1
|
Marchant P, Vivanco E, Silva A, Nevermann J, Fuentes I, Barrera B, Otero C, Calderón IL, Gil F, Fuentes JA. β-lactam-induced OMV release promotes polymyxin tolerance in Salmonella enterica sv. Typhi. Front Microbiol 2024; 15:1389663. [PMID: 38591031 PMCID: PMC10999688 DOI: 10.3389/fmicb.2024.1389663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The rise of multidrug-resistant bacteria is a global concern, leading to a renewed reliance on older antibiotics like polymyxins as a last resort. Polymyxins, cationic cyclic peptides synthesized nonribosomally, feature a hydrophobic acyl tail and positively charged residues. Their antimicrobial mechanism involves initial interaction with Gram-negative bacterial outer-membrane components through polar and hydrophobic interactions. Outer membrane vesicles (OMVs), nano-sized proteoliposomes secreted from the outer membrane of Gram-negative bacteria, play a crucial role in tolerating harmful molecules, including cationic peptides such as polymyxins. Existing literature has documented environmental changes' impact on modulating OMV properties in Salmonella Typhimurium. However, less information exists regarding OMV production and characteristics in Salmonella Typhi. A previous study in our laboratory showed that S. Typhi ΔmrcB, a mutant associated with penicillin-binding protein (PBP, a β-lactam antibiotic target), exhibited hypervesiculation. Consequently, this study investigated the potential impact of β-lactam antibiotics on promoting polymyxin tolerance via OMVs in S. Typhi. Our results demonstrated that sub-lethal doses of β-lactams increased bacterial survival against polymyxin B in S. Typhi. This phenomenon stems from β-lactam antibiotics inducing hypervesiculation of OMVs with higher affinity for polymyxin B, capturing and diminishing its biologically effective concentration. These findings suggest that β-lactam antibiotic use may inadvertently contribute to decreased polymyxin effectivity against S. Typhi or other Gram-negative bacteria, complicating the effective treatment of infections caused by these pathogens. This study emphasizes the importance of evaluating the influence of β-lactam antibiotics on the interaction between OMVs and other antimicrobial agents.
Collapse
Affiliation(s)
- Pedro Marchant
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Erika Vivanco
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Andrés Silva
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jan Nevermann
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Ignacio Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Boris Barrera
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago, Chile
| | - Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Iván L. Calderón
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Universidad Andres Bello, Santiago, Chile
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
2
|
Panda G, Dash S, Sahu SK. Harnessing the Role of Bacterial Plasma Membrane Modifications for the Development of Sustainable Membranotropic Phytotherapeutics. MEMBRANES 2022; 12:914. [PMID: 36295673 PMCID: PMC9612325 DOI: 10.3390/membranes12100914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Membrane-targeted molecules such as cationic antimicrobial peptides (CAMPs) are amongst the most advanced group of antibiotics used against drug-resistant bacteria due to their conserved and accessible targets. However, multi-drug-resistant bacteria alter their plasma membrane (PM) lipids, such as lipopolysaccharides (LPS) and phospholipids (PLs), to evade membrane-targeted antibiotics. Investigations reveal that in addition to LPS, the varying composition and spatiotemporal organization of PLs in the bacterial PM are currently being explored as novel drug targets. Additionally, PM proteins such as Mla complex, MPRF, Lpts, lipid II flippase, PL synthases, and PL flippases that maintain PM integrity are the most sought-after targets for development of new-generation drugs. However, most of their structural details and mechanism of action remains elusive. Exploration of the role of bacterial membrane lipidome and proteome in addition to their organization is the key to developing novel membrane-targeted antibiotics. In addition, membranotropic phytochemicals and their synthetic derivatives have gained attractiveness as popular herbal alternatives against bacterial multi-drug resistance. This review provides the current understanding on the role of bacterial PM components on multidrug resistance and their targeting with membranotropic phytochemicals.
Collapse
Affiliation(s)
- Gayatree Panda
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| |
Collapse
|
3
|
Walrant A, Sachon E. Photolabeling Strategies to Study Membranotropic Peptides Interacting with Lipids and Proteins in Membranes. Bioconjug Chem 2021; 32:1503-1514. [PMID: 34160213 DOI: 10.1021/acs.bioconjchem.1c00291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membranotropic peptides is a class of peptides that exert their biological action at the level of cell membranes. Understanding how they interact with their different membrane binding partners (lipids, proteins, and/or glycoconjugates) is important to decipher their mechanism of action. Affinity photolabeling is a powerful method to study noncovalent interactions and provide a submolecular picture of the contacts between two interacting partners. In this review, we give a panorama of photolabeling-based studies of the interactions between membranotropic peptides and membranes using either photoreactive lipids or peptides.
Collapse
Affiliation(s)
- Astrid Walrant
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
| | - Emmanuelle Sachon
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France.,Sorbonne Université, Mass Spectrometry Sciences Sorbonne University, MS3U platform, UFR 926, UFR 927, 75005, Paris, France
| |
Collapse
|
4
|
Marchant P, Carreño A, Vivanco E, Silva A, Nevermann J, Otero C, Araya E, Gil F, Calderón IL, Fuentes JA. "One for All": Functional Transfer of OMV-Mediated Polymyxin B Resistance From Salmonella enterica sv. Typhi Δ tolR and Δ degS to Susceptible Bacteria. Front Microbiol 2021; 12:672467. [PMID: 34025627 PMCID: PMC8131662 DOI: 10.3389/fmicb.2021.672467] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
The appearance of multi-resistant strains has contributed to reintroducing polymyxin as the last-line therapy. Although polymyxin resistance is based on bacterial envelope changes, other resistance mechanisms are being reported. Outer membrane vesicles (OMVs) are nanosized proteoliposomes secreted from the outer membrane of Gram-negative bacteria. In some bacteria, OMVs have shown to provide resistance to diverse antimicrobial agents either by sequestering and/or expelling the harmful agent from the bacterial envelope. Nevertheless, the participation of OMVs in polymyxin resistance has not yet been explored in S. Typhi, and neither OMVs derived from hypervesiculating mutants. In this work, we explored whether OMVs produced by the hypervesiculating strains Salmonella Typhi ΔrfaE (LPS synthesis), ΔtolR (bacterial envelope) and ΔdegS (misfolded proteins and σ E activation) exhibit protective properties against polymyxin B. We found that the OMVs extracted from S. Typhi ΔtolR and ΔdegS protect S. Typhi WT from polymyxin B in a concentration-depending manner. By contrast, the protective effect exerted by OMVs from S. Typhi WT and S. Typhi ΔrfaE is much lower. This effect is achieved by the sequestration of polymyxin B, as assessed by the more positive Zeta potential of OMVs with polymyxin B and the diminished antibiotic's availability when coincubated with OMVs. We also found that S. Typhi ΔtolR exhibited an increased MIC of polymyxin B. Finally, we determined that S. Typhi ΔtolR and S. Typhi ΔdegS, at a lesser level, can functionally and transiently transfer the OMV-mediated polymyxin B resistance to susceptible bacteria in cocultures. This work shows that mutants in genes related to OMVs biogenesis can release vesicles with improved abilities to protect bacteria against membrane-active agents. Since mutations affecting OMV biogenesis can involve the bacterial envelope, mutants with increased resistance to membrane-acting agents that, in turn, produce protective OMVs with a high vesiculation rate (e.g., S. Typhi ΔtolR) can arise. Such mutants can functionally transfer the resistance to surrounding bacteria via OMVs, diminishing the effective concentration of the antimicrobial agent and potentially favoring the selection of spontaneous resistant strains in the environment. This phenomenon might be considered the source for the emergence of polymyxin resistance in an entire bacterial community.
Collapse
Affiliation(s)
- Pedro Marchant
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Alexander Carreño
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Eduardo Vivanco
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Andrés Silva
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jan Nevermann
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Eyleen Araya
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Universidad Andres Bello, Santiago, Chile.,ANID-Millennium Science Initiative Program-Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Iván L Calderón
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
5
|
The antimicrobial peptide Brevinin-2ISb enhances the innate immune response against methicillin-resistant Staphylococcus aureus by activating DAF-2/DAF-16 signaling in Caenorhabditis elegans, as determined by in vivo imaging. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
Vitale A, Pessi G, Urfer M, Locher HH, Zerbe K, Obrecht D, Robinson JA, Eberl L. Identification of Genes Required for Resistance to Peptidomimetic Antibiotics by Transposon Sequencing. Front Microbiol 2020; 11:1681. [PMID: 32793157 PMCID: PMC7390954 DOI: 10.3389/fmicb.2020.01681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen and a leading cause of nosocomial infections. Due to its high intrinsic and adaptive resistance to antibiotics, infections caused by this organism are difficult to treat and new therapeutic options are urgently needed. Novel peptidomimetic antibiotics that target outer membrane (OM) proteins have shown great promise for the treatment of P. aeruginosa infections. Here, we have performed genome-wide mutant fitness profiling using transposon sequencing (Tn-Seq) to identify resistance determinants against the recently described peptidomimetics L27-11, compounds 3 and 4, as well as polymyxin B2 (PMB) and colistin (COL). We identified a set of 13 core genes that affected resistance to all tested antibiotics, many of which encode enzymes involved in the modification of the lipopolysaccharide (LPS) or control their expression. We also identified fitness determinants that are specific for antibiotics with similar structures that may indicate differences in their modes of action. These results provide new insights into resistance mechanisms against these peptide antibiotics, which will be important for future clinical development and efforts to further improve their potency.
Collapse
Affiliation(s)
- Alessandra Vitale
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | | | | | - Katja Zerbe
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - John A Robinson
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Brevinin-2 Drug Family—New Applied Peptide Candidates Against Methicillin-Resistant Staphylococcus aureus and Their Effects on Lys-7 Expression of Innate Immune Pathway DAF-2/DAF-16 in Caenorhabditis elegans. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The issue of Staphylococcus aureus (MRSA) developing a resistance to drugs such as methicillin has long been the focus for new drug development. In recent years, antimicrobial peptides, such as small molecular peptides with broad-spectrum antibacterial activity and special antibacterial mechanism, have shown a strong medicinal potential. In particular, the Brevinin-2 family has been shown to have a significant inhibitory effect against gram-positive bacteria (G+). In this study, we researched the influence of MRSA on the behavior and survival rate of nematodes. We established an assay of Caenorhabditis elegans–MRSA antimicrobial peptides to screen for new potent anti-infective peptides against MRSA. From the Brevinin-2 family, 13 peptides that had shown strong effects on G+ were screened for their ability to prolong the lifespan of infected worms. Real-time Polymerase Chain Reaction (PCR) tests were used to evaluate the effect on the innate immune pathway dauer formation defective (DAF)-2/DAF-16 of C. elegans. The assay successfully screened and filtered out four of the 13 peptides that significantly improved the survival rate of MRSA-infected worms. The result of real-time PCR indicated that the mRNA and protein expression levels of lys-7 were consistently upregulated by being treated with four of the Brevinin-2 family. The Brevinin-2 family peptides, including Brevinin-2, Brevinin-2-OA3, Brevinin-2ISb, and Brevinin-2TSa, also played an active role in the DAF-2/DAF-16 pathway in C. elegans. We successfully demonstrated the utility of anti-infective peptides that prolong the survival rate of the MRSA-infected host and discovered the relationship between antibacterial peptides and the innate immune system of C. elegans. We demonstrated the antimicrobial effects of Brevinin-2 family peptides, indicating their potential for use as new drug candidates against MRSA infections.
Collapse
|
8
|
Hill JR, Robertson AAB. Fishing for Drug Targets: A Focus on Diazirine Photoaffinity Probe Synthesis. J Med Chem 2018; 61:6945-6963. [PMID: 29683660 DOI: 10.1021/acs.jmedchem.7b01561] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Target identification is a high-priority, albeit challenging, aspect of drug discovery. Diazirine-based photoaffinity probes (PAPs) can facilitate the process by covalently capturing transient molecular interactions. This can help identify target proteins and map the ligand's interactome. Diazirine probes have even been incorporated by cellular machinery into proteins. Embarking on the synthesis of customized PAPs, containing either an aliphatic or trifluoromethyl phenyl diazirine, can be a considerable endeavor, particularly for medicinal chemists and chemical biologists new to the field. This review takes a synthetic focus, aiming to summarize available routes, propose new avenues, and illuminate recent advances in diazirine synthesis. Select examples of diazirine photoaffinity labeling applications have been included throughout to provide instructive definition of the advantages and limitations of the technology while simultaneously highlighting how these reagents can be applied in a practical sense.
Collapse
Affiliation(s)
- James R Hill
- Institute for Molecular Bioscience , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Avril A B Robertson
- Institute for Molecular Bioscience , The University of Queensland , St. Lucia , Queensland 4072 , Australia.,School of Chemistry and Molecular Biosciences , The University of Queensland , St. Lucia QLD4072 , Australia
| |
Collapse
|
9
|
Trimble MJ, Mlynárčik P, Kolář M, Hancock REW. Polymyxin: Alternative Mechanisms of Action and Resistance. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a025288. [PMID: 27503996 DOI: 10.1101/cshperspect.a025288] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antibiotic resistance among pathogenic bacteria is an ever-increasing issue worldwide. Unfortunately, very little has been achieved in the pharmaceutical industry to combat this problem. This has led researchers and the medical field to revisit past drugs that were deemed too toxic for clinical use. In particular, the cyclic cationic peptides polymyxin B and colistin, which are specific for Gram-negative bacteria, have been used as "last resort" antimicrobials. Before the 1980s, these drugs were known for their renal and neural toxicities; however, new clinical practices and possibly improved manufacturing have made them safer to use. Previously suggested to primarily attack the membranes of Gram-negative bacteria and to not easily select for resistant mutants, recent research exploring resistance and mechanisms of action has provided new perspectives. This review focuses primarily on the proposed alternative mechanisms of action, known resistance mechanisms, and how these support the alternative mechanisms of action.
Collapse
Affiliation(s)
- Michael J Trimble
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Patrik Mlynárčik
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University, 771 47 Olomouc, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University, 771 47 Olomouc, Czech Republic
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
10
|
Recent developments and applications of clickable photoprobes in medicinal chemistry and chemical biology. Future Med Chem 2015; 7:2143-71. [DOI: 10.4155/fmc.15.136] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Photoaffinity labeling is a well-known biochemical technique that has grown significantly since the turn of the century, principally due to its combination with bioorthogonal/click chemistry reactions. This review highlights new developments and applications of clickable photoprobes in medicinal chemistry and chemical biology. In particular, recent examples of clickable photoprobes for target identification, activity- or affinity-based protein profiling (ABPP or AfBPP), characterization of sterol– or lipid–protein interactions and characterization of ligand-binding sites are presented.
Collapse
|