1
|
Calvert SH, Pawlak T, Hessman G, McGouran JF. Rapid diazotransfer for selective lysine labelling. Org Biomol Chem 2024; 22:7976-7981. [PMID: 39283514 DOI: 10.1039/d4ob01094a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Azide functionalization of protein and peptide lysine residues allows selective bioorthogonal labeling to introduce new, site selective functionaltiy into proteins. Optimised diazotransfer reactions under mild conditions allow aqueous diazotransfer to occur in just 20 min at pH 8.5 on amino acid, peptide and protein targets. In addition, conditons can be modified to selectively label a single lysine residue in both protein targets investigated. Finally, we demonstrate selective modification of proteins containing a single azidolysine using copper(I)-catalyzed triazole formation.
Collapse
Affiliation(s)
- Susannah H Calvert
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| | - Tomasz Pawlak
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
| | - Gary Hessman
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
| | - Joanna F McGouran
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| |
Collapse
|
2
|
Mrázková L, Lubos M, Voldřich J, Kužmová E, Zrubecká D, Gwozdiaková P, Buděšínský M, Asai S, Marek A, Pícha J, Tencerová M, Ferenčáková M, Barrera GA, Kaminský J, Jiráček J, Žáková L. The final walk with preptin. PLoS One 2024; 19:e0309726. [PMID: 39264940 PMCID: PMC11392399 DOI: 10.1371/journal.pone.0309726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024] Open
Abstract
Preptin, a 34-amino acid peptide derived from pro-IGF2, is believed to influence various physiological processes, including insulin secretion and the regulation of bone metabolism. Despite its recognized involvement, the precise physiological role of preptin remains enigmatic. To address this knowledge gap, we synthesized 16 analogs of preptin, spanning a spectrum from full-length forms to fragments, and conducted comprehensive comparative activity evaluations alongside native human, mouse and rat preptin. Our study aimed to elucidate the physiological role of preptin. Contrary to previous indications of broad biological activity, our thorough analyses across diverse cell types revealed no significant biological activity associated with preptin or its analogs. This suggests that the associations of preptin with various diseases or tissue-specific abundance fluctuations may be influenced by factors beyond preptin itself, such as higher levels of IGF2 or IGF2 proforms present in tissues. In conclusion, our findings challenge the conventional notion of preptin as an isolated biologically active molecule and underscore the complexity of its interactions within biological systems. Rather than acting independently, the observed effects of preptin may arise from experimental conditions, elevated preptin concentrations, or interactions with related molecules such as IGF2.
Collapse
Affiliation(s)
- Lucie Mrázková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Department of Cell Biology, Charles University, Prague, Czech Republic
| | - Marta Lubos
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Voldřich
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Erika Kužmová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Denisa Zrubecká
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Gwozdiaková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Seiya Asai
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Pícha
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Tencerová
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Ferenčáková
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Selicharová I, Fabre B, Soledad Garre Hernández M, Lubos M, Pícha J, Voburka Z, Mitrová K, Jiráček J. Combinatorial Libraries of Bipodal Binders of the Insulin Receptor. ChemMedChem 2024; 19:e202400145. [PMID: 38445366 DOI: 10.1002/cmdc.202400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
The binding process of insulin to its transmembrane receptor entails a sophisticated interplay between two proteins, each possessing two binding sites. Given the difficulties associated with the use of insulin in the treatment of diabetes, despite its remarkable efficacy, there is interest in smaller and more stable compounds than the native hormone that would effectively activate the receptor. Our study adopts a strategy focused on synthesizing extensive combinatorial libraries of bipodal compounds consisting of two distinct peptides linked to a molecular scaffold. These constructs, evaluated in a resin bead-bound format, were designed to assess their binding to the insulin receptor. Despite notable nonspecific binding, our approach successfully generated and tested millions of compounds. Rigorous evaluations via flow cytometry and specific antibodies revealed peptide sequences with specific interactions at either receptor binding Site 1 or 2. Notably, these sequences bear similarity to peptides discovered through phage display by other researchers. This convergence of chemical and biological methods underscores nature's beauty, revealing general principles in peptide binding to the insulin receptor. Overall, our study deepens the understanding of molecular interactions in ligand binding to the insulin receptor, highlighting the challenges of targeting large proteins with small synthetic peptides.
Collapse
Affiliation(s)
- Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Benjamin Fabre
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - María Soledad Garre Hernández
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Marta Lubos
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Jan Pícha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Zdeněk Voburka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| |
Collapse
|
4
|
Lubos M, Pícha J, Selicharová I, Žák J, Buděšínský M, Mitrová K, Žáková L, Jiráček J. Modulation of the antagonistic properties of an insulin mimetic peptide by disulfide bridge modifications. J Pept Sci 2023; 29:e3478. [PMID: 36633503 PMCID: PMC10909431 DOI: 10.1002/psc.3478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Insulin is a peptide responsible for regulating the metabolic homeostasis of the organism; it elicits its effects through binding to the transmembrane insulin receptor (IR). Insulin mimetics with agonistic or antagonistic effects toward the receptor are an exciting field of research and could find applications in treating diabetes or malignant diseases. We prepared five variants of a previously reported 20-amino acid insulin-mimicking peptide. These peptides differ from each other by the structure of the covalent bridge connecting positions 11 and 18. In addition to the peptide with a disulfide bridge, a derivative with a dicarba bridge and three derivatives with a 1,2,3-triazole differing from each other by the presence of sulfur or oxygen in their staples were prepared. The strongest binding to IR was exhibited by the peptide with a disulfide bridge. All other derivatives only weakly bound to IR, and a relationship between increasing bridge length and lower binding affinity can be inferred. Despite their nanomolar affinities, none of the prepared peptide mimetics was able to activate the insulin receptor even at high concentrations, but all mimetics were able to inhibit insulin-induced receptor activation. However, the receptor remained approximately 30% active even at the highest concentration of the agents; thus, the agents behave as partial antagonists. An interesting observation is that these mimetic peptides do not antagonize insulin action in proportion to their binding affinities. The compounds characterized in this study show that it is possible to modulate the functional properties of insulin receptor peptide ligands using disulfide mimetics.
Collapse
Affiliation(s)
- Marta Lubos
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Jan Pícha
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Jíří Žák
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| |
Collapse
|
5
|
Kumar R, Pathania V, Kumar S, Kumar M, Nandanwar H, Maurya SK. Synthesis of Novel Ciprofloxacin-Avibactam Conjugates for the Development of Second-Generation Non-β-Lactam-β-Lactamase Inhibitors. Bioorg Med Chem Lett 2023; 88:129308. [PMID: 37127102 DOI: 10.1016/j.bmcl.2023.129308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/21/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
To overcome the antibiotic resistance challenge, we synthesized a novel class of conjugates based on ciprofloxacin and avibactam, covalently linked by diverse amino acids. In vitro studies of these conjugates have shown improved antibacterial efficacy of avibactam when used alone against some ESKAPE pathogens, i.e., S. aureus, E. coli, and A. baumannii. Further, ceftazidime was screened in combination with all conjugates and found to be less synergistically effective than avibactam-ceftazidime co-dosing against K. pneumoniae and E. coli bacterial strains. Subsequently, the top-ranked active conjugates were investigated against the commercially available β-lactamase-II (Penicillinase from Bacillus cereus) through in vitro studies. These studies elucidated two conjugates i.e, 9 (IC50 = 1.69 ± 0.35 nM) and 24b (IC50 = 57.37 ± 5.39 nM), which have higher inhibition profile than avibactam (IC50 = 141.08 ± 12.20 nM). These outcomes allude to avibactam integration with ciprofloxacin is a novel and fruitful approach to discovering clinically valuable next-generation non-β-lactam-β-lactamase inhibitors.
Collapse
Affiliation(s)
- Rahul Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vikas Pathania
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Clinical Microbiology and Antimicrobial Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Shashi Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahender Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hemraj Nandanwar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Clinical Microbiology and Antimicrobial Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Sushil K Maurya
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow, Uttar Pradesh 226 007, India
| |
Collapse
|
6
|
Behring L, Ruiz-Gómez G, Trapp C, Morales M, Wodtke R, Köckerling M, Kopka K, Pisabarro MT, Pietzsch J, Löser R. Dipeptide-Derived Alkynes as Potent and Selective Irreversible Inhibitors of Cysteine Cathepsins. J Med Chem 2023; 66:3818-3851. [PMID: 36867428 PMCID: PMC10041539 DOI: 10.1021/acs.jmedchem.2c01360] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The potential of designing irreversible alkyne-based inhibitors of cysteine cathepsins by isoelectronic replacement in reversibly acting potent peptide nitriles was explored. The synthesis of the dipeptide alkynes was developed with special emphasis on stereochemically homogeneous products obtained in the Gilbert-Seyferth homologation for C≡C bond formation. Twenty-three dipeptide alkynes and 12 analogous nitriles were synthesized and investigated for their inhibition of cathepsins B, L, S, and K. Numerous combinations of residues at positions P1 and P2 as well as terminal acyl groups allowed for the derivation of extensive structure-activity relationships, which were rationalized by computational covalent docking for selected examples. The determined inactivation constants of the alkynes at the target enzymes span a range of >3 orders of magnitude (3-10 133 M-1 s-1). Notably, the selectivity profiles of alkynes do not necessarily reflect those of the nitriles. Inhibitory activity at the cellular level was demonstrated for selected compounds.
Collapse
Affiliation(s)
- Lydia Behring
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Mommsenstraße 4, 01069 Dresden, Germany
| | - Gloria Ruiz-Gómez
- BIOTEC, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Christian Trapp
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Maryann Morales
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Martin Köckerling
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Mommsenstraße 4, 01069 Dresden, Germany
| | - M Teresa Pisabarro
- BIOTEC, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Mommsenstraße 4, 01069 Dresden, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Mommsenstraße 4, 01069 Dresden, Germany
| |
Collapse
|
7
|
Xie Y, Lopez-Silva TL, Schneider JP. Hydrophilic Azide-Containing Amino Acid to Enhance the Solubility of Peptides for SPAAC Reactions. Org Lett 2022; 24:7378-7382. [PMID: 36190801 PMCID: PMC10673676 DOI: 10.1021/acs.orglett.2c02906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a new positively charged azidoamino acid for strain-promoted azide-alkyne cycloaddition (SPAAC) applications that overcomes possible solubility limitations of commonly used azidolysine, especially in systems with numerous ligation sites. The residue is easily synthesized, is compatible with Fmoc-based solid-phase peptide synthesis employing a range of coupling conditions, and offers efficient second-order rate constants in SPAAC ligations employing DBCO (0.34 M-1 s-1) and BCN (0.28 M-1 s-1).
Collapse
Affiliation(s)
- Yixin Xie
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Tania L Lopez-Silva
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Joel P Schneider
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
8
|
Wang B, Li X, Wang Y, Mao X, Wang X. Post-translational site-specific protein azidolation with an azido pyridoxal derivative. Chem Commun (Camb) 2022; 58:7408-7411. [PMID: 35695118 DOI: 10.1039/d2cc03051a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An azido pyridoxal derivative (PLAA) was developed as a protein azidolation reagent, with selectivity towards N-terminal glycine. Successful PLAA modification was achieved with small peptides, natural proteins and lab-expressed proteins under mild conditions, offering a unique method for post-synthesis site-specific azidolation of a peptide or protein.
Collapse
Affiliation(s)
- Baochuan Wang
- Institute of Advanced Synthesis, Institute of Chemical Biology and Functional Molecules, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xun Li
- Institute of Advanced Synthesis, Institute of Chemical Biology and Functional Molecules, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yiwan Wang
- Institute of Advanced Synthesis, Institute of Chemical Biology and Functional Molecules, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xianxian Mao
- Institute of Advanced Synthesis, Institute of Chemical Biology and Functional Molecules, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China. .,School of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, China
| | - Xiaojian Wang
- Institute of Advanced Synthesis, Institute of Chemical Biology and Functional Molecules, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
9
|
Lubos M, Mrázková L, Gwozdiaková P, Pícha J, Buděšínský M, Jiráček J, Kaminský J, Žáková L. Functional stapled fragments of human preptin of minimised length. Org Biomol Chem 2022; 20:2446-2454. [PMID: 35253830 DOI: 10.1039/d1ob02193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preptin is a 34-amino-acid-long peptide derived from the E-domain of a precursor of insulin-like growth factor 2 (pro-IGF2) with bone-anabolic and insulin secretion amplifying properties. Here, we describe the synthesis, structures, and biological activities of six shortened analogues of human preptin. Eight- and nine-amino-acid-long peptide amides corresponding to the C-terminal part of human preptin were stabilised by two types of staples to induce a higher proportion of helicity in their secondary structure. We monitored the secondary structure of the stapled peptides using circular dichroism. The biological effect of the structural changes was determined afterwards by the ability of peptides to stimulate the release of intracellular calcium ions. We confirmed the previous observation that the stabilisation of the disordered conformation of human preptin has a deleterious effect on biological potency. However, surprisingly, one of our preptin analogues, a nonapeptide stabilised by olefin metathesis between positions 3 and 7 of the amino acid chain, had a similar ability to stimulate calcium ions' release to the full-length human preptin. Our findings could open up new ways to design new preptin analogues, which may have potential as drugs for the treatment of diabetes and osteoporosis.
Collapse
Affiliation(s)
- Marta Lubos
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| | - Lucie Mrázková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| | - Petra Gwozdiaková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| | - Jan Pícha
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| |
Collapse
|
10
|
Abstract
A growing theme in chemistry is the joining of multiple organic molecular building blocks to create functional molecules. Diverse derivatizable structures—here termed “scaffolds” comprised of “hubs”—provide the foundation for systematic covalent organization of a rich variety of building blocks. This review encompasses 30 tri- or tetra-armed molecular hubs (e.g., triazine, lysine, arenes, dyes) that are used directly or in combination to give linear, cyclic, or branched scaffolds. Each scaffold is categorized by graph theory into one of 31 trees to express the molecular connectivity and overall architecture. Rational chemistry with exacting numbers of derivatizable sites is emphasized. The incorporation of water-solubilization motifs, robust or self-immolative linkers, enzymatically cleavable groups and functional appendages affords immense (and often late-stage) diversification of the scaffolds. Altogether, 107 target molecules are reviewed along with 19 syntheses to illustrate the distinctive chemistries for creating and derivatizing scaffolds. The review covers the history of the field up through 2020, briefly touching on statistically derivatized carriers employed in immunology as counterpoints to the rationally assembled and derivatized scaffolds here, although most citations are from the past two decades. The scaffolds are used widely in fields ranging from pure chemistry to artificial photosynthesis and biomedical sciences.
Collapse
|
11
|
Králová P, Soural M. Reagent-Based Diversity-Oriented Synthesis of Triazolo[1,5- a][1,4]diazepine Derivatives from Polymer-Supported Homoazidoalanine. J Org Chem 2021; 86:7963-7974. [PMID: 34060832 DOI: 10.1021/acs.joc.1c00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report the synthesis of skeletally different triazolo[1,5-a][1,4]diazepines starting from immobilized homoazidoalanine. After sulfonylation with 2/4-nitrobenzenesulfonyl chlorides and Mitsunobu alkylation with various alkynols, the corresponding N-substituted nitrobenzenesulfonamides were obtained. Their catalyst-free Huisgen cycloaddition provided immobilized and functionalized triazolo[1,5-a][1,4]diazepines as the key intermediates for further modification. Using the concept of diversity-oriented, reagent-based synthesis, the key intermediates were subsequently converted to heterocycles bearing [5 + 7 + 5], [5 + 7 + 6], and [5 + 7 + 7] scaffolds. Furthermore, the synthesis of spirocyclic triazolodiazepines was developed.
Collapse
Affiliation(s)
- Petra Králová
- Department of Organic Chemistry, Faculty of Science, Palacký University, Olomouc 779 00, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, Olomouc 779 00, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, Olomouc 779 00, Czech Republic
| |
Collapse
|
12
|
Kriegelsteinová P, Lemrová B, Ručilová V, Soural M. Copper‐Free Solid‐Phase Synthesis of Triazolo[1,5‐
a
][1,4]diazepin‐6‐ones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Patricia Kriegelsteinová
- Department of Organic Chemistry Faculty of Science Palacký University 771 46 Olomouc Czech Republic
| | - Barbora Lemrová
- Department of Organic Chemistry Faculty of Science Palacký University 771 46 Olomouc Czech Republic
| | - Veronika Ručilová
- Department of Organic Chemistry Faculty of Science Palacký University 771 46 Olomouc Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry Faculty of Science Palacký University 771 46 Olomouc Czech Republic
- Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry Palacký University Hněvotínská 5 779 00 Olomouc Czech Republic
| |
Collapse
|
13
|
Moreira R, Noden M, Taylor SD. Synthesis of Azido Acids and Their Application in the Preparation of Complex Peptides. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractAzido acids are important synthons for the synthesis of complex peptides. As a protecting group, the azide moiety is atom-efficient, easy to install and can be reduced in the presence of many other protecting groups, making it ideal for the synthesis of branched and/or cyclic peptides. α-Azido acids are less bulky than urethane-protected counterparts and react more effectively in coupling reactions of difficult-to-form peptide and ester bonds. Azido acids can also be used to form azoles on complex intermediates. This review covers the synthesis of azido acids and their application to the total synthesis of complex peptide natural products.1 Introduction2 Synthesis of α-Azido Acids2.1 From α-Amino Acids or Esters2.2 Via α-Substitution2.3 Via Electrophilic Azidation2.4 Via Condensation of N-2-Azidoacetyl-4-Phenylthiazolidin- 2-Thi one Enolates with Aldehydes and Acetals2.5 Synthesis of α,β-Unsaturated α-Azido Acids and Esters3 Synthesis of β-Azido Acids3.1 Preparation of Azidoalanine and 3-Azido-2-aminobutanoic Acids3.2 General Approaches to Preparing β-Azido Acids Other Than Azi doalanine and AABA4 Azido Acids in Total Synthesis4.1 α-Azido Acids4.2 β-Azido Acids and Azido Acids Containing an Azide on the Side
Chain5 Conclusions
Collapse
|
14
|
Kralt B, Moreira R, Palmer M, Taylor SD. Total Synthesis of Analogs of A54145D and A54145A 1 for Structure-Activity Relationship Studies. J Org Chem 2020; 85:2213-2219. [PMID: 31873009 DOI: 10.1021/acs.joc.9b02922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The total solid-phase synthesis and in vitro biological activity of a series of analogs of A54145 factor D (A5D) and A54145 factor A1 (A5A1), two cyclic lipodepsipeptide antibiotics, are reported. An on-resin cyclization strategy was employed to prepare A5A1 analogs in which Thr4, the residue involved in the depsi (ester) bond, was replaced with either diaminopropionic acid (DAPA), (2S,3R)-diaminobutyric acid (DABA), or serine, effectively replacing the ring-closing ester bond with an amide linkage or with a primary ester. Antibacterial studies with these four analogs revealed that, contrary to a previous report, replacing the ester bond with an amide bond significantly reduces biological activity, and that both the ester bond and the methyl group at the γ-position of Thr4 are crucial for activity. Consistent with literature reports, we found that the single substitution of either 3-hydroxyasparagine (HOAsn) or 3-methoxyaspartate (MeOAsp) with Asn or Asp, respectively, in A5D is more detrimental to activity than the double substitution where both HOAsn and MeOAsp are replaced with Asn or Asp, respectively.
Collapse
Affiliation(s)
- Braden Kralt
- Department of Chemistry , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| | - Ryan Moreira
- Department of Chemistry , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| | - Michael Palmer
- Department of Chemistry , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| | - Scott D Taylor
- Department of Chemistry , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
15
|
Noden M, Moreira R, Huang E, Yousef A, Palmer M, Taylor SD. Total Synthesis of Paenibacterin and Its Analogues. J Org Chem 2019; 84:5339-5347. [DOI: 10.1021/acs.joc.9b00364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Michael Noden
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Ryan Moreira
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - En Huang
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, Ohio 43210, United States
| | - Ahmed Yousef
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, Ohio 43210, United States
| | - Michael Palmer
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Scott D. Taylor
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
16
|
Pícha J, Fabre B, Buděšínský M, Hajduch J, Abdellaoui M, Jiráček J. Tri-Orthogonal Scaffolds for the Solid-Phase Synthesis of Peptides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jan Pícha
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2 16610 Praha 6 Czech Republic
| | - Benjamin Fabre
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2 16610 Praha 6 Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2 16610 Praha 6 Czech Republic
| | - Jan Hajduch
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2 16610 Praha 6 Czech Republic
| | - Mehdi Abdellaoui
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2 16610 Praha 6 Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2 16610 Praha 6 Czech Republic
| |
Collapse
|
17
|
Macháčková K, Collinsová M, Chrudinová M, Selicharová I, Pícha J, Buděšínský M, Vaněk V, Žáková L, Brzozowski AM, Jiráček J. Insulin-like Growth Factor 1 Analogs Clicked in the C Domain: Chemical Synthesis and Biological Activities. J Med Chem 2017; 60:10105-10117. [DOI: 10.1021/acs.jmedchem.7b01331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kateřina Macháčková
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Michaela Collinsová
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martina Chrudinová
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Irena Selicharová
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jan Pícha
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Miloš Buděšínský
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Václav Vaněk
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Lenka Žáková
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Andrzej M. Brzozowski
- York
Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, United Kingdom
| | - Jiří Jiráček
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
18
|
Pícha J, Buděšínský M, Macháčková K, Collinsová M, Jiráček J. Optimized syntheses of Fmoc azido amino acids for the preparation of azidopeptides. J Pept Sci 2017; 23:202-214. [PMID: 28120383 PMCID: PMC5347871 DOI: 10.1002/psc.2968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
Abstract
The rise of CuI‐catalyzed click chemistry has initiated an increased demand for azido and alkyne derivatives of amino acid as precursors for the synthesis of clicked peptides. However, the use of azido and alkyne amino acids in peptide chemistry is complicated by their high cost. For this reason, we investigated the possibility of the in‐house preparation of a set of five Fmoc azido amino acids: β‐azido l‐alanine and d‐alanine, γ‐azido l‐homoalanine, δ‐azido l‐ornithine and ω‐azido l‐lysine. We investigated several reaction pathways described in the literature, suggested several improvements and proposed several alternative routes for the synthesis of these compounds in high purity. Here, we demonstrate that multigram quantities of these Fmoc azido amino acids can be prepared within a week or two and at user‐friendly costs. We also incorporated these azido amino acids into several model tripeptides, and we observed the formation of a new elimination product of the azido moiety upon conditions of prolonged couplings with 2‐(1H‐benzotriazol‐1‐yl)‐1,1,3,3‐tetramethyluronium hexafluorophosphate/DIPEA. We hope that our detailed synthetic protocols will inspire some peptide chemists to prepare these Fmoc azido acids in their laboratories and will assist them in avoiding the too extensive costs of azidopeptide syntheses. Experimental procedures and/or analytical data for compounds 3–5, 20, 25, 26, 30 and 43–47 are provided in the supporting information. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Jan Pícha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Kateřina Macháčková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Michaela Collinsová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| |
Collapse
|