1
|
Butkeraitis CB, Falla MVA, Lebrun I. Thermoregulation Effects of Phoneutria nigriventer Isolated Toxins in Rats. Toxins (Basel) 2024; 16:398. [PMID: 39330856 PMCID: PMC11435823 DOI: 10.3390/toxins16090398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024] Open
Abstract
Body temperature is primarily regulated by the hypothalamus, ensuring proper metabolic function. Envenomation by Phoneutria nigriventer can cause symptoms such as hypothermia, hyperthermia, sweating, and shivering, all related to thermoregulation. This study aims to analyze and identify components of the venom that affect thermoregulation and to evaluate possible mechanisms. Rats were used for thermoregulation analysis, venom fractionation by gel filtration and reverse-phase chromatography (C18), and sequencing by Edman degradation. The venom exhibited hypothermic effects in rats, while its fractions demonstrated both hypothermic (pool II) and hyperthermic (pool III) effects. Further separations of the pools with C18 identified specific peaks responsible for these effects. However, as the peaks were further purified, their effects became less significant. Tests on U87 human glioblastoma cells showed no toxicity. Sequencing of the most active peaks revealed masses similar to those of the Tachykinin and Ctenotoxin families, both known to act on the nervous system. The study concludes that molecules derived from venom can act synergistically or antagonistically. Additionally, toxins that affect thermoregulation are poorly studied and require further characterization. These toxins could potentially serve as sources for the development of new thermoregulatory drugs.
Collapse
Affiliation(s)
| | | | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Avenida Vital Brazil 1500, Butantã, São Paulo 05503-900, SP, Brazil (M.V.A.F.)
| |
Collapse
|
2
|
Costa SR, Vasconcelos AG, Almeida JOCS, Arcanjo DDR, Dematei A, Barbosa EA, Silva PC, Nascimento T, Santos LH, Eaton P, Leite JRSDA, Brand GD. Structural Characterization and Rat Aortic Vascular Reactivity of Bradykinin-Potentiating Peptides (BPPs) from the Snake Venom of Bothrops moojeni from Delta do Parnaíba Region, Brazil. JOURNAL OF NATURAL PRODUCTS 2024; 87:820-830. [PMID: 38449376 DOI: 10.1021/acs.jnatprod.3c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Snake venoms contain various bradykinin-potentiating peptides (BPPs). First studied for their vasorelaxant properties due to angiotensin converting enzyme (ACE) inhibition, these molecules present a range of binding partners, among them the argininosuccinate synthase (AsS) enzyme. This has renewed interest in their characterization from biological sources and the evaluation of their pharmacological activities. In the present work, the low molecular weight fraction of Bothrops moojeni venom was obtained and BPPs were characterized by mass spectrometry. Eleven BPPs or related peptides were sequenced, and one of them, BPP-Bm01, was new. Interestingly, some oxidized BPPs were detected. The three most abundant peptides were BPP-Bm01, BPP-Bax12, and BPP-13a, and their putative interactions with the AsS enzyme were investigated in silico. A binding cavity for these molecules was predicted, and docking studies allowed their ranking. Three peptides were synthesized and submitted to vasorelaxation assays using rat aortic rings. While all BPPs were active, BPP-Bm01 showed the highest potency in this assay. This work adds further diversity to BPPs from snake venoms and suggests, for the first time, a putative binding pocket for these molecules in the AsS enzyme. This can guide the design of new and more potent AsS activators.
Collapse
Affiliation(s)
- Samuel R Costa
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Andreanne G Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| | - José Otávio C S Almeida
- LAFMOL-Laboratório de Estudos Funcionais e Moleculares em Fisiofarmacologia, Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina 64049-550, Brazil
| | - Daniel D R Arcanjo
- LAFMOL-Laboratório de Estudos Funcionais e Moleculares em Fisiofarmacologia, Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina 64049-550, Brazil
| | - Anderson Dematei
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Eder A Barbosa
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Pedro Costa Silva
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Universidade Federal do Delta do Parnaíba, UFDPAR, Parnaíba, Piauí 64202-020, Brazil
| | - Thiago Nascimento
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Universidade Federal do Delta do Parnaíba, UFDPAR, Parnaíba, Piauí 64202-020, Brazil
| | - Lucianna H Santos
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Peter Eaton
- The Bridge, Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln LN6 7EL, U.K
| | - José Roberto S de A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Universidade Federal do Delta do Parnaíba, UFDPAR, Parnaíba, Piauí 64202-020, Brazil
| | - Guilherme D Brand
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
3
|
de Oliveira IS, Alano-da-Silva NM, Ferreira IG, Cerni FA, Sachett JDAG, Monteiro WM, Pucca MB, Arantes EC. Understanding the complexity of Tityus serrulatus venom: A focus on high molecular weight components. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230046. [PMID: 38317796 PMCID: PMC10843179 DOI: 10.1590/1678-9199-jvatitd-2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 02/07/2024] Open
Abstract
Tityus serrulatus scorpion is responsible for a significant number of envenomings in Brazil, ranging from mild to severe, and in some cases, leading to fatalities. While supportive care is the primary treatment modality, moderate and severe cases require antivenom administration despite potential limitations and adverse effects. The remarkable proliferation of T. serrulatus scorpions, attributed to their biology and asexual reproduction, contributes to a high incidence of envenomation. T. serrulatus scorpion venom predominantly consists of short proteins acting as neurotoxins (α and β), that primarily target ion channels. Nevertheless, high molecular weight compounds, including metalloproteases, serine proteases, phospholipases, and hyaluronidases, are also present in the venom. These compounds play a crucial role in envenomation, influencing the severity of symptoms and the spread of venom. This review endeavors to comprehensively understand the T. serrulatus scorpion venom by elucidating the primary high molecular weight compounds and exploring their potential contributions to envenomation. Understanding these compounds' mechanisms of action can aid in developing more effective treatments and prevention strategies, ultimately mitigating the impact of scorpion envenomation on public health in Brazil.
Collapse
Affiliation(s)
- Isadora Sousa de Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicoly Malachize Alano-da-Silva
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isabela Gobbo Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe Augusto Cerni
- Health and Sciences Postgraduate Program, Federal University of Roraima, Boa Vista, RR, Brazil
| | - Jacqueline de Almeida Gonçalves Sachett
- School of Health Sciences, Amazonas State University, Manaus, AM, Brazil
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, AM, Brazil
| | - Wuelton Marcelo Monteiro
- School of Health Sciences, Amazonas State University, Manaus, AM, Brazil
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, AM, Brazil
| | - Manuela Berto Pucca
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, Brazil
| | - Eliane Candiani Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Zhao QY, Chen X, Wang RZ, Chen YM, Zang LS. Comparative Analysis of the Venom Proteins from Two Eupelmid Egg Parasitoids Anastatus japonicus and Mesocomys trabalae. BIOLOGY 2023; 12:biology12050700. [PMID: 37237513 DOI: 10.3390/biology12050700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Parasitic wasps are abundant and diverse Hymenoptera insects that lay their eggs inside or on the external surface of the host and inject venom into the host to create a more favorable environment for the larvae to survive and regulate the host's immunity, metabolism, and development. But research on the composition of egg parasitoid venom is very limited. In this study, we used a combination of transcriptomic and proteomic approaches to identify the protein fractions of the venom in both eupelmid egg parasitoids, Anastatus japonicus and Mesocomys trabalae. We identified 3422 up-regulated venom gland genes (UVGs) in M. trabalae and 3709 in A. japonicus and analyzed their functions comparatively. By proteome sequencing, we identified 956 potential venom proteins in the venom pouch of M. trabalae, of which 186 were contained in UVGs simultaneously. A total of 766 proteins were detected in the venom of A. japonicus, of which 128 venom proteins were highly expressed in the venom glands. At the same time, the functional analysis of these identified venom proteins was carried out separately. We found the venom proteins in M. trabalae are well known but not in A. japonicus, which may be related to the host range. In conclusion, identifying venom proteins in both egg parasitoid species provides a database for studying the function of egg parasitoid venom and its parasitic mechanism.
Collapse
Affiliation(s)
- Qian-Yu Zhao
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xu Chen
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Run-Zhi Wang
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yong-Ming Chen
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Lian-Sheng Zang
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Current knowledge, challenges, new perspectives of the study, and treatments of Autism Spectrum Disorder. Reprod Toxicol 2021; 106:82-93. [PMID: 34695561 DOI: 10.1016/j.reprotox.2021.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 01/12/2023]
Abstract
Over the past 70 years, the understanding of Autism Spectrum Disorder (ASD) improved greatly and is characterized as a heterogeneous neuropsychiatric syndrome. ASD is characterized by difficulties in social communication, restricted and repetitive behavior, interests, or activities. And it is often described as a combination of genetic predisposition and environmental factors. There are many treatments and approaches to ASD, including pharmacological therapies with antipsychotics, antidepressants, mood regulators, stimulants, and behavioral ones. However, no treatment is capable of reverting ASD. This review provides an overview of animal models of autism. We summarized genetic and environmental models and then valproic acid treatment as a useful model for ASD. As well as the main therapies and approaches used in the treatment, relating them to the neurochemical pathways altered in ASD, emphasizing the pharmacological potential of peptides and bioinspired compounds found in animal venoms as a possible future treatment for ASD.
Collapse
|
6
|
Li YL, Qu Q, Qi YK, Liu L, Wang KW, Liu Y, Fang GM. Comparison of different strategies towards the chemical synthesis of long-chain scorpion toxin AaH-II. J Pept Sci 2021; 28:e3365. [PMID: 34467600 DOI: 10.1002/psc.3365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022]
Abstract
Long-chain scorpion toxin AaH-II isolated from Androctonus australis Hector can selectively inhibit mammalian voltage-gated sodium ion channel Nav 1.7 responsible for pain sensation. Efficient chemical synthesis of AaH-II and its derivatives is beneficial to the study of the function and mechanism of Nav 1.7 and the development of potential peptide inhibitors. Herein, we compared three different strategies, namely, direct solid-phase peptide synthesis, hydrazide-based two-segment native chemical ligation, and hydrazide-based three-segment native chemical ligation for the synthesis of AaH-II. The hydrazide-based two-segment native chemical ligation affords the target toxin with the optimal efficiency, which provides a practically robust procedure for the preparation of tool molecules derived from AaH-II to study the biological functions and modulation of Nav 1.7. Our work highlights the importance of selecting suitable segment condensation approach in the chemical synthesis of protein toxins.
Collapse
Affiliation(s)
- Yu-Lei Li
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.,Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qian Qu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.,Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yun-Kun Qi
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Ke Wei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Ge-Min Fang
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|
7
|
Comprehensive transcriptional changes in the liver of Kanglang white minnow ( Anabarilius g rahami) in response to the infection of parasite Ichthyophthirius m ultifiliis. Animals (Basel) 2020; 10:ani10040681. [PMID: 32295151 PMCID: PMC7222788 DOI: 10.3390/ani10040681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Kanglang white minnow (KWM, Anabarilius grahami), is a typical “3E” (Endangered, Endemic and Economic) fish species in Yunnan-Guizhou Plateau. As one of the traditional “Four Famous Fishes” in Yunnan province, it has become the major local aquaculture species with increasing demand after the success of artificial breeding. However, this economically important fish is highly susceptible to the infection of a parasite ciliate, Ichthyophthirius multifiliis (Ich), during the practical procedure of artificial breeding. To examine the host immune responses to Ich, we divided the experimental fishes into three groups (including control, early-infected stage, and late-infected stage) for transcriptome sequencing to analyze the differentially expressed genes (DEGs) and immune response mechanisms. Abstract The notorious parasite Ichthyophthirius multifiliis (Ich) has been recorded worldwide in fish species and causes white spot disease, posing major threats and resulting in severe losses to international fish production. Extensively effective strategies for treating Ich are not available yet, and genetic mechanisms of hosts in response to the parasite are still largely unknown. In this study, we selected Kanglang white minnow (KWM, Anabarilius grahami) to examine its liver transcriptional changes after Ich infection, as white spot disease is one bottleneck problem in exploring this economically important species. We divided the experimental fishes into three groups (control, early-infected, and late-infected) to examine differentially expressed genes (DEGs). A total of 831 DEGs were identified and classified into 128 significantly enriched GO (Gene Ontology) terms and 71 significantly enriched KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Most of these terms or pathways were functionally enriched in immunity, inflammatory response, and apoptosis, such as nucleotide-binding oligomerization domain-like (NOD-like) receptor signaling, tumor necrosis factor (TNF) signaling, interleukin-17 (IL-17) signaling, and apoptosis pathways. We also identified 178 putative antimicrobial peptides (AMPs) and AMP precursors based on our previously reported genome assembly of KWM, and revealed that the expressional patterns varied according to different types. In summary, our work reported the first comprehensive transcriptional changes in KWM in response to the exogenous infection of Ich, which would lay a solid foundation for in-depth studies on disease defense or resistant strains selection in this valuable fish.
Collapse
|
8
|
Johnson SR, Rikli HG. Aspartic Acid Isomerization Characterized by High Definition Mass Spectrometry Significantly Alters the Bioactivity of a Novel Toxin from Poecilotheria. Toxins (Basel) 2020; 12:E207. [PMID: 32218140 PMCID: PMC7232244 DOI: 10.3390/toxins12040207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022] Open
Abstract
Research in toxinology has created a pharmacological paradox. With an estimated 220,000 venomous animals worldwide, the study of peptidyl toxins provides a vast number of effector molecules. However, due to the complexity of the protein-protein interactions, there are fewer than ten venom-derived molecules on the market. Structural characterization and identification of post-translational modifications are essential to develop biological lead structures into pharmaceuticals. Utilizing advancements in mass spectrometry, we have created a high definition approach that fuses conventional high-resolution MS-MS with ion mobility spectrometry (HDMSE) to elucidate these primary structure characteristics. We investigated venom from ten species of "tiger" spider (Genus: Poecilotheria) and discovered they contain isobaric conformers originating from non-enzymatic Asp isomerization. One conformer pair conserved in five of ten species examined, denominated PcaTX-1a and PcaTX-1b, was found to be a 36-residue peptide with a cysteine knot, an amidated C-terminus, and isoAsp33Asp substitution. Although the isomerization of Asp has been implicated in many pathologies, this is the first characterization of Asp isomerization in a toxin and demonstrates the isomerized product's diminished physiological effects. This study establishes the value of a HDMSE approach to toxin screening and characterization.
Collapse
Affiliation(s)
- Stephen R. Johnson
- Carbon Dynamics Institute LLC, Sherman, IL 62684, USA
- Chemistry Department, University of Illinois Springfield, Springfield, IL 62703, USA
| | - Hillary G. Rikli
- College of Liberal Arts & Sciences, University of Illinois Springfield, Springfield, IL 62703, USA;
| |
Collapse
|
9
|
Yi Y, Lv Y, You X, Chen J, Bian C, Huang Y, Xu J, Deng L, Shi Q. High throughput screening of small immune peptides and antimicrobial peptides from the Fish-T1K database. Genomics 2019; 111:215-221. [DOI: 10.1016/j.ygeno.2018.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 01/19/2023]
|
10
|
Molecular basis of Tityus stigmurus alpha toxin and potassium channel kV1.2 interactions. J Mol Graph Model 2019; 87:197-203. [DOI: 10.1016/j.jmgm.2018.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 01/08/2023]
|
11
|
Marciniak A, Suwal S, Naderi N, Pouliot Y, Doyen A. Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Kalmykova SD, Arapidi GP, Urban AS, Osetrova MS, Gordeeva VD, Ivanov VT, Govorun VM. In Silico Analysis of Peptide Potential Biological Functions. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s106816201804009x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Extraction and preliminary chemical characterization of the venom of the spider wasp Pepsis decorata (Hymenoptera: Pompilidae). Toxicon 2018; 150:74-76. [PMID: 29705151 DOI: 10.1016/j.toxicon.2018.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 11/22/2022]
Abstract
Arthropod venoms may be considered important sources of bioactive molecules; however, technical difficulties, such as venom extraction and homogeneity may impair the biochemical identification of new molecules. In this context, we have developed a method to maintain wasps in captivity that allows the collection of the venom, without use of chemical, mechanical or electrical stimuli. The crude venom was analyzed by RP-HPLC-ESIQ-ToF and 20 peptides were identified by de novo peptide sequencing, among them Eumenine-Mastoparan and a Ponericin-G2-simile peptide.
Collapse
|
14
|
Intraspecific venom variation in southern African scorpion species of the genera Parabuthus, Uroplectes and Opistophthalmus (Scorpiones: Buthidae, Scorpionidae). Toxicon 2018; 144:83-90. [DOI: 10.1016/j.toxicon.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/07/2018] [Accepted: 02/11/2018] [Indexed: 11/19/2022]
|
15
|
Yeo I, Lee YJ, Song K, Jin HS, Lee JE, Kim D, Lee DW, Kang NJ. Low-molecular weight keratins with anti-skin aging activity produced by anaerobic digestion of poultry feathers with Fervidobacterium islandicum AW-1. J Biotechnol 2018; 271:17-25. [PMID: 29438785 DOI: 10.1016/j.jbiotec.2018.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/16/2018] [Accepted: 02/07/2018] [Indexed: 12/31/2022]
Abstract
Bioactive peptides contribute to various cellular processes including improved skin physiology. Hence, bioactive keratins have attracted considerable attention as active cosmetic ingredients for skin health. Here, we obtained low molecular weight (LMW) keratins from native chicken feathers by anaerobic digestion with an extremely thermophilic bacterium Fervidobacterium islandicum AW-1, followed by stepwise fractionation through ultrafiltration. To assess the effects of the feather keratins on skin health, we performed in vitro and ex vivo assays to investigate their inhibitory effects on matrix metalloproteinases (MMPs). As results, LMW feather keratins marginally inhibited collagenase, elastase, and radical scavenging activities. On the other hand, LMW feather keratins significantly suppressed the expression of ultraviolet B (UVB)-induced MMP-1 and MMP-13 in human dermal fibroblasts. Furthermore, phospho-kinase antibody array revealed that LMW feather keratins suppressed UVB-induced phosphorylation of Akts, c-Jun N-terminal kinases 1, p38 beta, and RSK2, but not ERKs in human dermal fibroblast. Overall, these results suggest that LMW feather keratins are potential candidates as cosmeceutical peptides for anti-skin aging.
Collapse
Affiliation(s)
- Inhyuk Yeo
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yong-Jik Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyeongseop Song
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeon-Su Jin
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Eun Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dajeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Woo Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
16
|
Johnson SR, Rikli HG, Schmidt JO, Evans MS. A reexamination of poneratoxin from the venom of the bullet ant Paraponera clavata. Peptides 2017; 98:51-62. [PMID: 27266841 DOI: 10.1016/j.peptides.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/29/2016] [Accepted: 05/31/2016] [Indexed: 12/19/2022]
Abstract
In 1991, Piek et al. [45] described a voltage-gated sodium channel (VGSC) modifier from "bullet ant" (Paraponera clavata) venom they called poneratoxin (PoTx). Using UV chromatography and Edman degradation they showed two "identical peptides" of 25 residues. We reinvestigated PoTx using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-TMS). De novo sequencing showed the two peptides were actually structurally different peptides: the originally described PoTx and a glycyl pro-peptide (glycyl-PoTx) that lacks C-terminus amidation. We examined P. clavata venom from different geographical locations and discovered two additional PoTx analogs: an A23E substitution analog and a D22N; A23V substitutions analog. We tested PoTx and these three natural analogs on the mammalian sensory voltage-gated sodium channel, Nav1.7, using whole cell voltage-clamp. PoTx and each analog induced slowly activating currents in response to small depolarizing steps and sustained currents due to blockade of channel inactivation, similar to that described previously in skeletal muscle [19]. Glycyl-PoTx had the same potency and efficacy as PoTx. A23E PoTx, with a decrease in both C-terminal net positive charge and hydrophobicity, had an eight-fold reduction in potency compared to PoTx. In contrast, the D22N; A23V PoTx, with an increase in both C-terminal net positive charge and hydrophobicity, had a nearly five-fold increase in potency compared to PoTx. We found that changes in PoTx C-terminus caused a significant change in PoTx potency.
Collapse
Affiliation(s)
- Stephen R Johnson
- Department of Biology, University of Illinois Springfield, Springfield, IL, United States; Department of Chemistry, University of Illinois Springfield, Springfield, IL, United States; Carbon Dynamics Institute, LLC, Sherman, IL, United States.
| | - Hillary G Rikli
- Department of Biology, University of Illinois Springfield, Springfield, IL, United States; Department of Chemistry, University of Illinois Springfield, Springfield, IL, United States
| | | | - M Steven Evans
- Department of Neurology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
17
|
Rocha-Resende C, Leão NM, de Lima ME, Santos RA, Pimenta AMDC, Verano-Braga T. Moving pieces in a cryptomic puzzle: Cryptide from Tityus serrulatus Ts3 Nav toxin as potential agonist of muscarinic receptors. Peptides 2017; 98:70-77. [PMID: 28041976 DOI: 10.1016/j.peptides.2016.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 02/02/2023]
Abstract
Cryptome is as a subset of a given proteome containing bioactive cryptides embedded in larger peptides or proteins. We pinpointed a striking sequence similarity between two peptides from the Tityus serrulatus venom: Ts10 (KKDGYPVEYDRAY) and the N-terminal of Ts3 (KKDGYPVEYDNCAY). Ts3 (former Tityustoxin or TsIV) is an α-neurotoxin acting on voltage-gated sodium channels while Ts10 (former Peptide T) is a bradykinin-potentiating peptide and was originally reported as inhibitor of the angiotensin-converting enzyme (ACEi). Thus, the goal of this study was to evaluate whether such peptide hidden in the N-terminal of Ts3 (Ts31-14[C12S]) was able to mimic known effects of Ts10 as well as to expand the current knowledge of the vascular effects and molecular targets of these peptides. Similar to Ts10, Ts31-14[C12S] was able to potentiate the hypotensive effect of bradykinin (BK). However, none of these peptides was able to induce a long-lasting BK-potentiating effect, suggesting that this effect may not be their main biological outcome. On the other hand, we report that Ts10 and mainly Ts31-14[C12S] induced a strong vasodilation effect depending on the presence of functional endothelium and nitric oxide (NO) production. Unlike previously reported, Ts10 was not able to inhibit ACE activity (similar result was observed for Ts31-14[C12S]). On the other hand, we report that Ts31-14[C12S] induces vasodilation via the activation of muscarinic acetylcholine receptors (mAChRs) M2 and M3 while only the activation of mAChR M2 seems to be required for Ts10-induced vasodilation.
Collapse
Affiliation(s)
- Cibele Rocha-Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nádia Miricéia Leão
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Robson Augusto Santos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriano Monteiro de Castro Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Thiago Verano-Braga
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
18
|
Santussi WM, Bordon KCF, Rodrigues Alves APN, Cologna CT, Said S, Arantes EC. Antifungal Activity against Filamentous Fungi of Ts1, a Multifunctional Toxin from Tityus serrulatus Scorpion Venom. Front Microbiol 2017. [PMID: 28634472 PMCID: PMC5459920 DOI: 10.3389/fmicb.2017.00984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) are ubiquitous and multipotent components of the innate immune defense arsenal used by both prokaryotic and eukaryotic organisms. The search for new AMPs has increased in recent years, due to the growing development of microbial resistance to therapeutical drugs. In this work, we evaluate the effects of Tityus serrulatus venom (Tsv), its fractions and its major toxin Ts1, a beta-neurotoxin, on fungi growth. The fractions were obtained by ion-exchange chromatography of Tsv. The growth inhibition of 11 pathogenic and non-pathogenic filamentous fungi (Aspergillus fumigatus, A. nidulans, A. niger, A. terreus, Neurospora crassa, Penicillium corylophilum, P. ochrochloron, P. verrucosum, P. viridicatum, P. waksmanii, and Talaromyces flavus) was evaluated by quantitative microplate reader assay. Tsv (100 and 500 μg/well, which correspond to 1 and 5 mg/mL, respectively, of total soluble protein) was active in inhibiting growth of A. nidulans, A. terreus, P. corylophilum, and P. verrucosum, especially in the higher concentration used and at the first 30 h. After this period, fungi might have used Tsv components as alternative sources of nutrients, and therefore, increased their growth tax. Only fractions IX, X, XI, XIIA, XIIB (3 and 7.5 μg/well, which correspond to 30 and 75 μg/mL, respectively, of total soluble protein) and Ts1 (1.5, 3, and 6 μg/well, which correspond to 2.18, 4.36, and 8.72 μM, respectively) showed antifungal activity. Ts1 showed to be a non-morphogenic toxin with dose-dependent activity against A. nidulans, inhibiting 100% of fungal growth from 3 μg/well (4.36 μM). The inhibitory effect of Ts1 against A. nidulans growth was accompanied by fungistatic effects and was not amended by 1 mM CaCl2 or tetrodotoxin (46.98 and 93.96 μM). The structural differences between Ts1 and drosomycin, a potent cysteine-rich antifungal peptide, are discussed here. Our results highlight the antifungal potential of the first cysteine-containing scorpion toxin. Since Ts1 is a multifunctional toxin, we suggest that it could be used as a template in the design of engineered scorpion AMPs and in the search for new mechanisms of action of antifungal drugs.
Collapse
Affiliation(s)
- Welligton M Santussi
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Karla C F Bordon
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Ana P N Rodrigues Alves
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Camila T Cologna
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Suraia Said
- Laboratory of Industrial Enzymology, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Eliane C Arantes
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
19
|
|
20
|
Bocian A, Urbanik M, Hus K, Łyskowski A, Petrilla V, Andrejčáková Z, Petrillová M, Legath J. Proteome and Peptidome of Vipera berus berus Venom. Molecules 2016; 21:E1398. [PMID: 27775574 PMCID: PMC6274168 DOI: 10.3390/molecules21101398] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 01/29/2023] Open
Abstract
Snake venom is a rich source of peptides and proteins with a wide range of actions. Many of the venom components are currently being tested for their usefulness in the treatment of many diseases ranging from neurological and cardiovascular to cancer. It is also important to constantly search for new proteins and peptides with properties not yet described. The venom of Vipera berus berus has hemolytic, proteolytic and cytotoxic properties, but its exact composition and the factors responsible for these properties are not known. Therefore, an attempt was made to identify proteins and peptides derived from this species venom by using high resolution two-dimensional electrophoresis and MALDI ToF/ToF mass spectrometry. A total of 11 protein classes have been identified mainly proteases but also l-amino acid oxidases, C-type lectin like proteins, cysteine-rich venom proteins and phospholipases A₂ and 4 peptides of molecular weight less than 1500 Da. Most of the identified proteins are responsible for the highly hemotoxic properties of the venom. Presence of venom phospholipases A₂ and l-amino acid oxidases cause moderate neuro-, myo- and cytotoxicity. All successfully identified peptides belong to the bradykinin-potentiating peptides family. The mass spectrometry data are available via ProteomeXchange with identifier PXD004958.
Collapse
Affiliation(s)
- Aleksandra Bocian
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| | - Małgorzata Urbanik
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| | - Konrad Hus
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| | - Andrzej Łyskowski
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| | - Vladimír Petrilla
- Department of Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia.
- Zoo Košice, Široká 31, 040 06 Košice-Kavečany, Slovakia.
| | - Zuzana Andrejčáková
- Department of Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia.
| | - Monika Petrillová
- Department of General Education Subjects, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia.
| | - Jaroslav Legath
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia.
| |
Collapse
|
21
|
Duzzi B, Cajado-Carvalho D, Kuniyoshi AK, Kodama RT, Gozzo FC, Fioramonte M, Tambourgi DV, Portaro FV, Rioli V. [des-Arg(1)]-Proctolin: A novel NEP-like enzyme inhibitor identified in Tityus serrulatus venom. Peptides 2016; 80:18-24. [PMID: 26056922 DOI: 10.1016/j.peptides.2015.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
Abstract
The scorpion Tityus serrulatus venom comprises a complex mixture of molecules that paralyzes and kills preys, especially insects. However, venom components also interact with molecules in humans, causing clinic envenomation. This cross-interaction may result from homologous molecular targets in mammalians and insects, such as (NEP)-like enzymes. In face of these similarities, we searched for peptides in Tityus serrulatus venom using human NEP as a screening tool. We found a NEP-inhibiting peptide with the primary sequence YLPT, which is very similar to that of the insect neuropeptide proctolin (RYLPT). Thus, we named the new peptide [des-Arg(1)]-proctolin. Comparative NEP activity assays using natural substrates demonstrated that [des-Arg(1)]-proctolin has high specificity for NEP and better inhibitory activity than proctolin. To test the initial hypothesis that molecular homologies allow Tityus serrulatus venom to act on both mammal and insect targets, we investigated the presence of a NEP-like in cockroaches, the main scorpion prey, that could be likewise inhibited by [des-Arg(1)]-proctolin. Indeed, we detected a possible NEP-like in a homogenate of cockroach heads whose activity was blocked by thiorphan and also by [des-Arg(1)]-proctolin. Western blot analysis using a human NEP monoclonal antibody suggested a NEP-like enzyme in the homogenate of cockroach heads. Our study describes for the first time a proctolin-like peptide, named [des-Arg(1)]-proctolin, isolated from Tityus serrulatus venom. The tetrapeptide inhibits human NEP activity and a NEP-like activity in a cockroach head homogenate, thus it may play a role in human envenomation as well as in the paralysis and death of scorpion preys.
Collapse
Affiliation(s)
- Bruno Duzzi
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Daniela Cajado-Carvalho
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Alexandre Kazuo Kuniyoshi
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Roberto Tadashi Kodama
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | | | | | - Denise Vilarinho Tambourgi
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Fernanda Vieira Portaro
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil.
| | - Vanessa Rioli
- Special Laboratory of Applied Toxinology/Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Insights into the venom composition and evolution of an endoparasitoid wasp by combining proteomic and transcriptomic analyses. Sci Rep 2016; 6:19604. [PMID: 26803989 PMCID: PMC4726277 DOI: 10.1038/srep19604] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Parasitoid wasps are abundant and diverse hymenopteran insects that lay their eggs into the internal body (endoparasitoid) or on the external surface (ectoparasitoid) of their hosts. To make a more conducive environment for the wasps’ young, both ecto- and endoparasitoids inject venoms into the host to modulate host immunity, metabolism and development. Endoparasitoids have evolved from ectoparasitoids independently in different hymenopteran lineages. Pteromalus puparum, a pupal endoparasitoid of various butterflies, represents a relatively recent evolution of endoparasitism within pteromalids. Using a combination of transcriptomic and proteomic approaches, we have identified 70 putative venom proteins in P. puparum. Most of them show higher similarity to venom proteins from the related ectoparasitoid Nasonia vitripennis than from other more distantly related endoparasitoids. In addition, 13 venom proteins are similar to venoms of distantly related endoparasitoids but have no detectable venom matches in Nasonia. These venom proteins may have a role in adaptation to endoparasitism. Overall, these results lay the groundwork for more detailed studies of venom function and adaptation to the endoparasitic lifestyle.
Collapse
|
23
|
Isolation and characterization of Bradykinin potentiating peptides from Agkistrodon bilineatus venom. Proteome Sci 2016; 14:1. [PMID: 26770072 PMCID: PMC4712559 DOI: 10.1186/s12953-016-0090-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/05/2016] [Indexed: 12/03/2022] Open
Abstract
Background Snake venom is a source of many pharmacologically important molecules. Agkistrodon bilineatus commonly known as Cantil, is spread over Central America particularly in Mexico and Costa Rica. From the venom of Agkistrodon bilineatus we have isolated and characterised six hypotensive peptides, and two bradykinin inhibitor peptides. The IC-50 value of four synthesized peptides was studied, towards angiotensin converting enzyme, in order to study the structure-function relationship of these peptides. Results The purification of the peptides was carried out by size exclusion chromatography, followed by reverse phase chromatography. Sequences of all peptides were determined applying MALDI-TOF/TOF mass spectrometry. These hypotensive peptides bear homology to bradykinin potentiating peptides and venom vasodilator peptide. The peptide with m/z 1355.53 (M + H)+1, and the corresponding sequence ZQWAQGRAPHPP, we identified for the first time. A precursor protein containing a fragment of this peptide was reported at genome level, (Uniprot ID P68515), in Bothrops insularis venom gland. These proline rich hypotensive peptides or bradykinin potentiating peptides are usually present in the venom of Crotalinae, and exhibit specificity in binding to the C domain of somatic angiotensin converting enzyme. Four of these hypotensive peptides, were selected and synthesized to obtain the required quantity to study their IC50 values in complex with the angiotensin converting enzyme. The peptide with the sequence ZLWPRPQIPP displayed the lowest IC50 value of 0.64 μM. The IC50 value of the peptide ZQWAQGRAPHPP was 3.63 μM. Conclusion The canonical snake venom BPPs classically display the IPP motif at the C-terminus. Our data suggest that the replacement of the highly conserved hydrophobic isoleucine by histidine does not affect the inhibitory activity, indicating that isoleucine is not mandatory to inhibit the angiotensin converting enzyme. The evaluation of IC 50 values show that the peptide with basic pI value exhibits a lower IC 50 value.
Collapse
|
24
|
von Reumont BM, Campbell LI, Jenner RA. Quo vadis venomics? A roadmap to neglected venomous invertebrates. Toxins (Basel) 2014; 6:3488-551. [PMID: 25533518 PMCID: PMC4280546 DOI: 10.3390/toxins6123488] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 01/22/2023] Open
Abstract
Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms.
Collapse
Affiliation(s)
| | - Lahcen I Campbell
- Department of Life Sciences, the Natural History Museum, Cromwell Road, SW7 5BD London, UK.
| | - Ronald A Jenner
- Department of Life Sciences, the Natural History Museum, Cromwell Road, SW7 5BD London, UK.
| |
Collapse
|
25
|
Helal SI, Hegazi A, Al-Menabbawy K. Apitherapy Have a Role in Treatment of Multiple Sclerosis. Open Access Maced J Med Sci 2014. [DOI: 10.3889/oamjms.2014.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM: Multiple sclerosis (MS) is an inflammatory disease in which the fatty myelin sheaths around the axons of the brain and spinal cord are damaged. We Study the effect of Apitherapy in treatment of MS.MATERIAL AND METHODS: Fifty patients with MS, their ages ranged between 26-71 years, were subjected to complete clinical and neurological history and examination to confirm the diagnosis. All cases were under their regular treatment they were divided into two main groups, Group I received honey, pollen, royal jelly and propolis and were treated with apiacupuncture 3 times weekly, for 12 months, in addition to their medical treatment, while group II remains on their ordinary medical treatment only. Apiacupuncture was done by bee stings for regulating the immune system.RESULTS: Results revealed that 4 patients showed some improvement regarding their defects in gait, bowel control, constipation and urination, while 12 cases, showed some mild improvement in their movement in bed, and better improvement in bed sores, sensation, and better motor power, only two cases of them were able to stand for few minutes with support.CONCLUSION: Although Apitherapy is not a curable therapy in MS, but it can be used to minimize the clinical symptoms of MS, and can be included among programs of MS therapy.
Collapse
|
26
|
Lima D, Torres A, Mello C, de Menezes R, Sampaio T, Canuto J, da Silva J, Freire V, Quinet Y, Havt A, Monteiro H, Nogueira N, Martins A. Antimicrobial effect of Dinoponera quadriceps
(Hymenoptera: Formicidae) venom against Staphylococcus aureus
strains. J Appl Microbiol 2014; 117:390-6. [DOI: 10.1111/jam.12548] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/17/2014] [Accepted: 05/17/2014] [Indexed: 11/27/2022]
Affiliation(s)
- D.B. Lima
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| | - A.F.C. Torres
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| | - C.P. Mello
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| | - R.R.P.P.B. de Menezes
- Department of Physiology and Pharmacology; Faculty of Medicine; Federal University of Ceara; Fortaleza Ceara Brazil
| | - T.L. Sampaio
- Department of Physiology and Pharmacology; Faculty of Medicine; Federal University of Ceara; Fortaleza Ceara Brazil
| | - J.A. Canuto
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| | - J.J.A. da Silva
- Federal Rural University of the Semi-Arid; Natal Rio Grande do Norte Brazil
| | - V.N. Freire
- Department of Physics; Science Center; Federal University of Ceara; Fortaleza Ceara Brazil
| | - Y.P. Quinet
- Institute of Biomedical Sciences; State University of Ceara; Fortaleza Ceara Brazil
| | - A. Havt
- Department of Physiology and Pharmacology; Faculty of Medicine; Federal University of Ceara; Fortaleza Ceara Brazil
| | - H.S.A. Monteiro
- Department of Physiology and Pharmacology; Faculty of Medicine; Federal University of Ceara; Fortaleza Ceara Brazil
| | - N.A.P. Nogueira
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| | - A.M.C. Martins
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| |
Collapse
|
27
|
Cologna CT, Cardoso JDS, Jourdan E, Degueldre M, Upert G, Gilles N, Uetanabaro APT, Costa Neto EM, Thonart P, de Pauw E, Quinton L. Peptidomic comparison and characterization of the major components of the venom of the giant ant Dinoponera quadriceps collected in four different areas of Brazil. J Proteomics 2013; 94:413-22. [DOI: 10.1016/j.jprot.2013.10.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/04/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
|
28
|
Nelsen DR, Nisani Z, Cooper AM, Fox GA, Gren ECK, Corbit AG, Hayes WK. Poisons, toxungens, and venoms: redefining and classifying toxic biological secretions and the organisms that employ them. Biol Rev Camb Philos Soc 2013; 89:450-65. [PMID: 24102715 DOI: 10.1111/brv.12062] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 01/02/2023]
Abstract
Despite extensive study of poisonous and venomous organisms and the toxins they produce, a review of the literature reveals inconsistency and ambiguity in the definitions of 'poison' and 'venom'. These two terms are frequently conflated with one another, and with the more general term, 'toxin.' We therefore clarify distinctions among three major classes of toxins (biological, environmental, and anthropogenic or man-made), evaluate prior definitions of venom which differentiate it from poison, and propose more rigorous definitions for poison and venom based on differences in mechanism of delivery. We also introduce a new term, 'toxungen', thereby partitioning toxic biological secretions into three categories: poisons lacking a delivery mechanism, i.e. ingested, inhaled, or absorbed across the body surface; toxungens delivered to the body surface without an accompanying wound; and venoms, delivered to internal tissues via creation of a wound. We further propose a system to classify toxic organisms with respect to delivery mechanism (absent versus present), source (autogenous versus heterogenous), and storage of toxins (aglandular versus glandular). As examples, a frog that acquires toxins from its diet, stores the secretion within cutaneous glands, and transfers the secretion upon contact or ingestion would be heteroglandular-poisonous; an ant that produces its own toxins, stores the secretion in a gland, and sprays it for defence would be autoglandular-toxungenous; and an anemone that produces its own toxins within specialized cells that deliver the secretion via a penetrating wound would be autoaglandular-venomous. Adoption of our scheme should benefit our understanding of both proximate and ultimate causes in the evolution of these toxins.
Collapse
Affiliation(s)
- David R Nelsen
- Department of Earth and Biological Sciences, Loma Linda University, 11065 Campus Street, Loma Linda, CA, 92350, U.S.A
| | | | | | | | | | | | | |
Collapse
|
29
|
Horta CC, Rezende BA, Oliveira-Mendes BBR, Carmo AO, Capettini LSA, Silva JF, Gomes MT, Chávez-Olórtegui C, Bravo CES, Lemos VS, Kalapothakis E. ADP is a vasodilator component from Lasiodora sp. mygalomorph spider venom. Toxicon 2013; 72:102-12. [PMID: 23792453 DOI: 10.1016/j.toxicon.2013.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/05/2013] [Accepted: 06/11/2013] [Indexed: 11/18/2022]
Abstract
Members of the spider genus Lasiodora are widely distributed in Brazil, where they are commonly known as caranguejeiras. Lasiodora spider venom is slightly harmful to humans. The bite of this spider causes local pain, edema and erythema. However, Lasiodora sp. spider venom may be a source of important pharmacological tools. Our research group has described previously that Lasiodora sp. venom produces bradycardia in the isolated rat heart. In the present work, we sought to evaluate the vascular effect of Lasiodora sp. venom and to isolate the vasoactive compounds from the venom. The results showed that Lasiodora spider venom induced a concentration-dependent vasodilation in rat aortic rings, which was dependent on the presence of a functional endothelium and abolished by the nitric oxide synthase (NOS) inhibitor L-NAME. Western blot experiments revealed that the venom also increased endothelial NOS function by increasing phosphorylation of the Ser¹¹⁷⁷ residue. Assay-directed fractionation isolated a vasoactive fraction from Lasiodora sp. venom. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) assays identified a mixture of two compounds: adenosine diphosphate (ADP, approximately 90%) and adenosine monophosphate (AMP, approximately 10%). The vasodilator effects of Lasiodora sp. whole venom, as well as ADP, were significantly inhibited by suramin, which is a purinergic P2-receptor antagonist. Therefore, the results of the present work indicate that ADP is a main vasodilator component of Lasiodora sp. spider venom.
Collapse
Affiliation(s)
- C C Horta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Verano-Braga T, Dutra AAA, León IR, Melo-Braga MN, Roepstorff P, Pimenta AMC, Kjeldsen F. Moving Pieces in a Venomic Puzzle: Unveiling Post-translationally Modified Toxins from Tityus serrulatus. J Proteome Res 2013; 12:3460-70. [DOI: 10.1021/pr4003068] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thiago Verano-Braga
- Department of Biochemistry and
Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Alexandre A. A. Dutra
- Department
of Biochemistry and
Immunology, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Ileana R. León
- Department of Biochemistry and
Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Marcella N. Melo-Braga
- Department of Biochemistry and
Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Peter Roepstorff
- Department of Biochemistry and
Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Adriano M. C. Pimenta
- Department
of Biochemistry and
Immunology, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Frank Kjeldsen
- Department of Biochemistry and
Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
31
|
Guthals A, Clauser KR, Frank AM, Bandeira N. Sequencing-grade de novo analysis of MS/MS triplets (CID/HCD/ETD) from overlapping peptides. J Proteome Res 2013; 12:2846-57. [PMID: 23679345 DOI: 10.1021/pr400173d] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Full-length de novo sequencing of unknown proteins remains a challenging open problem. Traditional methods that sequence spectra individually are limited by short peptide length, incomplete peptide fragmentation, and ambiguous de novo interpretations. We address these issues by determining consensus sequences for assembled tandem mass (MS/MS) spectra from overlapping peptides (e.g., by using multiple enzymatic digests). We have combined electron-transfer dissociation (ETD) with collision-induced dissociation (CID) and higher-energy collision-induced dissociation (HCD) fragmentation methods to boost interpretation of long, highly charged peptides and take advantage of corroborating b/y/c/z ions in CID/HCD/ETD. Using these strategies, we show that triplet CID/HCD/ETD MS/MS spectra from overlapping peptides yield de novo sequences of average length 70 AA and as long as 200 AA at up to 99% sequencing accuracy.
Collapse
Affiliation(s)
- Adrian Guthals
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
| | | | | | | |
Collapse
|
32
|
Abstract
Venomous animals use a highly complex cocktails of proteins, peptides and small molecules to subdue and kill their prey. As such, venoms represent highly valuable combinatorial peptide libraries, displaying an extensive range of pharmacological activities, honed by natural selection. Modern analytical technologies enable us to take full advantage of this vast pharmacological cornucopia in the hunt for novel drug leads. Spider venoms represent a resource of several million peptides, which selectively target specific subtypes of ion channels. Structure-function studies of spider toxins are leading not only to the discovery of novel molecules, but also to novel therapeutic routes for cardiovascular diseases, cancer, neuromuscular diseases, pain and to a variety of other pathological conditions. This review presents an overview of spider peptide toxins as candidates for therapeutics and focuses on their applications in the discovery of novel mechanisms of analgesia.
Collapse
Affiliation(s)
- Pierre Escoubas
- University of Nice - Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC) - CNRS UMR6097, 660 Route des Lucioles, 06560 Valbonne, France +33 04 93 95 77 35 ; +33 04 93 95 77 08 ;
| | | |
Collapse
|
33
|
Richards EH, Dani MP, Bradish H. Immunosuppressive properties of a protein (rVPr1) from the venom of the endoparasitic wasp, Pimpla hypochondriaca: Mechanism of action and potential use for improving biological control strategies. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:213-222. [PMID: 22698823 DOI: 10.1016/j.jinsphys.2012.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/15/2012] [Accepted: 06/01/2012] [Indexed: 06/01/2023]
Abstract
Previously, it was determined that the presence of rVPr1 (a recombinant Pimpla hypochondriaca venom protein), in the haemocoel of two lepidopteran larvae, significantly increases their susceptibility to the biological control agents (BCAs), Bacillus thuringiensis (Bt) and Beauveria bassiana (Richards and Dani, 2010; Richards et al., 2011). The current work examines the mechanism of action of rVPr1 and demonstrates that it binds to the surface of some haemocytes and disrupts the organization of the haemocyte cytoskeleton. This binding is associated with a reduction in the ability of haemocytes to extend pseudopods, and to move and form aggregates in vitro over an 18 h period. Moreover, rVPr1 exerts these effects after a relatively short incubation period (1.5 h) and the haemocytes do not recover their ability to form aggregates after rVPr1 has been removed. In addition, rVPr1 significantly reduces haemocyte-mediated phagocytosis of Bt and B. bassiana in vitro (p < 0.05) and, following injection into the insect haemocoel, rVPr1 reduces the number of circulating haemocytes per ml of haemolymph (this being significantly different to the controls 3 h after injection [p = 0.05]). The finding that rVPr1 has an adverse effect on haemocyte function and number in vivo, supports the hypothesis that this wasp protein significantly increases the susceptibility of lepidopteran larvae to Bt and B. bassiana, by suppressing haemocyte-mediated immune responses in the insects which otherwise would be directed against these BCAs.
Collapse
Affiliation(s)
- E H Richards
- Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom.
| | | | | |
Collapse
|
34
|
Carvalho DC, Duzzi B, Kuniyoshi AK, Fioramonte M, Gozzo FC, Melo RL, Tambourgi DV, Rioli V, Portaro FC. Insights into scorpion venom peptides: alternative processing of β-KTx propeptide from Tityus serrulatus venom results in a new naturally occurring thimet oligopeptidase inhibitor. Peptides 2013; 40:30-3. [PMID: 23228956 DOI: 10.1016/j.peptides.2012.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 11/16/2022]
Abstract
Most functions attributed to Tityus serrulatus venom (TsV) are related to active molecules on ion-channels; however, here we describe a new pentapeptide that was discovered through enzymatic assay selection using EP24.15. The primary structure analysis revealed the sequence KEXXG (X means Ile or Leu), similar to the sequence present in the β-KTX propeptide described from the venom of Tityus spp. We confirmed through HPLC analysis that KEILG is the peptide present in TsV, but that KELLG also inhibits EP24.15 although through different mechanisms.
Collapse
|
35
|
Guthals A, Watrous JD, Dorrestein PC, Bandeira N. The spectral networks paradigm in high throughput mass spectrometry. MOLECULAR BIOSYSTEMS 2013; 8:2535-44. [PMID: 22610447 DOI: 10.1039/c2mb25085c] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
High-throughput proteomics is made possible by a combination of modern mass spectrometry instruments capable of generating many millions of tandem mass (MS(2)) spectra on a daily basis and the increasingly sophisticated associated software for their automated identification. Despite the growing accumulation of collections of identified spectra and the regular generation of MS(2) data from related peptides, the mainstream approach for peptide identification is still the nearly two decades old approach of matching one MS(2) spectrum at a time against a database of protein sequences. Moreover, database search tools overwhelmingly continue to require that users guess in advance a small set of 4-6 post-translational modifications that may be present in their data in order to avoid incurring substantial false positive and negative rates. The spectral networks paradigm for analysis of MS(2) spectra differs from the mainstream database search paradigm in three fundamental ways. First, spectral networks are based on matching spectra against other spectra instead of against protein sequences. Second, spectral networks find spectra from related peptides even before considering their possible identifications. Third, spectral networks determine consensus identifications from sets of spectra from related peptides instead of separately attempting to identify one spectrum at a time. Even though spectral networks algorithms are still in their infancy, they have already delivered the longest and most accurate de novo sequences to date, revealed a new route for the discovery of unexpected post-translational modifications and highly-modified peptides, enabled automated sequencing of cyclic non-ribosomal peptides with unknown amino acids and are now defining a novel approach for mapping the entire molecular output of biological systems that is suitable for analysis with tandem mass spectrometry. Here we review the current state of spectral networks algorithms and discuss possible future directions for automated interpretation of spectra from any class of molecules.
Collapse
Affiliation(s)
- Adrian Guthals
- Dept. Computer Science and Engineering, University of California, San Diego, USA
| | | | | | | |
Collapse
|
36
|
Schwartz EF, Mourão CBF, Moreira KG, Camargos TS, Mortari MR. Arthropod venoms: A vast arsenal of insecticidal neuropeptides. Biopolymers 2012. [DOI: 10.1002/bip.22100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Alvarenga ER, Mendes TM, Magalhaes BF, Siqueira FF, Dantas AE, Barroca TM, Horta CC, Kalapothakis E. Transcriptome analysis of the <i>Tityus serrulatus</i> scorpion venom gland. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojgen.2012.24027] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
King GF. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther 2011; 11:1469-84. [PMID: 21939428 DOI: 10.1517/14712598.2011.621940] [Citation(s) in RCA: 375] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION An extraordinarily diverse range of animals have evolved venoms for predation, defence, or competitor deterrence. The major components of most venoms are peptides and proteins that are often protease-resistant due to their disulfide-rich architectures. Some of these toxins have become valuable as pharmacological tools and/or therapeutics due to their extremely high specificity and potency for particular molecular targets. There are currently six FDA-approved drugs derived from venom peptides or proteins. AREAS COVERED This article surveys the current pipeline of venom-derived therapeutics and critically examines the potential of peptide and protein drugs derived from venoms. Emerging trends are identified, including an increasing industry focus on disulfide-rich venom peptides and the use of a broader array of molecular targets in order to develop venom-based therapeutics for treating a wider range of clinical conditions. EXPERT OPINION Key technical advances in combination with a renewed industry-wide focus on biologics have converged to provide a larger than ever pipeline of venom-derived therapeutics. Disulfide-rich venom peptides obviate some of the traditional disadvantages of therapeutic peptides and some may be suitable for oral administration. Moreover, some venom peptides can breach the blood brain barrier and translocate across cell membranes, which opens up the possibility of exploiting molecular targets not previously accessible to peptide drugs.
Collapse
Affiliation(s)
- Glenn F King
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
39
|
Martins-Santos MES, Resende RR, Pinto FCH, Soares AM, Marangoni S, Oliveira E, Albericio F, Da Silva SL. Effect of a Pool of Peptides Isolated from Crotalus durissus terrificus (South American Rattlesnake) Venom on Glucose Levels of Mice Fed on a High-Fat Diet. Int J Pept Res Ther 2011. [DOI: 10.1007/s10989-011-9261-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Isolation and Characterization of a Natriuretic Peptide from Crotalus oreganus abyssus (Grand Canyon Rattlesnake) and its Effects on Systemic Blood Pressure and Nitrite Levels. Int J Pept Res Ther 2011. [DOI: 10.1007/s10989-011-9254-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Gruber CW, Muttenthaler M, Freissmuth M. Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors. Curr Pharm Des 2011; 16:3071-88. [PMID: 20687879 DOI: 10.2174/138161210793292474] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 01/20/2023]
Abstract
G protein-coupled receptors (GPCRs) are considered to represent the most promising drug targets; it has been repeatedly said that a large fraction of the currently marketed drugs elicit their actions by binding to GPCRs (with cited numbers varying from 30-50%). Closer scrutiny, however, shows that only a modest fraction of (≈60) GPCRs are, in fact, exploited as drug targets, only ≈20 of which are peptide-binding receptors. The vast majority of receptors in the humane genome have not yet been explored as sites of action for drugs. Given the drugability of this receptor class, it appears that opportunities for drug discovery abound. In addition, GPCRs provide for binding sites other than the ligand binding sites (referred to as the "orthosteric site"). These additional sites include (i) binding sites for ligands (referred to as "allosteric ligands") that modulate the affinity and efficacy of orthosteric ligands, (ii) the interaction surface that recruits G proteins and arrestins, (iii) the interaction sites of additional proteins (GIPs, GPCR interacting proteins that regulate G protein signaling or give rise to G protein-independent signals). These sites can also be targeted by peptides. Combinatorial and natural peptide libraries are therefore likely to play a major role in identifying new GPCR ligands at each of these sites. In particular the diverse natural peptide libraries such as the venom peptides from marine cone-snails and plant cyclotides have been established as a rich source of drug leads. High-throughput screening and combinatorial chemistry approaches allow for progressing from these starting points to potential drug candidates. This will be illustrated by focusing on the ligand-based drug design of oxytocin (OT) and vasopressin (AVP) receptor ligands using natural peptide leads as starting points.
Collapse
Affiliation(s)
- Christian W Gruber
- Institute of Pharmacology, Center of Biomolecular Medicine & Pharmacology, Medical University of Vienna, Waehringer Str. 13a, A-1090 Vienna, Austria
| | | | | |
Collapse
|
42
|
Abstract
While advances in tandem mass spectrometry (MS/MS) steadily increase the rate of generation of MS/MS spectra, standard algorithmic approaches for peptide identification recently seemed to be reaching the limit on the amount of information that could be extracted from MS/MS spectra. However, a closer look reveals that a common limiting procedure is to analyze each spectrum in isolation, even though high throughput mass spectrometry regularly generates many spectra from related peptides. By capitalizing on this redundancy we show that, similarly to the alignment of protein sequences, unidentified MS/MS spectra can also be aligned for the identification of modified and unmodified variants of the same peptide. Moreover, this alignment procedure can be iterated for the accurate grouping of multiple modification variants of the same peptides. Furthermore, the combination of shotgun proteomics with the alignment of spectra from overlapping peptides led to the development of Shotgun Protein Sequencing - similarly to the assembly of DNA reads into whole genomic sequences, we show that assembly of MS/MS spectra enables the highest ever de novo sequencing accuracy, while recovering nearly complete protein sequences. We further show that shotgun protein sequencing has the potential to overcome the limitations of -current protein sequencing approaches and thus catalyze the otherwise impractical applications of proteomics methodologies in studies of unknown proteins.
Collapse
Affiliation(s)
- Nuno Bandeira
- Center for Computational Mass Spectrometry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
43
|
Structure–function studies of Tityus serrulatus Hypotensin-I (TsHpt-I): A new agonist of B2 kinin receptor. Toxicon 2010; 56:1162-71. [DOI: 10.1016/j.toxicon.2010.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 03/12/2010] [Accepted: 04/08/2010] [Indexed: 12/19/2022]
|
44
|
Möller C, Melaun C, Castillo C, Díaz ME, Renzelman CM, Estrada O, Kuch U, Lokey S, Marí F. Functional hypervariability and gene diversity of cardioactive neuropeptides. J Biol Chem 2010; 285:40673-80. [PMID: 20923766 DOI: 10.1074/jbc.m110.171397] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crustacean cardioactive peptide (CCAP) and related peptides are multifunctional regulatory neurohormones found in invertebrates. We isolated a CCAP-related peptide (conoCAP-a, for cone snail CardioActive Peptide) and cloned the cDNA of its precursor from venom of Conus villepinii. The precursor of conoCAP-a encodes for two additional CCAP-like peptides: conoCAP-b and conoCAP-c. This multi-peptide precursor organization is analogous to recently predicted molluscan CCAP-like preprohormones, and suggests a mechanism for the generation of biological diversification without gene amplification. While arthropod CCAP is a cardio-accelerator, we found that conoCAP-a decreases the heart frequency in Drosophila larvae, demonstrating that conoCAP-a and CCAP have opposite effects. Intravenous injection of conoCAP-a in rats caused decreased heart frequency and blood pressure in contrast to the injection of CCAP, which did not elicit any cardiac effect. Perfusion of rat ventricular cardiac myocytes with conoCAP-a decreased systolic calcium, indicating that conoCAP-a cardiac negative inotropic effects might be mediated via impairment of intracellular calcium trafficking. The contrasting cardiac effects of conoCAP-a and CCAP indicate that molluscan CCAP-like peptides have functions that differ from those of their arthropod counterparts. Molluscan CCAP-like peptides sequences, while homologous, differ between taxa and have unique sequences within a species. This relates to the functional hypervariability of these peptides as structure activity relationship studies demonstrate that single amino acids variations strongly affect cardiac activity. The discovery of conoCAPs in cone snail venom emphasizes the significance of their gene plasticity to have mutations as an adaptive evolution in terms of structure, cellular site of expression, and physiological functions.
Collapse
Affiliation(s)
- Carolina Möller
- Department of Chemistry & Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tityus serrulatus venom peptidomics: Assessing venom peptide diversity. Toxicon 2008; 52:611-8. [DOI: 10.1016/j.toxicon.2008.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/17/2008] [Accepted: 07/22/2008] [Indexed: 11/23/2022]
|
46
|
Bandeira N, Olsen JV, Mann JV, Mann M, Pevzner PA. Multi-spectra peptide sequencing and its applications to multistage mass spectrometry. Bioinformatics 2008; 24:i416-23. [PMID: 18785330 PMCID: PMC2718660 DOI: 10.1093/bioinformatics/btn184] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite a recent surge of interest in database-independent peptide identifications, accurate de novo peptide sequencing remains an elusive goal. While the recently introduced spectral network approach resulted in accurate peptide sequencing in low-complexity samples, its success depends on the chance of presence of spectra from overlapping peptides. On the other hand, while multistage mass spectrometry (collecting multiple MS 3 spectra from each MS 2 spectrum) can be applied to all spectra in a complex sample, there are currently no software tools for de novo peptide sequencing by multistage mass spectrometry. We describe a rigorous probabilistic framework for analyzing spectra of overlapping peptides and show how to apply it for multistage mass spectrometry. Our software results in both accurate de novo peptide sequencing from multistage mass spectra (despite the inferior quality of MS 3 spectra) and improved interpretation of spectral networks. We further study the problem of de novo peptide sequencing with accurate parent mass (but inaccurate fragment masses), the protocol that may soon become the dominant mode of spectral acquisition. Most existing peptide sequencing algorithms (based on the spectrum graph approach) do not track the accurate parent mass and are thus not equipped for solving this problem. We describe a de novo peptide sequencing algorithm aimed at this experimental protocol and show that it improves the sequencing accuracy on both tandem and multistage mass spectrometry. Availability: The open-source implementation of our software is available at http://proteomics.bioprojects.org. Contact:bandeira@ucsd.edu Supplementary information:: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nuno Bandeira
- Department of Computer Science and Engineering, University of California, San Diego, USA.
| | | | | | | | | |
Collapse
|
47
|
Richards EH, DeMarzo D, Port GR, Dani MP, Walters KFA. Effects of the nematode Phasmarhabditis hermaphrodita and of venom from the endoparasitic wasp Pimpla hypochondriaca on survival and food consumption of the pest slug Deroceras reticulatum; implications for novel biocontrol strategies. PEST MANAGEMENT SCIENCE 2008; 64:711-719. [PMID: 18508383 DOI: 10.1002/ps.1546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Controlling pests through disruption of biochemical pathways by physiologically active compounds/factors from animals and plants represents an expanding field of research. The authors investigated whether such factors in venom from the wasp Pimpla hypochondriaca (Retzius) can affect the viability and food consumption of the slug Deroceras reticulatum (Müller), and whether they can improve the efficacy of nematode-induced slug mortality. RESULTS Exposure of slugs to 4 mL of water containing 500, 1000 and 5000 Phasmarhabditis hermaphrodita (Schneider) resulted in significant increases in mortality (with hazard ratios of 3.5, 3.9 and 5.8 respectively) and significant reductions in total food consumption and mean food consumption each day for 21 days. Injection of slugs with 4, 8 or 12 microL of P. hypochondriaca venom resulted in significant increases in mortality (with hazard ratios of 3.3, 4.5 and 9.0 respectively) and significant reductions in total food consumption compared with the controls. However, there was no significant effect of venom on the mean food consumption on individual days of the 21 day assay period, although significant reductions occurred for the 8 and 12 microL doses up to day 10. Injecting slugs with 4 microL of venom prior to exposure to 500 nematodes had no synergistic effect on either mortality or food consumption compared with either of the individual treatments. CONCLUSIONS Pimpla hypochondriaca venom contains factors capable of killing and reducing food consumption by D. reticulatum. The utilization of these factors as components of integrated pest management strategies is discussed.
Collapse
|
48
|
Souza GHMF, Catharino RR, Ifa DR, Eberlin MN, Hyslop S. Peptide fingerprinting of snake venoms by direct infusion nano-electrospray ionization mass spectrometry: potential use in venom identification and taxonomy. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:594-599. [PMID: 18200607 DOI: 10.1002/jms.1351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fingerprinting by mass spectrometry has been increasingly used to study venom variations and for taxonomic analyses based on venom components. Most of these studies have concentrated on components heavier than 3 kDa, but Bothrops snake venoms contain many biologically active peptides, principally C-type natriuretic peptides and bradykinin-potentiating peptides (BPPs). In this work, we have examined the peptide profile of Bothrops venoms (B. alternatus, B. erythromelas, B. insularis, B. jararaca, B. jararacussu, B. leucurus and B. moojeni) using direct infusion nano-electrospray ionization mass spectrometry (nano-ESI-MS) subjecting the data further to principal components analysis (PCA) to assess whether the peptide distributions are reliable in distinguishing the venoms. ESI-MS of a low molar mass fraction obtained by ultrafiltration of each venom (5 kDa nominal cutoff filters) revealed that the venoms have a variety of peptides in common but that each venom also contains taxonomic marker peptides not shared with other venoms. One BPP peptide, QGGWPRPGPEIPP, was found to be common to the seven Bothrops species examined. This peptide may represent a specific marker for this genus since it was not found in the venom of the South American rattlesnake, Crotalus durissus terrificus. PCA on the ESI-MS data reveals a close relationship between B. jararaca, B. jararacussu and B. moojeni venoms, with B. leucurus and B. erythromelas being more distant from these three; B. alternatus and B. insularis were also located distant from these five species, as was C. d. terrificus. These results agree partially with established phylogenetic relationships among these species and suggest that ESI-MS peptide fingerprinting of snake venoms coupled with PCA is a useful tool for identifying venoms and for taxonomic analyses.
Collapse
Affiliation(s)
- Gustavo H M F Souza
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | | | | | | | | |
Collapse
|
49
|
Tityus serrulatus Hypotensins: a new family of peptides from scorpion venom. Biochem Biophys Res Commun 2008; 371:515-20. [PMID: 18445483 DOI: 10.1016/j.bbrc.2008.04.104] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 04/19/2008] [Indexed: 11/24/2022]
Abstract
Using a proteomic approach, a new structural family of peptides was put in evidence in the venom of the yellow scorpion Tityus serrulatus. Tityus serrulatus Hypotensins (TsHpt) are random-coiled linear peptides and have a similar bradykinin-potentiating peptide (BPP) amino acid signature. TsHpt-I (2.7kDa), the first member of this family, was able to potentiate the hypotensive effects of bradykinin (BK) in normotensive rats. Using the C-terminal of this peptide as a template, a synthetic analog peptide (TsHpt-I([17-25])) was designed to held the BK-potentiating effect. A relevant hypotensive effect, independent on BK, was also observed on both TsHpt (native and synthetic). To better evaluate this hypotensive effect, we examined the vasorelaxation of aortic rings from male Wistar rats and the peptides were able to induce endothelium-dependent vasorelaxation dependent on NO release. Both TsHpt could not inhibit ACE activity. These peptides appear to exert their anti-hypertensive effect through NO-dependent and ACE-independent mechanisms.
Collapse
|
50
|
Gong XY, Dobrunz D, Kümin M, Wiesner M, Revell JD, Wennemers H, Hauser PC. Separating stereoisomers of di-, tri-, and tetrapeptides using capillary electrophoresis with contactless conductivity detection. J Sep Sci 2008; 31:565-73. [DOI: 10.1002/jssc.200700461] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|