Research Center, University of Tehran, Tehran, Iran.
| | - Mohammad Hossein Abbaspour Motlagh Moghaddam
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran; Microbial Technology and Products Research Center, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Song J, Li F, Takemoto K, Haffari G, Akutsu T, Chou KC, Webb GI. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework. J Theor Biol 2018; 443:125-137. [DOI: 10.1016/j.jtbi.2018.01.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
|
8
|
Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today 2017; 22:1680-1685. [PMID: 28881183 DOI: 10.1016/j.drudis.2017.08.010] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/13/2017] [Accepted: 08/30/2017] [Indexed: 01/29/2023]
Abstract
Machine intelligence, which is normally presented as artificial intelligence, refers to the intelligence exhibited by computers. In the history of rational drug discovery, various machine intelligence approaches have been applied to guide traditional experiments, which are expensive and time-consuming. Over the past several decades, machine-learning tools, such as quantitative structure-activity relationship (QSAR) modeling, were developed that can identify potential biological active molecules from millions of candidate compounds quickly and cheaply. However, when drug discovery moved into the era of 'big' data, machine learning approaches evolved into deep learning approaches, which are a more powerful and efficient way to deal with the massive amounts of data generated from modern drug discovery approaches. Here, we summarize the history of machine learning and provide insight into recently developed deep learning approaches and their applications in rational drug discovery. We suggest that this evolution of machine intelligence now provides a guide for early-stage drug design and discovery in the current big data era.
Collapse
Affiliation(s)
- Lu Zhang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jianjun Tan
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Dan Han
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, 100124, China
| | - Hao Zhu
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, 100124, China; Department of Chemistry, Rutgers University, Camden, NJ 08102, USA; The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA.
| |
Collapse
|