1
|
Qiu C, Xia F, Zhang J, Shi Q, Meng Y, Wang C, Pang H, Gu L, Xu C, Guo Q, Wang J. Advanced Strategies for Overcoming Endosomal/Lysosomal Barrier in Nanodrug Delivery. RESEARCH (WASHINGTON, D.C.) 2023; 6:0148. [PMID: 37250954 PMCID: PMC10208951 DOI: 10.34133/research.0148] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summarizes advanced strategies for overcoming endosomal/lysosomal barriers to efficient nanodrug delivery based on the perspective of cellular uptake and intracellular transport mechanisms. These strategies include promoting endosomal/lysosomal escape, using non-endocytic methods of delivery to directly cross the cell membrane to evade endosomes/lysosomes and making a detour pathway to evade endosomes/lysosomes. On the basis of the findings of this review, we proposed several promising strategies for overcoming endosomal/lysosomal barriers through the smarter and more efficient design of nanodrug delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chong Qiu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiaoli Shi
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huanhuan Pang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengchao Xu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiuyan Guo
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Nephrology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital,
Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| |
Collapse
|
2
|
Khvotchev M, Soloviev M. SNARE Modulators and SNARE Mimetic Peptides. Biomolecules 2022; 12:biom12121779. [PMID: 36551207 PMCID: PMC9776023 DOI: 10.3390/biom12121779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins play a central role in most forms of intracellular membrane trafficking, a key process that allows for membrane and biocargo shuffling between multiple compartments within the cell and extracellular environment. The structural organization of SNARE proteins is relatively simple, with several intrinsically disordered and folded elements (e.g., SNARE motif, N-terminal domain, transmembrane region) that interact with other SNAREs, SNARE-regulating proteins and biological membranes. In this review, we discuss recent advances in the development of functional peptides that can modify SNARE-binding interfaces and modulate SNARE function. The ability of the relatively short SNARE motif to assemble spontaneously into stable coiled coil tetrahelical bundles has inspired the development of reduced SNARE-mimetic systems that use peptides for biological membrane fusion and for making large supramolecular protein complexes. We evaluate two such systems, based on peptide-nucleic acids (PNAs) and coiled coil peptides. We also review how the self-assembly of SNARE motifs can be exploited to drive on-demand assembly of complex re-engineered polypeptides.
Collapse
Affiliation(s)
- Mikhail Khvotchev
- Department of Biochemistry, Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (M.K.); (M.S.)
| | - Mikhail Soloviev
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- Correspondence: (M.K.); (M.S.)
| |
Collapse
|
3
|
Sharma B, Moghimianavval H, Hwang SW, Liu AP. Synthetic Cell as a Platform for Understanding Membrane-Membrane Interactions. MEMBRANES 2021; 11:912. [PMID: 34940413 PMCID: PMC8706075 DOI: 10.3390/membranes11120912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/27/2023]
Abstract
In the pursuit of understanding life, model membranes made of phospholipids were envisaged decades ago as a platform for the bottom-up study of biological processes. Micron-sized lipid vesicles have gained great acceptance as their bilayer membrane resembles the natural cell membrane. Important biological events involving membranes, such as membrane protein insertion, membrane fusion, and intercellular communication, will be highlighted in this review with recent research updates. We will first review different lipid bilayer platforms used for incorporation of integral membrane proteins and challenges associated with their functional reconstitution. We next discuss different methods for reconstitution of membrane fusion and compare their fusion efficiency. Lastly, we will highlight the importance and challenges of intercellular communication between synthetic cells and synthetic cells-to-natural cells. We will summarize the review by highlighting the challenges and opportunities associated with studying membrane-membrane interactions and possible future research directions.
Collapse
Affiliation(s)
- Bineet Sharma
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
| | - Hossein Moghimianavval
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
| | - Sung-Won Hwang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
4
|
Sun X, Wang X, Zhou HC, Zheng J, Su YX, Luo F. β3-adrenoceptor activation exhibits a dual effect on behaviors and glutamate receptor function in the prefrontal cortex. Behav Brain Res 2021; 412:113417. [PMID: 34157371 DOI: 10.1016/j.bbr.2021.113417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/26/2022]
Abstract
β-adrenoceptor (β-AR), especially the β1- and β2-AR subtypes, is known to participate in stress-related behavioral changes. Recently, SR58611A, a brain-penetrant β3-AR agonist, exhibits anxiolytic- and antidepressant-like effects. In this study, we sought to study the role of SR58611A in behavioral changes and its potential cellular and molecular mechanism in the prefrontal cortex (PFC). We found that rats with SR58611A (1 mg/kg) enhanced PFC-mediated recognition memory, whereas administration of higher dosage of SR58611A (20 mg/kg) caused hyperlocomotion, and exhibited an impairment effect on recognition memory. Electrophysiological data also indicated that SR58611A (1 mg/kg) selectively enhanced NMDA receptor-mediated excitatory postsynaptic currents (EPSC) through interacting with norepinephrine (NE) system and activating β3-AR, whereas higher dosage of SR58611A (20 mg/kg) reduced both AMPA receptor- and NMDA receptor-mediated EPSC. SR58611A-induced different effects on EPSC linked with the change of the surface expression quantity of NMDA receptor and/or AMPA receptor subunits. Synaptosomal-associated protein 25 (SNAP-25), which is a key soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein involved in incorporation of NMDA receptor to postsynaptic membrane, contributed to SR58611A (1 mg/kg)-induced enhancement of recognition memory and NMDA receptor function. Moreover, SR58611A (1 mg/kg) could rescue repeated stress-induced defect of both recognition memory and NMDA receptor function through a SNAP-25-dependent mechanism. These results provide a potential mechanism underlying the cognitive-enhancing effects of SR58611A (1 mg/kg).
Collapse
Affiliation(s)
- Xuan Sun
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xing Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Hou-Cheng Zhou
- Institute of Neurobiology & State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jian Zheng
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Yun-Xiao Su
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Fei Luo
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
5
|
Hubrich BE, Wehland JD, Groth MC, Schirmacher A, Hubrich R, Steinem C, Diederichsen U. Membrane fusion mediated by peptidic SNARE protein analogues: Evaluation of FRET-based bulk leaflet mixing assays. J Pept Sci 2021; 27:e3327. [PMID: 33825251 DOI: 10.1002/psc.3327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/06/2022]
Abstract
Peptide-mediated membrane fusion is frequently studied with in vitro bulk leaflet mixing assays based on Förster resonance energy transfer (FRET). In these, customized liposomes with fusogenic peptides are equipped with lipids which are labeled with fluorophores that form a FRET pair. Since FRET is dependent on distance and membrane fusion comes along with lipid mixing, the assays allow for conclusions on the membrane fusion process. The experimental outcome of these assays, however, greatly depends on the applied parameters. In the present study, the influence of the peptides, the size of liposomes, their lipid composition and the liposome stoichiometry on the fusogenicity of liposomes are evaluated. As fusogenic peptides, soluble N-ethylmaleimide-sensitive-factor attachment receptor (SNARE) protein analogues featuring artificial recognition units attached to the native SNARE transmembrane domains are used. The work shows that it is important to control these parameters in order to be able to properly investigate the fusion process and to prevent undesired effects of aggregation.
Collapse
Affiliation(s)
- Barbara E Hubrich
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Göttingen, Germany
| | - Jan-Dirk Wehland
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Göttingen, Germany
| | - Mike C Groth
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Göttingen, Germany
| | - Anastasiya Schirmacher
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Göttingen, Germany
| | - Raphael Hubrich
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Göttingen, Germany
| | - Ulf Diederichsen
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Witt H, Savić F, Verbeek S, Dietz J, Tarantola G, Oelkers M, Geil B, Janshoff A. Membrane fusion studied by colloidal probes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:223-237. [PMID: 33599795 PMCID: PMC8071799 DOI: 10.1007/s00249-020-01490-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
Membrane-coated colloidal probes combine the benefits of solid-supported membranes with a more complex three-dimensional geometry. This combination makes them a powerful model system that enables the visualization of dynamic biological processes with high throughput and minimal reliance on fluorescent labels. Here, we want to review recent applications of colloidal probes for the study of membrane fusion. After discussing the advantages and disadvantages of some classical vesicle-based fusion assays, we introduce an assay using optical detection of fusion between membrane-coated glass microspheres in a quasi two-dimensional assembly. Then, we discuss free energy considerations of membrane fusion between supported bilayers, and show how colloidal probes can be combined with atomic force microscopy or optical tweezers to access the fusion process with even greater detail.
Collapse
Affiliation(s)
- Hannes Witt
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
- Physics of Living Systems, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Filip Savić
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Sarah Verbeek
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Jörn Dietz
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Gesa Tarantola
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Marieelen Oelkers
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Burkhard Geil
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Andreas Janshoff
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
7
|
Hubrich BE, Menzel PM, Kugler B, Diederichsen U. Synthesis of PNA-Peptide Conjugates as Functional SNARE Protein Mimetics. Methods Mol Biol 2021; 2105:61-74. [PMID: 32088864 DOI: 10.1007/978-1-0716-0243-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PNA-peptide conjugates are versatile tools in chemical biology, which are employed in a variety of applications. Here, we present the synthesis of PNA-peptide conjugates that serve as SNARE protein-mimicking biooligomers. They resemble the structure of native SNARE proteins but exhibit a much simpler architecture. Incorporated into liposomes, they induce lipid mixing, so that they can be used to study the SNARE-mediated membrane fusion in a simplified setting in vitro. They consist of artificial SNARE recognition units made out of PNA oligomers, which are attached to the native linker and transmembrane domains of two neuronal SNAREs. The PNA-peptide conjugates are synthesized via solid-phase peptide synthesis in a continuous fashion starting with the peptide part, followed by assembly of the PNA recognition unit. On top, we describe a strategy to synthesize PNA-peptide conjugates in a fully automated fashion by using a peptide synthesizer.
Collapse
Affiliation(s)
- Barbara E Hubrich
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Patrick M Menzel
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Benedikt Kugler
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Ulf Diederichsen
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
8
|
Interaction of Synaptosomal-Associated Protein 25 with Neutral Sphingomyelinase 2: Functional Impact on the Sphingomyelin Pathway. Neuroscience 2020; 427:1-15. [PMID: 31765623 DOI: 10.1016/j.neuroscience.2019.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 11/22/2022]
Abstract
Neurotransmitter release is mediated by ceramide, which is generated by sphingomyelin hydrolysis. In the present study, we examined whether synaptosomal-associated protein 25 (SNAP-25) is involved in ceramide production and exocytosis. Neutral sphingomyelinase 2 (nSMase2) was partially purified from bovine brain and we found that SNAP-25 was enriched in the nSMase2-containing fractions. In rat synaptosomes and PC12 cells, the immunoprecipitation pellet of anti-SNAP-25 antibody showed higher nSMase activity than the immunoprecipitation pellet of anti-nSMase2 antibody. In PC12 cells, SNAP-25 was colocalized with nSMase2. Transfection of SNAP-25 small interfering RNA (siRNA) significantly inhibited nSMase2 translocation to the plasma membrane. A23187-induced ceramide production was concomitantly reduced in SNAP-25 siRNA-transfected PC12 cells compared with that in scrambled siRNA-transfected cells. Moreover, transfection of SNAP-25 siRNA inhibited dopamine release, whereas addition of C6-ceramide to the siRNA-treated cells moderately reversed this inhibition. Additionally, nSMase2 inhibition reduced dopamine release. Collectively, our results indicate that SNAP-25 interacts with nSMase2 during ceramide production, which mediates exocytosis and neurotransmitter release.
Collapse
|
9
|
Interaction of SNARE Mimetic Peptides with Lipid bilayers: Effects of Secondary Structure, Bilayer Composition and Lipid Anchoring. Sci Rep 2019; 9:7708. [PMID: 31118479 PMCID: PMC6531448 DOI: 10.1038/s41598-019-43418-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 04/18/2019] [Indexed: 12/24/2022] Open
Abstract
The coiled-coil forming peptides 'K' enriched in lysine and 'E' enriched in glutamic acid have been used as a minimal SNARE mimetic system for membrane fusion. Here we describe atomistic molecular dynamics simulations to characterize the interactions of these peptides with lipid bilayers for two different compositions. For neutral phosphatidylcholine (PC)/phosphatidylethanolamine (PE) bilayers the peptides experience a strong repulsive barrier against adsorption, also observed in potential of mean force (PMF) profiles calculated with umbrella sampling. For peptide K, a minimum of -12 kBT in the PMF provides an upper bound for the binding free energy whereas no stable membrane bound state could be observed for peptide E. In contrast, the electrostatic interactions with negatively charged phosphatidylglycerol (PG) lipids lead to fast adsorption of both peptides at the head-water interface. Experimental data using fluorescently labeled peptides confirm the stronger binding to PG containing bilayers. Lipid anchors have little effect on the peptide-bilayer interactions or peptide structure, when the peptide also binds to the bilayer in the absence of a lipid anchor. For peptide E, which does not bind to the PC bilayer without a lipid anchor, the presence of such an anchor strengthens the electrostatic interactions between the charged side chains and the zwitterionic head-groups and leads to a stabilization of the peptide's helical fold by the membrane.
Collapse
|
10
|
Hubrich BE, Kumar P, Neitz H, Grunwald M, Grothe T, Walla PJ, Jahn R, Diederichsen U. PNA-Hybridsequenzen als Erkennungseinheiten in SNARE-Protein-analogen Peptiden. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Barbara E. Hubrich
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Deutschland
| | - Pawan Kumar
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Deutschland
| | - Hermann Neitz
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Deutschland
| | - Matthias Grunwald
- Abteilung für Neurobiologie; Max-Planck-Institut für Biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
| | - Tobias Grothe
- Abteilung für Neurobiologie; Max-Planck-Institut für Biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
| | - Peter Jomo Walla
- Abteilung für Neurobiologie; Max-Planck-Institut für Biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
- Institut für Physikalische und Theoretische Chemie; Technische Universität Braunschweig; Gaußstraße 17 38106 Braunschweig Deutschland
| | - Reinhard Jahn
- Abteilung für Neurobiologie; Max-Planck-Institut für Biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
| | - Ulf Diederichsen
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
11
|
Hubrich BE, Kumar P, Neitz H, Grunwald M, Grothe T, Walla PJ, Jahn R, Diederichsen U. PNA Hybrid Sequences as Recognition Units in SNARE-Protein-Mimicking Peptides. Angew Chem Int Ed Engl 2018; 57:14932-14936. [PMID: 30129689 DOI: 10.1002/anie.201805752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/11/2018] [Indexed: 01/01/2023]
Abstract
Membrane fusion is an essential process in nature and is often accomplished by the specific interaction of SNARE proteins. SNARE model systems, in which SNARE domains are replaced by small artificial units, represent valuable tools to study membrane fusion in vitro. The synthesis and analysis is presented of SNARE model peptides that exhibit a recognition motif composed of two different types of peptide nucleic acid (PNA) sequences. This novel recognition unit is designed to mimic the SNARE zippering mechanism that initiates SNARE-mediated fusion. It contains N-(2-aminoethyl)glycine-PNA (aeg-PNA) and alanyl-PNA, which both recognize the respective complementary strand but differ in duplex topology and duplex formation kinetics. The duplex formation of PNA hybrid oligomers as well as the fusogenicity of the model peptides in lipid-mixing assays were characterized and the peptides were found to induce liposome fusion. As an unexpected discovery, peptides with a recognition unit containing only five aeg-PNA nucleo amino acids were sufficient and most efficient to induce liposome fusion.
Collapse
Affiliation(s)
- Barbara E Hubrich
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Pawan Kumar
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Hermann Neitz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Matthias Grunwald
- Abteilung für Neurobiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077, Göttingen, Germany
| | - Tobias Grothe
- Abteilung für Neurobiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077, Göttingen, Germany
| | - Peter Jomo Walla
- Abteilung für Neurobiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077, Göttingen, Germany.,Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Gaußstraße 17, 38106, Braunschweig, Germany
| | - Reinhard Jahn
- Abteilung für Neurobiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077, Göttingen, Germany
| | - Ulf Diederichsen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
12
|
Strand Displacement in Coiled-Coil Structures: Controlled Induction and Reversal of Proximity. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Gröger K, Gavins G, Seitz O. Strand Displacement in Coiled-Coil Structures: Controlled Induction and Reversal of Proximity. Angew Chem Int Ed Engl 2017; 56:14217-14221. [PMID: 28913864 DOI: 10.1002/anie.201705339] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/25/2017] [Indexed: 12/26/2022]
Abstract
Coiled-coil peptides are frequently used to create new function upon the self-assembly of supramolecular complexes. A multitude of coil peptide sequences provides control over the specificity and stability of coiled-coil complexes. However, comparably little attention has been paid to the development of methods that allow the reversal of complex formation under non-denaturing conditions. Herein, we present a reversible two-state switching system. The process involves two peptide molecules for the formation of a size-mismatched coiled-coil duplex and a third, disruptor peptide that targets an overhanging end. A real-time fluorescence assay revealed that the proximity between two chromophores can be switched on and off, repetitively if desired. Showcasing the advantages provided by non-denaturing conditions, the method permitted control over the bivalent interactions of the tSH2 domain of Syk kinase with a phosphopeptide ligand.
Collapse
Affiliation(s)
- Katharina Gröger
- Institut für Chemie der Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Georgina Gavins
- Institut für Chemie der Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Oliver Seitz
- Institut für Chemie der Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
14
|
Wehland JD, Lygina AS, Kumar P, Guha S, Hubrich BE, Jahn R, Diederichsen U. Role of the transmembrane domain in SNARE protein mediated membrane fusion: peptide nucleic acid/peptide model systems. MOLECULAR BIOSYSTEMS 2017; 12:2770-6. [PMID: 27345759 DOI: 10.1039/c6mb00294c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fusion of synaptic vesicles with the presynaptic plasma membrane is mediated by Soluble NSF (N-ethylmaleimide-sensitive factor) Attachment Protein Receptor proteins also known as SNAREs. The backbone of this essential process is the assembly of SNAREs from opposite membranes into tight four helix bundles forcing membranes in close proximity. With model systems resembling SNAREs with reduced complexity we aim to understand how these proteins work at the molecular level. Here, peptide nucleic acids (PNAs) are used as excellent candidates for mimicking the SNARE recognition motif by forming well-characterized duplex structures. Hybridization between complementary PNA strands anchored in liposomes through native transmembrane domains (TMDs) induces the merger of the outer leaflets of the participating vesicles but not of the inner leaflets. A series of PNA/peptide hybrids differing in the length of TMDs and charges at the C-terminal end is presented. Interestingly, mixing of both outer and inner leaflets is seen for TMDs containing an amide in place of the natural carboxylic acid at the C-terminal end. Charged side chains at the C-terminal end of the TMDs are shown to have a negative impact on the mixing of liposomes. The length of the TMDs is vital for fusion as with the use of shortened TMDs, fusion was completely prevented.
Collapse
Affiliation(s)
- Jan-Dirk Wehland
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany.
| | - Antonina S Lygina
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany.
| | - Pawan Kumar
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany.
| | - Samit Guha
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany.
| | - Barbara E Hubrich
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany.
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute of Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ulf Diederichsen
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany.
| |
Collapse
|
15
|
Zhang Y. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers. Protein Sci 2017; 26:1252-1265. [PMID: 28097727 PMCID: PMC5477538 DOI: 10.1002/pro.3116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/03/2017] [Indexed: 01/17/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are universal molecular engines that drive membrane fusion. Particularly, synaptic SNAREs mediate fast calcium-triggered fusion of neurotransmitter-containing vesicles with plasma membranes for synaptic transmission, the basis of all thought and action. During membrane fusion, complementary SNAREs located on two apposed membranes (often called t- and v-SNAREs) join together to assemble into a parallel four-helix bundle, releasing the energy to overcome the energy barrier for fusion. A long-standing hypothesis suggests that SNAREs act like a zipper to draw the two membranes into proximity and thereby force them to fuse. However, a quantitative test of this SNARE zippering hypothesis was hindered by difficulties to determine the energetics and kinetics of SNARE assembly and to identify the relevant folding intermediates. Here, we first review different approaches that have been applied to study SNARE assembly and then focus on high-resolution optical tweezers. We summarize the folding energies, kinetics, and pathways of both wild-type and mutant SNARE complexes derived from this new approach. These results show that synaptic SNAREs assemble in four distinct stages with different functions: slow N-terminal domain association initiates SNARE assembly; a middle domain suspends and controls SNARE assembly; and rapid sequential zippering of the C-terminal domain and the linker domain directly drive membrane fusion. In addition, the kinetics and pathway of the stagewise assembly are shared by other SNARE complexes. These measurements prove the SNARE zippering hypothesis and suggest new mechanisms for SNARE assembly regulated by other proteins.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale School of MedicineYale UniversityNew HavenConnecticut06511
| |
Collapse
|
16
|
Meng Z, Yang J, Liu Q, de Vries JW, Gruszka A, Rodríguez-Pulido A, Crielaard BJ, Kros A, Herrmann A. Efficient Fusion of Liposomes by Nucleobase Quadruple-Anchored DNA. Chemistry 2017; 23:9391-9396. [DOI: 10.1002/chem.201701379] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Zhuojun Meng
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jian Yang
- Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry; Leiden University, P.O. Box 9502; 2300 RA Leiden The Netherlands
| | - Qing Liu
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jan Willem de Vries
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Agnieszka Gruszka
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Alberto Rodríguez-Pulido
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Bart J. Crielaard
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Institute for Biomedical Engineering and Materials Science; University Medical Center Groningen; Antonius Deusinglaan 1 9713AV Groningen The Netherlands
| | - Alexander Kros
- Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry; Leiden University, P.O. Box 9502; 2300 RA Leiden The Netherlands
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Institute for Biomedical Engineering and Materials Science; University Medical Center Groningen; Antonius Deusinglaan 1 9713AV Groningen The Netherlands
| |
Collapse
|
17
|
Rout S, Zumthor JP, Schraner EM, Faso C, Hehl AB. An Interactome-Centered Protein Discovery Approach Reveals Novel Components Involved in Mitosome Function and Homeostasis in Giardia lamblia. PLoS Pathog 2016; 12:e1006036. [PMID: 27926928 PMCID: PMC5142787 DOI: 10.1371/journal.ppat.1006036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/01/2016] [Indexed: 12/23/2022] Open
Abstract
Protozoan parasites of the genus Giardia are highly prevalent globally, and infect a wide range of vertebrate hosts including humans, with proliferation and pathology restricted to the small intestine. This narrow ecological specialization entailed extensive structural and functional adaptations during host-parasite co-evolution. An example is the streamlined mitosomal proteome with iron-sulphur protein maturation as the only biochemical pathway clearly associated with this organelle. Here, we applied techniques in microscopy and protein biochemistry to investigate the mitosomal membrane proteome in association to mitosome homeostasis. Live cell imaging revealed a highly immobilized array of 30–40 physically distinct mitosome organelles in trophozoites. We provide direct evidence for the single giardial dynamin-related protein as a contributor to mitosomal morphogenesis and homeostasis. To overcome inherent limitations that have hitherto severely hampered the characterization of these unique organelles we applied a novel interaction-based proteome discovery strategy using forward and reverse protein co-immunoprecipitation. This allowed generation of organelle proteome data strictly in a protein-protein interaction context. We built an initial Tom40-centered outer membrane interactome by co-immunoprecipitation experiments, identifying small GTPases, factors with dual mitosome and endoplasmic reticulum (ER) distribution, as well as novel matrix proteins. Through iterative expansion of this protein-protein interaction network, we were able to i) significantly extend this interaction-based mitosomal proteome to include other membrane-associated proteins with possible roles in mitosome morphogenesis and connection to other subcellular compartments, and ii) identify novel matrix proteins which may shed light on mitosome-associated metabolic functions other than Fe-S cluster biogenesis. Functional analysis also revealed conceptual conservation of protein translocation despite the massive divergence and reduction of protein import machinery in Giardia mitosomes. Organelles with endosymbiotic origin are present in virtually all extant eukaryotes and have undergone considerable remodeling during > 1 billion years of evolution. Highly diverged organelles such as mitosomes or plastids in some parasitic protozoa are the product of extensive secondary reduction. They are sufficiently unique to generate interest as targets for pharmacological intervention, in addition to providing a rich ground for evolutionary cell biologists. The so-called mitochondria-related organelles (MROs) comprise mitosomes and hydrogenosomes, with the former having lost any role in energy metabolism along with the organelle genome. The mitosomes of the intestinal pathogen Giardia lamblia are the most highly reduced MROs known and have proven difficult to investigate because of their extreme divergence and their unique biophysical properties. Here, we implemented a novel strategy aimed at systematic analysis of the organelle proteome by iterative expansion of a protein-protein interaction network. We combined serial forward and reverse co-immunoprecipitations with mass spectrometry analysis, data mining, and validation by subcellular localization and/or functional analysis to generate an interactome network centered on a giardial Tom40 homolog. This iterative ab initio proteome reconstruction provided protein-protein interaction data in addition to identifying novel organelle proteins and functions. Building on this data we generated information on organelle replication, mitosome morphogenesis and organelle dynamics in living cells.
Collapse
Affiliation(s)
- Samuel Rout
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
| | - Jon Paulin Zumthor
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
| | | | - Carmen Faso
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
- * E-mail: (ABH); (CF)
| | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
- * E-mail: (ABH); (CF)
| |
Collapse
|
18
|
Yang J, Bahreman A, Daudey G, Bussmann J, Olsthoorn RCL, Kros A. Drug Delivery via Cell Membrane Fusion Using Lipopeptide Modified Liposomes. ACS CENTRAL SCIENCE 2016; 2:621-630. [PMID: 27725960 PMCID: PMC5043431 DOI: 10.1021/acscentsci.6b00172] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Indexed: 05/27/2023]
Abstract
Efficient delivery of drugs to living cells is still a major challenge. Currently, most methods rely on the endocytotic pathway resulting in low delivery efficiency due to limited endosomal escape and/or degradation in lysosomes. Here, we report a new method for direct drug delivery into the cytosol of live cells in vitro and invivo utilizing targeted membrane fusion between liposomes and live cells. A pair of complementary coiled-coil lipopeptides was embedded in the lipid bilayer of liposomes and cell membranes respectively, resulting in targeted membrane fusion with concomitant release of liposome encapsulated cargo including fluorescent dyes and the cytotoxic drug doxorubicin. Using a wide spectrum of endocytosis inhibitors and endosome trackers, we demonstrate that the major site of cargo release is at the plasma membrane. This method thus allows for the quick and efficient delivery of drugs and is expected to have many invitro, ex vivo, and invivo applications.
Collapse
Affiliation(s)
| | | | - Geert Daudey
- Department of Supramolecular
Chemistry & Biomaterials, Leiden Institute of Chemistry, Leiden University, P.O.
Box 9502, Leiden, 2300 RA, The Netherlands
| | - Jeroen Bussmann
- Department of Supramolecular
Chemistry & Biomaterials, Leiden Institute of Chemistry, Leiden University, P.O.
Box 9502, Leiden, 2300 RA, The Netherlands
| | - René C. L. Olsthoorn
- Department of Supramolecular
Chemistry & Biomaterials, Leiden Institute of Chemistry, Leiden University, P.O.
Box 9502, Leiden, 2300 RA, The Netherlands
| | - Alexander Kros
- Department of Supramolecular
Chemistry & Biomaterials, Leiden Institute of Chemistry, Leiden University, P.O.
Box 9502, Leiden, 2300 RA, The Netherlands
| |
Collapse
|
19
|
Lin HP, Zheng DJ, Li YP, Wang N, Chen SJ, Fu YC, Xu WC, Wei CJ. Incorporation of VSV-G produces fusogenic plasma membrane vesicles capable of efficient transfer of bioactive macromolecules and mitochondria. Biomed Microdevices 2016; 18:41. [PMID: 27165101 DOI: 10.1007/s10544-016-0066-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objective of this study was to determine if plasma membrane vesicles (PMVs) could be exploited for efficient transfer of macro-biomolecules and mitochondria. PMVs were derived from mechanical extrusion, and made fusogenic (fPMVs) by incorporating the glycoprotein G of vesicular stomatitis virus (VSV-G). Confocal microscopy examination revealed that cytoplasmic proteins and mitochondria were enclosed in PMVs as evidenced by tracing with cytoplasmically localized and mitochondria-targeted EGFP, respectively. However, no fluorescence signal was detected in PMVs from cells whose nucleus was labeled with an EGFP-tagged histone H2B. Consistently, qRT-PCR measurement showed that mRNA, miRNA and mitochondrial DNA decreased slightly; while nuclear DNA was not measureable. Further, Western blot analysis revealed that cytoplasmic and membrane-bound proteins fell inconspicuously while nuclear proteins were barely detecsle. In addition, fPMVs carrying cytoplamic DsRed proteins transduced about ~40 % of recipient cells. The transfer of protein was further confirmed by using the inducible Cre/loxP system. Mitochondria transfer was found in about 20 % recipient cells after incubation with fPMVs for 5 h. To verify the functionalities of transferred mitochondria, mitochodria-deficient HeLa cells (Rho0) were generated and cultivated with fPMVs. Cell enumeration demonstrated that adding fPMVs into culture media stimulated Rho0 cell growth by 100 % as compared to the control. Lastly, MitoTracker and JC-1 staining showed that transferred mitochondria maintained normal shape and membrane potential in Rho0 cells. This study established a time-saving and efficient approach to delivering proteins and mitochondria by using fPMVs, which would be helpful for finding a cure to mitochondria-associated diseases. Graphical abstract Schematic of the delivery of macro-biomolecules and organelles by fPMVs. VSV-G-expressing cells were extruded through a 3 μm polycarbonate membrane filter to generate fusogenic plasma membrane vesicles (fPMVs), which contain bioactive molecules and organelles but not the nucleus. fPMVs can be endocytosed by target cells, while the cargo is released due to low-pH induced membrane fusion. These nucleus-free fPMVs are efficient at delivery of cytoplasmic proteins and mitochondria, leading to recovery of mitochondrial biogenesis and proliferative ability in mitochondria-deficient cells.
Collapse
Affiliation(s)
- Hao-Peng Lin
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - De-Jin Zheng
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Yun-Pan Li
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Na Wang
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Shao-Jun Chen
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Yu-Cai Fu
- Laboratory of Cell Senescence, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Wen-Can Xu
- Department of Endocrinology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Chi-Ju Wei
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China.
| |
Collapse
|
20
|
Sadek M, Berndt D, Milovanovic D, Jahn R, Diederichsen U. Distance Regulated Vesicle Fusion and Docking Mediated by β-Peptide Nucleic Acid SNARE Protein Analogues. Chembiochem 2016; 17:479-85. [PMID: 26879104 DOI: 10.1002/cbic.201500517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 11/07/2022]
Abstract
Artificial SNARE analogues derived from SNARE proteins, which mediate synaptic membrane fusion, are of interest. They mimic the tetrameric α-helix bundle of the SNARE motif with various bio-oligomer recognition units. Interaction between complementary oligomers linked to the respective membrane by lipid or peptide anchors leads to proximity of vesicles and to fusion of lipid bilayers. β-Peptide nucleic acids were introduced as hybrid oligomers with the native SNARE protein transmembrane/linker sequence, in order to evaluate a fusion system that allows distance tuning of approaching membranes. Formation of a four-base pair β-PNA double strand with 20 Å length is sufficient for vesicle membrane fusion. Elongation of the recognition β-PNA duplex in the linker region yielded a 40 Å β-peptide duplex and provided a vesicle-vesicle distance that only supported hemifusion of vesicle membranes.
Collapse
Affiliation(s)
- Muheeb Sadek
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Daniel Berndt
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Dragomir Milovanovic
- Abteilung Neurobiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077, Göttingen, Germany
| | - Reinhard Jahn
- Abteilung Neurobiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077, Göttingen, Germany
| | - Ulf Diederichsen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany.
| |
Collapse
|
21
|
Rabe M, Zope HR, Kros A. Interplay between Lipid Interaction and Homo-coiling of Membrane-Tethered Coiled-Coil Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9953-9964. [PMID: 26302087 DOI: 10.1021/acs.langmuir.5b02094] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The designed coiled-coil-forming peptides E [(EIAALEK)3] and K [(KIAALKE)3] are known to trigger efficient membrane fusion when they are tethered to lipid vesicles in the form of lipopeptides. Knowledge of their secondary structure is a key element in understanding their role in membrane fusion. Special conditions can be found at the interface of the membrane, where the peptides are confined in close proximity to other peptide molecules as well as to the lipid interface. Consequently, different structural states were proposed for the peptides when tethered to this interface. Due to the multitude of possible states, determining the structure solely on the basis of circular dichroism (CD) spectra at a single temperature can be misleading. In addition, it has not yet been possible to unambiguously distinguish between the membrane-bound and the coiled-coil states of these peptides by means of infrared (IR) spectroscopy due to their very similar amide I' bands. Here, the molecular basis of this similarity is investigated by means of site-specific (13)C-labeled FTIR spectroscopy. Structural similarities between the membrane-interacting helix of K and the homo-coiled-coil-forming helix of E are shown to cause the similar spectroscopic properties. Furthermore, the peptide structure is investigated using temperature-dependent CD and IR spectroscopy, and it is shown that the different states can be distinguished on the basis of their thermal behavior. It is shown that the two peptides behave fundamentaly differently when tethered to the lipid membrane, which implies that their role during membrane fusion is different and the mechanism of this process is asymmetric.
Collapse
Affiliation(s)
- Martin Rabe
- Leiden Institute of Chemistry-Supramolecular and Biomaterial Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Harshal R Zope
- Leiden Institute of Chemistry-Supramolecular and Biomaterial Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Alexander Kros
- Leiden Institute of Chemistry-Supramolecular and Biomaterial Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|