1
|
D'Aniello A, Del Bene A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Di Maro S, Messere A. The bright side of chemistry: Exploring synthetic peptide-based anticancer vaccines. J Pept Sci 2024; 30:e3596. [PMID: 38571326 DOI: 10.1002/psc.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The present review focuses on synthetic peptide-based vaccine strategies in the context of anticancer intervention, paying attention to critical aspects such as peptide epitope selection, adjuvant integration, and nuanced classification of synthetic peptide cancer vaccines. Within this discussion, we delve into the diverse array of synthetic peptide-based anticancer vaccines, each derived from tumor-associated antigens (TAAs), including melanoma antigen recognized by T cells 1 (Melan-A or MART-1), mucin 1 (MUC1), human epidermal growth factor receptor 2 (HER-2), tumor protein 53 (p53), human telomerase reverse transcriptase (hTERT), survivin, folate receptor (FR), cancer-testis antigen 1 (NY-ESO-1), and prostate-specific antigen (PSA). We also describe the synthetic peptide-based vaccines developed for cancers triggered by oncovirus, such as human papillomavirus (HPV), and hepatitis C virus (HCV). Additionally, the potential synergy of peptide-based vaccines with common therapeutics in cancer was considered. The last part of our discussion deals with the realm of the peptide-based vaccines delivery, highlighting its role in translating the most promising candidates into effective clinical strategies. Although this discussion does not cover all the ongoing peptide vaccine investigations, it aims at offering valuable insights into the chemical modifications and the structural complexities of anticancer peptide-based vaccines.
Collapse
Affiliation(s)
- Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Erica Campagna
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| |
Collapse
|
2
|
Kowalczyk R, Harris PWR, Williams GM, Yang SH, Brimble MA. Peptide Lipidation - A Synthetic Strategy to Afford Peptide Based Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1030:185-227. [PMID: 29081055 PMCID: PMC7121180 DOI: 10.1007/978-3-319-66095-0_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptide and protein aberrant lipidation patterns are often involved in many diseases including cancer and neurological disorders. Peptide lipidation is also a promising strategy to improve pharmacokinetic and pharmacodynamic profiles of peptide-based drugs. Self-adjuvanting peptide-based vaccines commonly utilise the powerful TLR2 agonist PamnCys lipid to stimulate adjuvant activity. The chemical synthesis of lipidated peptides can be challenging hence efficient, flexible and straightforward synthetic routes to access homogeneous lipid-tagged peptides are in high demand. A new technique coined Cysteine Lipidation on a Peptide or Amino acid (CLipPA) uses a 'thiol-ene' reaction between a cysteine and a vinyl ester and offers great promise due to its simplicity, functional group compatibility and selectivity. Herein a brief review of various synthetic strategies to access lipidated peptides, focusing on synthetic methods to incorporate a PamnCys motif into peptides, is provided.
Collapse
Affiliation(s)
- Renata Kowalczyk
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Geoffrey M Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Sung-Hyun Yang
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand. .,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand.
| |
Collapse
|
3
|
Structure–function relationships of protein–lipopeptide complexes and influence on immunogenicity. Amino Acids 2017; 49:1691-1704. [DOI: 10.1007/s00726-017-2466-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022]
|
4
|
Fujita Y, Taguchi H. Nanoparticle-Based Peptide Vaccines. MICRO AND NANOTECHNOLOGY IN VACCINE DEVELOPMENT 2017. [PMCID: PMC7152328 DOI: 10.1016/b978-0-323-39981-4.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Challenges and opportunities of using liquid chromatography and mass spectrometry methods to develop complex vaccine antigens as pharmaceutical dosage forms. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:23-38. [PMID: 27071526 DOI: 10.1016/j.jchromb.2016.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Liquid chromatographic methods, combined with mass spectrometry, offer exciting and important opportunities to better characterize complex vaccine antigens including recombinant proteins, virus-like particles, inactivated viruses, polysaccharides, and protein-polysaccharide conjugates. The current abilities and limitations of these physicochemical methods to complement traditional in vitro and in vivo vaccine potency assays are explored in this review through the use of illustrative case studies. Various applications of these state-of-the art techniques are illustrated that include the analysis of influenza vaccines (inactivated whole virus and recombinant hemagglutinin), virus-like particle vaccines (human papillomavirus and hepatitis B), and polysaccharide linked to protein carrier vaccines (pneumococcal). Examples of utilizing these analytical methods to characterize vaccine antigens in the presence of adjuvants, which are often included to boost immune responses as part of the final vaccine dosage form, are also presented. Some of the challenges of using chromatographic and LC-MS as physicochemical assays to routinely test complex vaccine antigens are also discussed.
Collapse
|
6
|
El-Mahdi O, Melnyk O. α-Oxo aldehyde or glyoxylyl group chemistry in peptide bioconjugation. Bioconjug Chem 2013; 24:735-65. [PMID: 23578008 DOI: 10.1021/bc300516f] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since the 1990s, α-oxo aldehyde or glyoxylic acid chemistry has inspired a vast array of synthetic tools for tailoring peptide or protein structures, for developing peptides endowed with novel physicochemical properties or biological functions, for assembling a large diversity of bioconjugates or hybrid materials, or for designing peptide-based micro or nanosystems. This past decade, important developments have enriched the α-oxo aldehyde synthetic tool box in peptide bioconjugation chemistry and explored novel applications. The aim of this review is to give a large overview of this creative field.
Collapse
Affiliation(s)
- Ouafâa El-Mahdi
- Université Sidi Mohamed Ben Abdellah, Faculté Polydisciplinaire de Taza, Morocco
| | | |
Collapse
|
7
|
Hepatitis C VLPs delivered to dendritic cells by a TLR2 targeting lipopeptide results in enhanced antibody and cell-mediated responses. PLoS One 2012; 7:e47492. [PMID: 23091628 PMCID: PMC3472981 DOI: 10.1371/journal.pone.0047492] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/12/2012] [Indexed: 01/10/2023] Open
Abstract
Although many studies provide strong evidence supporting the development of HCV virus-like particle (VLP)-based vaccines, the fact that heterologous viral vectors and/or multiple dosing regimes are required to induce protective immunity indicates that it is necessary to improve their immunogenicity. In this study, we have evaluated the use of an anionic self-adjuvanting lipopeptide containing the TLR2 agonist Pam2Cys (E8Pam2Cys) to enhance the immunogenicity of VLPs containing the HCV structural proteins (core, E1 and E2) of genotype 1a. While co-formulation of this lipopeptide with VLPs only resulted in marginal improvements in dendritic cell (DC) uptake, its ability to concomitantly induce DC maturation at very small doses is a feature not observed using VLPs alone or in the presence of an aluminium hydroxide-based adjuvant (Alum). Dramatically improved VLP and E2-specific antibody responses were observed in VLP+E8Pam2Cys vaccinated mice where up to 3 doses of non-adjuvanted or traditionally alum-adjuvanted VLPs was required to match the antibody titres obtained with a single dose of VLPs formulated with this lipopeptide. This result also correlated with significantly higher numbers of specific antibody secreting cells that was detected in the spleens of VLP+E8Pam2Cys vaccinated mice and greater ability of sera from these mice to neutralise the binding and uptake of VLPs by Huh7 cells. Moreover, vaccination of HLA-A2 transgenic mice with this formulation also induced better VLP-specific IFN-γ-mediated responses compared to non-adjuvanted VLPs but comparable levels to that achieved when coadministered with complete freund’s adjuvant. These results suggest overall that the immunogenicity of HCV VLPs can be significantly improved by the addition of this novel adjuvant by targeting their delivery to DCs and could therefore constitute a viable vaccine strategy for the treatment of HCV.
Collapse
|
8
|
Fujita Y, Taguchi H. Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles. Chem Cent J 2011; 5:48. [PMID: 21861904 PMCID: PMC3178480 DOI: 10.1186/1752-153x-5-48] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 08/23/2011] [Indexed: 12/22/2022] Open
Abstract
Many studies are currently investigating the development of safe and effective vaccines to prevent various infectious diseases. Multiple antigen-presenting peptide vaccine systems have been developed to avoid the adverse effects associated with conventional vaccines (i.e., live-attenuated, killed or inactivated pathogens), carrier proteins and cytotoxic adjuvants. Recently, two main approaches have been used to develop multiple antigen-presenting peptide vaccine systems: (1) the addition of functional components, e.g., T-cell epitopes, cell-penetrating peptides, and lipophilic moieties; and (2) synthetic approaches using size-defined nanomaterials, e.g., self-assembling peptides, non-peptidic dendrimers, and gold nanoparticles, as antigen-displaying platforms. This review summarizes the recent experimental studies directed to the development of multiple antigen-presenting peptide vaccine systems.
Collapse
Affiliation(s)
- Yoshio Fujita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minami-Tamagaki, Suzuka 513-8670, MIE, Japan.
| | | |
Collapse
|
9
|
Chua BY, Pejoski D, Turner SJ, Zeng W, Jackson DC. Soluble proteins induce strong CD8+ T cell and antibody responses through electrostatic association with simple cationic or anionic lipopeptides that target TLR2. THE JOURNAL OF IMMUNOLOGY 2011; 187:1692-701. [PMID: 21742967 DOI: 10.4049/jimmunol.1100486] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The low immunogenicity exhibited by most soluble proteins is generally due to the absence of molecular signatures that are recognized by the immune system as dangerous. In this study, we show that electrostatic binding of synthetic branched cationic or anionic lipopeptides that contain the TLR-2 agonist Pam(2)Cys markedly enhance a protein's immunogenicity. Binding of a charged lipopeptide to oppositely charged protein Ags resulted in the formation of stable complexes and occurs at physiologic pH and salt concentrations. The induction of cell-mediated responses is dependent on the electrostatic binding of lipopeptide to the protein, with no CD8(+) T cells being elicited when protein and lipopeptide possessed the same electrical charge. The CD8(+) T cells elicited after vaccination with lipopeptide-protein Ag complexes produced proinflammatory cytokines, exhibited in vivo lytic activity, and protected mice from challenge with an infectious chimeric influenza virus containing a single OVA epitope as part of the influenza neuraminidase protein. Induction of a CD8(+) T cell response correlated with the ability of lipopeptide to facilitate Ag uptake by DCs followed by trafficking of Ag-bearing cells into draining lymph nodes. Oppositely charged but not similarly charged lipopeptides were more effective in DC uptake and trafficking. Very high protein-specific Ab titers were also achieved by vaccination with complexes composed of oppositely charged lipopeptide and protein, whereas vaccination with similarly charged constituents resulted in significant but lower Ab titers. Regardless of whether similarly or oppositely charged lipopeptides were used in the induction of Ab, vaccination generated dominant IgG1 isotype Abs rather than IgG2a.
Collapse
Affiliation(s)
- Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Dudek NL, Maier S, Chen ZJ, Mudd PA, Mannering SI, Jackson DC, Zeng W, Keech CL, Hamlin K, Pan ZJ, Davis-Schwarz K, Workman-Azbill J, Bachmann M, McCluskey J, Farris AD. T cell epitopes of the La/SSB autoantigen in humanized transgenic mice expressing the HLA class II haplotype DRB1*0301/DQB1*0201. ARTHRITIS AND RHEUMATISM 2007; 56:3387-98. [PMID: 17907193 DOI: 10.1002/art.22870] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE T cells are implicated in the production of anti-La/SSB and anti-Ro/SSA autoantibodies commonly associated with the DR3/DQ2 haplotype in systemic lupus erythematosus and Sjögren's syndrome. This study was undertaken to investigate the DR3/DQ2-restricted T cell response to wild-type human La (hLa) and a truncated form of mutant La. METHODS Humanized transgenic mice expressing HLA-DRB1*0301/DQB1*0201 (DR3/DQ2) were immunized with recombinant antigen and examined for development of autoantibodies and T cell proliferation against overlapping peptides spanning the La autoantigen. HLA restriction and peptide binding of identified T cell epitopes to DR3 or DQ2 were determined using blocking monoclonal antibodies and a direct binding assay. RESULTS DR3/DQ2-transgenic mice generated an unusually rapid class-switched humoral response to hLa with characteristic spreading to Ro 52 and Ro 60 proteins following hLa protein immunization. Seven T cell determinants in hLa were restricted to the HLA-DR3/DQ2 haplotype. Six epitopes tested were restricted to HLA-DR and bound DR3 with semiconserved DR3 binding motifs. No DQ restriction of these epitopes was demonstrable despite efficient DQ binding activity in some cases. No neo-T cell epitopes were identified in mutant La; however, T cells primed with mutant La exhibited a striking increase in proliferation to the epitope hLa(151-168) compared with T cells primed with hLa. CONCLUSION Multiple DR3-restricted epitopes of hLa have been identified. These findings suggest that truncation of La produced by somatic mutation or possibly granzyme B-mediated cleavage alters the immunodominance hierarchy of T cell responsiveness to hLa and may be a factor in the initiation or maintenance of anti-La autoimmunity.
Collapse
Affiliation(s)
- Nadine L Dudek
- Bio21 Molecular Science and Biotechnology Institute, and University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Torresi J, Stock OM, Fischer AE, Grollo L, Drummer H, Boo I, Zeng W, Earnest-Silveira L, Jackson DC. A self-adjuvanting multiepitope immunogen that induces a broadly cross-reactive antibody to hepatitis C virus. Hepatology 2007; 45:911-20. [PMID: 17393515 DOI: 10.1002/hep.21538] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
UNLABELLED We describe a peptide-based strategy for HCV vaccine design that addresses the problem of variability in hypervariable region 1 (HVR1). Peptides representing antibody epitopes of HVR1 from genotype 1a were synthesized and incorporated into multideterminant immunogens that also included lipid moieties and helper T (T(h)) cell epitopes. Mice inoculated with these polyepitopes generated strong antibody responses. Antibody titers were highest in mice inoculated with polyepitope immunogens which contained the lipid moiety dipalmitoyl-S-glyceryl cysteine (Pam2Cys). Antisera were tested for their potential to neutralize HCV by 3 currently available assays. Antibodies elicited in mice by the polyepitope-based vaccine candidates were able to (1) bind to E2 expressed on the surface of E1/E2-transfected human embryonic kidney (HEK) 293T cells, (2) capture HCV of different genotypes (1, 2, and 3) from the serum of chronically infected humans in an immune capture RT-PCR assay and (3) inhibit HCVpp entry into Huh7 cells. Antibody present in the sera of patients chronically infected with HCV genotypes 1, 2, 3, and 4 also bound to the HVR1-based polyepitope. CONCLUSION These results demonstrate the potential of self-adjuvanting epitope-based constructs in the development and delivery of cross-reactive immunogens that incorporate potential neutralizing epitopes present within the viral envelope of HCV.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Medicine and Clinical Centre for Research Excellence, Royal Melbourne Hospital, The University of Melbourne, Parkville 3050, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Torresi J, Fischer A, Grollo L, Zeng W, Drummer H, Jackson DC. Induction of neutralizing antibody responses to hepatitis C virus with synthetic peptide constructs incorporating both antibody and T‐helper epitopes. Immunol Cell Biol 2007; 85:169-73. [PMID: 17242693 DOI: 10.1038/sj.icb.7100021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We describe a peptide-based strategy for hepatitis C virus (HCV) vaccine design that exploits synthetic peptides representing antibody epitopes of the hypervariable region 1 (HVR1) of the E2 glycoprotein and also less variable regions immediately downstream of HVR1. These epitopes were linked to a T-helper (T(h)) epitope (KLIPNASLIENCTKAEL) derived from the Morbillivirus canine distemper virus. Antibody titres induced by the two vaccine candidates T(h)-A (E2 amino acid 384-414) and T(h)-B (E2 amino acid 390-414) were significantly higher than those produced against vaccines lacking the T(h) epitope (P<0.05). Mice inoculated with the vaccine candidates T(h)-C (E2 amino acids 412-423) and T(h)-F (E2 amino acids 436-447) emulsified in complete Freund's adjuvant each elicited antibody titres that were significantly higher than those elicited by T(h)-E (E2 amino acids 396-407) and T(h)-D (E2 amino acids 432-443) (P<0.01). Antisera obtained from mice inoculated with the epitope vaccines T(h)-A, T(h)-B, T(h)-D and T(h)-E bound to E2 expressed at the surface of 293T cells that had been transfected with E1E2. Furthermore, IgG from the sera of mice inoculated with four of the vaccine candidates, T(h)-A, T(h)-C, T(h)-D and T(h)-E, inhibited the entry of HCV/human immunodeficiency virus pseudoparticles (HCVpps) into Huh-7 cells. These results demonstrate the potential of synthetic peptide-based constructs in the delivery of potential neutralizing epitopes that are present within the viral envelope of HCV.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
14
|
Zeng W, Gauci S, Ghosh S, Walker J, Jackson DC. Characterisation of the antibody response to a totally synthetic immunocontraceptive peptide vaccine based on LHRH. Vaccine 2005; 23:4427-35. [PMID: 15919140 DOI: 10.1016/j.vaccine.2005.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 02/15/2005] [Accepted: 04/05/2005] [Indexed: 11/29/2022]
Abstract
In this study we describe our attempts to improve the immunogenicity of a synthetic epitope-based vaccine. The vaccine consists of an epitope (P25) that is recognised by CD4+ helper T cells and the target epitope luteinising hormone releasing hormone (LHRH). We show that replacement of the single cysteine residue within P25 with amino acids such as alanine, aminobutyric acid, serine or with carboxymethylated cysteine leads to diminished immunogenicity of the vaccine and only the oxidised dimeric form of the peptide retains the full immunogenicity of the vaccine. Secondly, by measuring the serum antibody response and the number of the antigen secreting cells in spleen and bone marrow we found that three doses of 20 nmol per mouse induced the more consistent and higher immune responses than those induced by three doses of either 2 nmol or 80 nmol per mouse. A greater variation in antibody titre was observed in mice that received the 2 mol or 80 nmol dose regimes. Last, by administering the vaccine in its lipidated form in the presence or absence of additional adjuvant we found that either inoculation regime elicited similar antibody responses. Only at low doses of antigen was a synergistic effect observed when lipopeptide was co-administered with additional adjuvant.
Collapse
Affiliation(s)
- Weiguang Zeng
- Cooperative Research Centre for Vaccine Technology, Department of Microbiology & Immunology, The University of Melbourne, Parkville 3010, Vic., Australia
| | | | | | | | | |
Collapse
|
15
|
Horn T, Lee BC, Dill KA, Zuckermann RN. Incorporation of chemoselective functionalities into peptoids via solid-phase submonomer synthesis. Bioconjug Chem 2004; 15:428-35. [PMID: 15025542 DOI: 10.1021/bc0341831] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple route to the introduction of a number of chemoselective functional groups into peptoids (oligo(N-substituted glycines)) by an extension of the standard solid-phase submonomer method is reported. The following groups were introduced: aminooxyacetamide, N-(carbamoylmethyl)acetohydrazide, mercaptoacetamide, 2-pyridinesulfenylmercaptoacetamide, and aldehyde-terminated peptoids. The method uses commercially available reagents, is fully compatible with standard peptoid submonomer synthesis conditions, is easily automated, and generates the desired functionalized peptoid in high yield and purity. Peptoids with suitable pairs of chemoselective ligation groups were joined in high yield.
Collapse
Affiliation(s)
- Thomas Horn
- Chiron Corporation, 4560 Horton Street, Emeryville, California 94608, USA.
| | | | | | | |
Collapse
|
16
|
Chua BY, Healy A, Cameron PU, Stock O, Rizkalla M, Zeng W, Torresi J, Brown LE, Fowler NL, Gowans EJ, Jackson DC. Maturation of dendritic cells with lipopeptides that represent vaccine candidates for hepatitis C virus. Immunol Cell Biol 2003; 81:67-72. [PMID: 12534949 DOI: 10.1046/j.1440-1711.2003.01133.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of antigens to elicit immune responses depends upon their initial recognition, uptake, processing and presentation by dendritic cells. This fact has been recognized by many workers and dendritic cells are now regarded as natural 'adjuvants' in the business of vaccine design. One way of persuading dendritic cells to become interested in foreign material is to decorate it with lipid moieties found in bacteria. This approach has been used in the context of synthetic peptide-based immunogens and depending on the nature of the epitopes included, can provide highly immunogenic structures capable of eliciting antibody or cytotoxic T cell responses. In this paper we describe the results of experiments in which the stimulatory effects of peptide-based vaccine candidates on human dendritic cells are examined. Our findings indicate that lipidated structures comprising vaccine target sequences of viral origin coupled to the synthetic lipid groups of bacteria are able to induce the maturation of dendritic cells, as measured by the expression of cell surface MHC class II molecules.
Collapse
Affiliation(s)
- Brendon Y Chua
- Cooperative Research Centre for Vaccine Technology, Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zeng W, Ghosh S, Lau YF, Brown LE, Jackson DC. Highly immunogenic and totally synthetic lipopeptides as self-adjuvanting immunocontraceptive vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4905-12. [PMID: 12391202 DOI: 10.4049/jimmunol.169.9.4905] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we describe the synthesis of various lipopeptides based on the sequence of luteinizing hormone-releasing hormone (LHRH) and report on their abilities to induce Abs against this "self" hormone when inoculated into mice in the absence of additional adjuvant. The peptides consisted of a colinear CD4(+) T helper cell epitope from the L chain of influenza virus hemagglutinin and LHRH, which has B cell epitopes but no T cell epitopes present in its sequence. Lipids were attached either at the N terminus or between the T cell epitope and LHRH, in the approximate center of the peptide. The lipopeptide constructs displayed different solubilities and immunological properties that depended not only on the lipid content but also on the position of attachment of the lipids. Some of these constructs were highly immunogenic, inducing high titers of Ab, which were capable of efficiently sterilizing female mice when administered in saline by s.c. or intranasal routes. The most effective vaccines were highly soluble, contained the dipalmitoyl-S-glyceryl cysteine moiety, and had this lipid attached at the center of the molecule. The relative ability of the lipopeptides to induce an Ab response in the absence of external adjuvant was reflected by their ability to up-regulate the surface expression of MHC class II molecules on immature dendritic cells. These results demonstrate that the composition and position within peptide vaccines of self-adjuvanting lipid groups can influence the ability to induce the maturation of dendritic cells and, in turn, the magnitude of the resulting Ab response.
Collapse
Affiliation(s)
- Weiguang Zeng
- Cooperative Research Center for Vaccine Technology, Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
18
|
Sadler K, Zeng W, Jackson DC. Synthetic peptide epitope-based polymers: controlling size and determining the efficiency of epitope incorporation. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2002; 60:150-8. [PMID: 12213124 DOI: 10.1034/j.1399-3011.2002.21009.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The assembly of synthetic peptide-based vaccines that incorporate multiple epitopes is a major goal of vaccine development, because such vaccines will potentially allow the immunization of outbred populations against a number of different pathogens. We have shown that free radical-induced polymerization of individual peptide epitopes results in the incorporation of multiple copies of the same or different epitopes into high molecular weight immunogens (O'Brien-Simpson, N.M., Ede, N.J., Brown, L.E., Swan, J. & Jackson, D.C. (1997) Polymerization of unprotected synthetic peptides: a view toward synthetic peptide vaccines. J. Am. Chem. Soc.119, 1183-1188; Jackson, D.C., O'Brien-Simpson, N., Ede, N.J. & Brown, L.E. (1997) Free radical induced polymerization of synthetic peptides into polymeric immunogens. Vaccine 15, 1697-1705). The ability to control the size of these polymers, to determine the physical and chemical properties of the backbone material and also to know the extent to which individual peptide epitopes are incorporated are important manufacturing considerations and form the subject of this study. We show here that the polymerization process is highly efficient with at least 70% of peptides incorporated into the resulting polymer, that acrylamide and acryloylated amino acids can be used as comonomers with peptide epitopes in the polymerization reaction and that the choice of the comonomer can influence the properties of the resulting polymer. We also show that the size of chain growth polymers is restricted in the presence of chain transfer agents, that the resulting polymer size can be predicted and that there is little or no difference in the immunogenicity of polymers that range in apparent molecular size between 18 kDa and 335 kDa. The successful polymerization of peptide epitopes with an acryloyl-amino acid creates the potential for introducing different physical and chemical properties into artificial protein immunogens.
Collapse
Affiliation(s)
- K Sadler
- Cooperative Research Centre for Vaccine Technology, Department of Microbiology and Immunology, University of Melbourne, Parkville, Vic. 3010, Australia
| | | | | |
Collapse
|
19
|
Kronin V, Fitzmaurice CJ, Caminschi I, Shortman K, Jackson DC, Brown LE. Differential effect of CD8(+) and CD8(-) dendritic cells in the stimulation of secondary CD4(+) T cells. Int Immunol 2001; 13:465-73. [PMID: 11282986 DOI: 10.1093/intimm/13.4.465] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DC), in their role in initiation of the adaptive immune response, have been extensively studied for their capacity to interact and stimulate naive T cells. Subsets of mature murine DC isolated directly from the spleen have been shown to differ in their ability to induce proliferative responses in both primary CD4(+) and primary CD8(+) T cells; the myeloid-related CD8alpha(-) DC induce a more intense or prolonged proliferation of naive T cells than do the lymphoid-related DC bearing CD8alpha despite similar expression of MHC and co-stimulatory molecules. Here we examine the interaction of these DC subpopulations with T cells already in the activated or memory state which are known to have greater sensitivity to antigen stimulation and bear receptors with increased capacity for signal transduction. We show that influenza virus-specific CD4(+) T cell clones and splenic T cells from peptide-primed animals proliferated in response to antigen presented by separated splenic CD8(-) DC. In contrast, these T cells showed only weak, if any, proliferation in response to CD8(+) DC despite observable cluster formation in the cultures. The differential between the two DC types in inducing proliferation was even more pronounced than previously seen with primary T cells and did not reflect differential longevity of the DC in culture, altered response kinetics or deviation from IL-2 to IL-4 induction with CD8(+) DC, but was related to the levels of IL-2 induced. The deficiency in the CD8(+) DC was not overcome by using infectious virus rather than synthetic peptide as the antigen source. These results show that lymphoid-related CD8(+) splenic DC, despite their mature phenotype, fail to provide appropriate signals to secondary CD4(+) T cells to sustain their proliferation.
Collapse
Affiliation(s)
- V Kronin
- Cooperative Research Center for Vaccine Technology, Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Bonnet D, Thiam K, Loing E, Melnyk O, Gras-Masse H. Synthesis by chemoselective ligation and biological evaluation of novel cell-permeable PKC-zeta pseudosubstrate lipopeptides. J Med Chem 2001; 44:468-71. [PMID: 11462985 DOI: 10.1021/jm000920s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of lipopeptides to passively cross the cell membrane opens new opportunities for the intracellular delivery of bioactive peptides. However, the production of large series of cell-permeable lipopeptides is not trivial due to their generally low solubility. We have evaluated the possibility of associating the fatty acid to the functional cargo using generally applicable ligation chemistries. To this end, we have designed an amphiphilic shuttle in which arginine residues served to solubilize the lipid part in aqueous media, during both the assembly of the lipopeptide and the cellular assays. Our model peptide, the pseudosubstrate sequence of protein kinase C-zeta (PKC-zeta), was associated to the pentapeptide Gly-Arg-Gly-Arg-Lys(Pam)-NH2 through thiazolidine, thioether, disulfide, or hydrazone linkages. The cytoplasm import of the resulting constructs was monitored through the quantification of the apoptosis specifically induced by PKC-zeta inhibition. Our observations suggested the interest of this noninvasive cellular import method to modulate the activity of an intracytoplasmic pharmacological target and showed the influence of a non-amide link created between the functional peptide and the lipidic vector: optimal results, in terms of both specific activity and low basal cytotoxicity, were obtained with the thiazolidine ligation product.
Collapse
Affiliation(s)
- D Bonnet
- Institut of Biology and Pasteur Institute of Lille, University of Lille II, UMR 8525 CNRS, France
| | | | | | | | | |
Collapse
|
21
|
Nardin EH, Calvo-Calle JM, Oliveira GA, Nussenzweig RS, Schneider M, Tiercy JM, Loutan L, Hochstrasser D, Rose K. A totally synthetic polyoxime malaria vaccine containing Plasmodium falciparum B cell and universal T cell epitopes elicits immune responses in volunteers of diverse HLA types. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:481-9. [PMID: 11123327 DOI: 10.4049/jimmunol.166.1.481] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This open-labeled phase I study provides the first demonstration of the immunogenicity of a precisely defined synthetic polyoxime malaria vaccine in volunteers of diverse HLA types. The polyoxime, designated (T1BT(*))(4)-P3C, was constructed by chemoselective ligation, via oxime bonds, of a tetrabranched core with a peptide module containing B cell epitopes and a universal T cell epitope of the Plasmodium falciparum circumsporozoite protein. The triepitope polyoxime malaria vaccine was immunogenic in the absence of any exogenous adjuvant, using instead a core modified with the lipopeptide P3C as an endogenous adjuvant. This totally synthetic vaccine formulation can be characterized by mass spectroscopy, thus enabling the reproducible production of precisely defined vaccines for human use. The majority of the polyoxime-immunized volunteers (7/10) developed high levels of anti-repeat Abs that reacted with the native circumsporozoite on P. falciparum sporozoites. In addition, these seven volunteers all developed T cells specific for the universal epitope, termed T(*), which was originally defined using CD4(+) T cells from protected volunteers immunized with irradiated P. falciparum sporozoites. The excellent correlation of T(*)-specific cellular responses with high anti-repeat Ab titers suggests that the T(*) epitope functioned as a universal Th cell epitope, as predicted by previous peptide/HLA binding assays and by immunogenicity studies in mice of diverse H-2 haplotypes. The current phase I trial suggests that polyoximes may prove useful for the development of highly immunogenic, multicomponent synthetic vaccines for malaria, as well as for other pathogens.
Collapse
Affiliation(s)
- E H Nardin
- Department of Medical and Molecular Parasitology, New York University School of Medicine, New York, NY 10010, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gantt S, Persson C, Rose K, Birkett AJ, Abagyan R, Nussenzweig V. Antibodies against thrombospondin-related anonymous protein do not inhibit Plasmodium sporozoite infectivity in vivo. Infect Immun 2000; 68:3667-73. [PMID: 10816526 PMCID: PMC97657 DOI: 10.1128/iai.68.6.3667-3673.2000] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thrombospondin-related anonymous protein (TRAP), a candidate malaria vaccine antigen, is required for Plasmodium sporozoite gliding motility and cell invasion. For the first time, the ability of antibodies against TRAP to inhibit sporozoite infectivity in vivo is evaluated in detail. TRAP contains an A-domain, a well-characterized adhesive motif found in integrins. We modeled here a three-dimensional structure of the TRAP A-domain of Plasmodium yoelii and located regions surrounding the MIDAS (metal ion-dependent adhesion site), the presumed business end of the domain. Mice were immunized with constructs containing these A-domain regions but were not protected from sporozoite challenge. Furthermore, monoclonal and rabbit polyclonal antibodies against the A-domain, the conserved N terminus, and the repeat region of TRAP had no effect on the gliding motility or sporozoite infectivity to mice. TRAP is located in micronemes, secretory organelles of apicomplexan parasites. Accordingly, the antibodies tested here stained cytoplasmic TRAP brightly by immunofluorescence. However, very little TRAP could be detected on the surface of sporozoites. In contrast, a dramatic relocalization of TRAP onto the parasite surface occurred when sporozoites were treated with calcium ionophore. This likely mimics the release of TRAP from micronemes when a sporozoite contacts its target cell in vivo. Contact with hepatoma cells in culture also appeared to induce the release of TRAP onto the surface of sporozoites. If large amounts of TRAP are released in close proximity to its cellular receptor(s), effective competitive inhibition by antibodies may be difficult to achieve.
Collapse
Affiliation(s)
- S Gantt
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
23
|
Bonnet D, Rommens C, Gras-Masse H, Melnyk O. Chemoselective acylation of hydrazinopeptides: a novel and mild method for the derivatization of peptides with sensitive fatty acids. Tetrahedron Lett 2000. [DOI: 10.1016/s0040-4039(99)02024-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Abstract
Although the induction of antibodies and T cells by synthetic peptides representing defined antigenic determinants is a routine laboratory procedure, their use as vaccines has not yet been generally realised. There are a number of reasons for this and paramount is the limitation of valency which affects not only immunogenicity, but also the coverage of the antigenic universe. This paper is a review of our own work in which we have assembled synthetic peptides into multivalent artificial proteins and then examined their immunological properties.
Collapse
Affiliation(s)
- D C Jackson
- Cooperative Research Centre for Vaccine Technology, Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia.
| | | | | | | |
Collapse
|
25
|
Franke ED, Hoffman SL, Sacci JB, Wang R, Charoenvit Y, Appella E, Chesnut R, Alexander J, Del Guercio MF, Sette A. Pan DR binding sequence provides T-cell help for induction of protective antibodies against Plasmodium yoelii sporozoites. Vaccine 1999; 17:1201-5. [PMID: 10195633 DOI: 10.1016/s0264-410x(98)00341-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pan-DR epitope (PADRE) peptides have demonstrated the capacity to deliver help for antibody responses in vivo. They were also found, fortuitously, to be able to provide significant helper T-cell activity in vivo. This suggested that linear constructs, containing the PADRE epitope, might be as efficient at generating an immune response as large multivalent antigens. Plasmodium falciparum and P. yoelii PADRE constructs were capable of inducing a high titre IgG antibody response that recognized intact sporozoites. We now report that these antibodies can inhibit sporozoite invasion of hepatocytes in vitro and that mice immunized with the PyCSP-PADRE linear construct were protected when challenged with P. yoelii sporozoites.
Collapse
Affiliation(s)
- E D Franke
- Malaria Program, Naval Medical Research Institute, Rockville, MD 20852, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nardin EH, Calvo-Calle JM, Oliveira GA, Clavijo P, Nussenzweig R, Simon R, Zeng W, Rose K. Plasmodium falciparum polyoximes: highly immunogenic synthetic vaccines constructed by chemoselective ligation of repeat B-cell epitopes and a universal T-cell epitope of CS protein. Vaccine 1998; 16:590-600. [PMID: 9569470 DOI: 10.1016/s0264-410x(97)00238-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Effective immunoprophylaxis directed against the pre-erythrocytic stages of the malaria parasite requires a vaccine that can elicit humoral and cell mediated immunity in individuals of diverse genetic background. In order for a synthetic peptide malaria vaccine to meet these requirements, problems associated with genetic restriction, peptide chemistry, adjuvant formulation and physiochemical characterization of the final synthetic vaccine product must first be overcome. To address these issues, five polyoxime vaccine candidates have been constructed by ligating purified peptide epitopes of the P. falciparum CS protein to a branched template via oxime bonds. All five constructs, including two based on templates containing the synthetic adjuvant tripalmitoyl-S-glyceryl cysteine (Pam3Cys), were of sufficient purity for characterization by mass spectrometry. The immunogenicity of the malaria polyoximes in different murine strains was compared to that of multiple antigen peptide (MAP) constructs synthesized by standard step-wise synthesis. A tri-epitope polyoxime-Pam3Cys construct, based on the repeats and a universal T-cell epitope that contains both helper and CTL epitopes of the CS protein, was shown to be a precisely-defined synthetic malaria vaccine candidate that was highly immunogenic in murine strains of diverse H-2 haplotypes.
Collapse
Affiliation(s)
- E H Nardin
- Department of Medical and Molecular Parasitology, New York University School of Medicine, NY 10010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zeng W, Regamey PO, Rose K, Wang Y, Bayer E. Use of Fmoc-N-(2-hydroxy-4-methoxybenzyl)amino acids in peptide synthesis. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1997; 49:273-9. [PMID: 9151261 DOI: 10.1111/j.1399-3011.1997.tb00887.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The use of N,O-bisFmoc-N-(2-hydroxy-4-methoxybenzyl)amino acid derivatives in the synthesis of peptides with difficult sequences has already been described. With these amino acid derivatives the reversible protecting group 2-hydroxy-4-methoxybenzyl (Hmb) for the backbone amide bonds of peptide chains is introduced, and thus the aggregation due to hydrogen-bond interchain association is inhibited. This paper describes the synthesis and use of Fmoc-N-(2-hydroxy-4-methoxybenzyl)amino acid derivatives as an alternative means of introducing Hmb backbone protection. These new monoFmoc derivatives were obtained in higher yield than the bisFmoc derivatives. Coupling yields to the amino peptide resin were the same as those obtained with bisFmoc derivatives, under the TBTU HOBt/DIEA conditions. We also compared different syntheses of a difficult peptide with the Fmoc approach [triple coupling, capping, use of chaotropic agents, backbone protection using monoFmoc (Hmb)Ala] and with optimized Boc chemistry. Both the backbone protection and optimized Boc chemistry approaches gave the desired product in excellent yield and purity.
Collapse
|