1
|
Wu YE, Zheng YY, Li QY, Yao BF, Cao J, Liu HX, Hao GX, van den Anker J, Zheng Y, Zhao W. Model-informed drug development in pediatric, pregnancy and geriatric drug development: States of the art and future. Adv Drug Deliv Rev 2024; 211:115364. [PMID: 38936664 DOI: 10.1016/j.addr.2024.115364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The challenges of drug development in pediatric, pregnant and geriatric populations are a worldwide concern shared by regulatory authorities, pharmaceutical companies, and healthcare professionals. Model-informed drug development (MIDD) can integrate and quantify real-world data of physiology, pharmacology, and disease processes by using modeling and simulation techniques to facilitate decision-making in drug development. In this article, we reviewed current MIDD policy updates, reflected on the integrity of physiological data used for MIDD and the effects of physiological changes on the drug PK, as well as summarized current MIDD strategies and applications, so as to present the state of the art of MIDD in pediatric, pregnant and geriatric populations. Some considerations are put forth for the future improvements of MIDD including refining regulatory considerations, improving the integrity of physiological data, applying the emerging technologies, and exploring the application of MIDD in new therapies like gene therapies for special populations.
Collapse
Affiliation(s)
- Yue-E Wu
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan-Yuan Zheng
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiu-Yue Li
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bu-Fan Yao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Cao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui-Xin Liu
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Medical Center, Washington, DC, USA; Departments of Pediatrics, Pharmacology & Physiology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA; Department of Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, Basel, Switzerland
| | - Yi Zheng
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Zhang T, Calvier EAM, Krekels EHJ, Knibbe CAJ. Impact of Obesity on Hepatic Drug Clearance: What are the Influential Variables? AAPS J 2024; 26:59. [PMID: 38724865 DOI: 10.1208/s12248-024-00929-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
Drug clearance in obese subjects varies widely among different drugs and across subjects with different severity of obesity. This study investigates correlations between plasma clearance (CLp) and drug- and patient-related characteristics in obese subjects, and evaluates the systematic accuracy of common weight-based dosing methods. A physiologically-based pharmacokinetic (PBPK) modeling approach that uses recent information on obesity-related changes in physiology was used to simulate CLp for a normal-weight subject (body mass index [BMI] = 20) and subjects with various severities of obesity (BMI 25-60) for hypothetical hepatically cleared drugs with a wide range of properties. Influential variables for CLp change were investigated. For each drug and obese subject, the exponent that yields perfect allometric scaling of CLp from normal-weight subjects was assessed. Among all variables, BMI and relative changes in enzyme activity resulting from obesity proved highly correlated with obesity-related CLp changes. Drugs bound to α1-acid glycoprotein (AAG) had lower CLp changes compared to drugs bound to human serum albumin (HSA). Lower extraction ratios (ER) corresponded to higher CLp changes compared to higher ER. The allometric exponent for perfect scaling ranged from -3.84 to 3.34 illustrating that none of the scaling methods performed well in all situations. While all three dosing methods are generally systematically accurate for drugs with unchanged or up to 50% increased enzyme activity in subjects with a BMI below 30 kg/m2, in any of the other cases, information on the different drug properties and severity of obesity is required to select an appropriate dosing method for individuals with obesity.
Collapse
Affiliation(s)
- Tan Zhang
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elisa A M Calvier
- Pharmacokinetics-Dynamics and Metabolism, Translational Medicine and Early Development, Sanofi R&D, Montpellier, France
| | - Elke H J Krekels
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Certara Inc, Princeton, New Jersey, USA
| | - Catherijne A J Knibbe
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
- Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, The Netherlands.
| |
Collapse
|
3
|
Zhang T, Krekels EHJ, Smit C, Knibbe CAJ. Drug pharmacokinetics in the obese population: challenging common assumptions on predictors of obesity-related parameter changes. Expert Opin Drug Metab Toxicol 2022; 18:657-674. [PMID: 36217846 DOI: 10.1080/17425255.2022.2132931] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Obesity is associated with many physiological changes. We review available evidence regarding five commonly accepted assumptions to a priori predict the impact of obesity on drug pharmacokinetics (PK). AREAS COVERED The investigated assumptions are: 1) lean body weight is the preferred descriptor of clearance and dose adjustments; 2) volume of distribution increases for lipophilic, but not for hydrophilic drugs; 3) CYP-3A4 activity is suppressed and UGT activity is increased, implying decreased and increased dose requirements for substrates of these enzyme systems, respectively; 4) glomerular filtration rate is enhanced, necessitating higher doses for drugs cleared through glomerular filtration; 5) drug dosing information from obese adults can be extrapolated to obese adolescents. EXPERT OPINION Available literature contradicts, or at least limits the generalizability, of all five assumptions. Clinical studies should focus on quantifying the impact of duration and severity of obesity on drug PK in adults and adolescents, and also include oral bioavailability and pharmacodynamics in these studies. Physiologically-based PK approaches can be used to predict PK changes for individual drugs, but can also be used to define in general terms based on patient characteristics and drug properties, when certain assumptions can or cannot be expected to be systematically accurate.
Collapse
Affiliation(s)
- Tan Zhang
- Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elke H J Krekels
- Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Cornelis Smit
- Department of Clinical Pharmacy, Antonius Hospital Sneek, The Netherlands
| | - Catherijne A J Knibbe
- Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Department of Clinical Pharmacy, St. Antonius Hospital Nieuwegein, The Netherlands
| |
Collapse
|
4
|
van Groen BD, Allegaert K, Tibboel D, de Wildt SN. Innovative approaches and recent advances in the study of ontogeny of drug metabolism and transport. Br J Clin Pharmacol 2022; 88:4285-4296. [PMID: 32851677 PMCID: PMC9545189 DOI: 10.1111/bcp.14534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 11/30/2022] Open
Abstract
The disposition of a drug is driven by various processes, such as drug metabolism, drug transport, glomerular filtration and body composition. These processes are subject to developmental changes reflecting growth and maturation along the paediatric continuum. However, knowledge gaps exist on these changes and their clinical impact. Filling these gaps may aid better prediction of drug disposition and creation of age-appropriate dosing guidelines. We present innovative approaches to study these developmental changes in relation to drug metabolism and transport. First, analytical methods such as including liquid chromatography-mass spectrometry for proteomic analyses allow quantitation of the expressions of a wide variety of proteins, e.g. membrane transporters, in a small piece of organ tissue. The latter is specifically important for paediatric research, where tissues are scarcely available. Second, innovative study designs using radioactive labelled microtracers allowed study-without risk for the child-of the oral bioavailability of compounds used as markers for certain drug metabolism pathways. Third, the use of modelling and simulation to support dosing recommendations for children is supported by both the European Medicines Agency and the US Food and Drug Administration. This may even do away with the need for a paediatric trial. Physiologically based pharmacokinetics models, which include age-specific physiological information are, therefore, increasingly being used, not only to aid paediatric drug development but also to improve existing drug therapies.
Collapse
Affiliation(s)
- Bianca D. van Groen
- Intensive Care and Department of Pediatric Surgery, Erasmus MC‐Sophia Children's HospitalRotterdamthe Netherlands
| | - Karel Allegaert
- Department of Development and Regeneration, KU LeuvenLeuvenBelgium
- Department of Pharmacy and Pharmaceutical Sciences, KU LeuvenLeuvenBelgium
- Department of Clinical Pharmacy, Erasmus MCRotterdamthe Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC‐Sophia Children's HospitalRotterdamthe Netherlands
| | - Saskia N. de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC‐Sophia Children's HospitalRotterdamthe Netherlands
- Department of Pharmacology and ToxicologyRadboud Institute of Health Sciences, Radboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
5
|
van Rongen A, Krekels EH, Calvier EA, de Wildt SN, Vermeulen A, Knibbe CA. An update on the use of allometric and other scaling methods to scale drug clearance in children: towards decision tables. Expert Opin Drug Metab Toxicol 2022; 18:99-113. [PMID: 35018879 DOI: 10.1080/17425255.2021.2027907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION When pediatric data are not available for a drug, allometric and other methods are applied to scale drug clearance across the pediatric age-range from adult values. This is applied when designing first-in-child studies, but also for off-label drug prescription. AREAS COVERED This review provides an overview of the systematic accuracy of allometric and other pediatric clearance scaling methods compared to gold-standard PBPK predictions. The findings are summarized in decision tables to provide a priori guidance on the selection of appropriate pediatric clearance scaling methods for both novel drugs for which no pediatric data are available and existing drugs in clinical practice. EXPERT OPINION While allometric scaling principles are commonly used to scale pediatric clearance, there is no universal allometric exponent (i.e., 1, 0.75 or 0.67) that can accurately scale clearance for all drugs from adults to children of all ages. Therefore, pediatric scaling decision tables based on age, drug elimination route, binding plasma protein, fraction unbound, extraction ratio, and/or isoenzyme maturation are proposed to a priori select the appropriate (allometric) clearance scaling method, thereby reducing the need for full PBPK-based clearance predictions. Guidance on allometric scaling when estimating pediatric clearance values is provided as well.
Collapse
Affiliation(s)
- Anne van Rongen
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elke Hj Krekels
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elisa Am Calvier
- Sanofi Pharmacokinetics-Dynamics and Metabolism (PKDM), Translational Medicine and Early Development, Sanofi R&D, Montpellier, France
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands.,Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - An Vermeulen
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Janssen R&D, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Catherijne Aj Knibbe
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, The Netherlands
| |
Collapse
|
6
|
Wang K, Jiang K, Wei X, Li Y, Wang T, Song Y. Physiologically Based Pharmacokinetic Models Are Effective Support for Pediatric Drug Development. AAPS PharmSciTech 2021; 22:208. [PMID: 34312742 PMCID: PMC8312709 DOI: 10.1208/s12249-021-02076-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/16/2021] [Indexed: 12/30/2022] Open
Abstract
Pediatric drug development faces many difficulties. Traditionally, pediatric drug doses are simply calculated linearly based on the body weight, age, and body surface area of adults. Due to the ontogeny of children, this simple linear scaling may lead to drug overdose in pediatric patients. The physiologically based pharmacokinetic (PBPK) model, as a mathematical model, contributes to the research and development of pediatric drugs. An example of a PBPK model guiding drug dose selection in pediatrics has emerged and has been approved by the relevant regulatory agencies. In this review, we discuss the principle of the PBPK model, emphasize the necessity of establishing a pediatric PBPK model, introduce the absorption, distribution, metabolism, and excretion of the pediatric PBPK model, and understand the various applications and related prospects of the pediatric PBPK model.
Collapse
|
7
|
van Groen BD, Krekels EHJ, Mooij MG, van Duijn E, Vaes WHJ, Windhorst AD, van Rosmalen J, Hartman SJF, Hendrikse NH, Koch BCP, Allegaert K, Tibboel D, Knibbe CAJ, de Wildt SN. The Oral Bioavailability and Metabolism of Midazolam in Stable Critically Ill Children: A Pharmacokinetic Microtracing Study. Clin Pharmacol Ther 2021; 109:140-149. [PMID: 32403162 PMCID: PMC7818442 DOI: 10.1002/cpt.1890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
Abstract
Midazolam is metabolized by the developmentally regulated intestinal and hepatic drug-metabolizing enzyme cytochrome P450 (CYP) 3A4/5. It is frequently administered orally to children, yet knowledge is lacking on the oral bioavailability in term neonates up until 1 year of age. Furthermore, the dispositions of the major metabolites 1-OH-midazolam (OHM) and 1-OH-midazolam-glucuronide (OHMG) after oral administration are largely unknown for the entire pediatric age span. We aimed to fill these knowledge gaps with a pediatric [14 C]midazolam microtracer population pharmacokinetic study. Forty-six stable, critically ill children (median age 9.8 (range 0.3-276.4) weeks) received a single oral [14 C]midazolam microtracer (58 (40-67) Bq/kg) when they received a therapeutic continuous intravenous midazolam infusion and had an arterial line in place enabling blood sampling. For midazolam, in a one-compartment model, bodyweight was a significant predictor for clearance (0.98 L/hour) and volume of distribution (8.7 L) (values for a typical individual of 5 kg). The typical oral bioavailability in the population was 66% (range 25-85%). The exposures of OHM and OHMG were highest for the youngest age groups and significantly decreased with postnatal age. The oral bioavailability of midazolam, largely reflective of intestinal and hepatic CYP3A activity, was on average lower than the reported 49-92% for preterm neonates, and higher than the reported 21% for children> 1 year of age and 30% for adults. As midazolam oral bioavailability varied widely, systemic exposure of other CYP3A-substrate drugs after oral dosing in this population may also be unpredictable, with risk of therapy failure or toxicity.
Collapse
Affiliation(s)
- Bianca D. van Groen
- Intensive Care and Pediatric SurgeryErasmus Medical Center – Sophia Children’s HospitalRotterdamThe Netherlands
| | - Elke H. J. Krekels
- Leiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Miriam G. Mooij
- Department of PediatricsLeiden University Medical CentreLeidenThe Netherlands
| | | | | | - Albert D. Windhorst
- Amsterdam University Medical Centers – Location VU Medical CenterAmsterdamThe Netherlands
| | - Joost van Rosmalen
- Department of BiostatisticsErasmus Medical CenterRotterdamthe Netherlands
| | - Stan J. F. Hartman
- Department of Pharmacology and ToxicologyRadboud University Medical CenterRadboud Institute for Health SciencesNijmegenThe Netherlands
| | - N. Harry Hendrikse
- Amsterdam University Medical Centers – Location VU Medical CenterAmsterdamThe Netherlands
| | - Birgit C. P. Koch
- Department of Hospital PharmacyErasmus Medical CenterRotterdamThe Netherlands
| | - Karel Allegaert
- Department of Hospital PharmacyErasmus Medical CenterRotterdamThe Netherlands
- Katholieke Universiteit LeuvenLeuvenBelgium
| | - Dick Tibboel
- Intensive Care and Pediatric SurgeryErasmus Medical Center – Sophia Children’s HospitalRotterdamThe Netherlands
| | - Catherijne A. J. Knibbe
- Leiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
- St Antonius HospitalNieuwegeinThe Netherlands
| | - Saskia N. de Wildt
- Intensive Care and Pediatric SurgeryErasmus Medical Center – Sophia Children’s HospitalRotterdamThe Netherlands
- Department of Pharmacology and ToxicologyRadboud University Medical CenterRadboud Institute for Health SciencesNijmegenThe Netherlands
| |
Collapse
|
8
|
van Groen BD, Pilla Reddy V, Badée J, Olivares‐Morales A, Johnson TN, Nicolaï J, Annaert P, Smits A, de Wildt SN, Knibbe CAJ, de Zwart L. Pediatric Pharmacokinetics and Dose Predictions: A Report of a Satellite Meeting to the 10th Juvenile Toxicity Symposium. Clin Transl Sci 2021; 14:29-35. [PMID: 32702198 PMCID: PMC7877839 DOI: 10.1111/cts.12843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/14/2020] [Indexed: 12/13/2022] Open
Abstract
On April 24, 2019, a symposium on Pediatric Pharmacokinetics and Dose Predictions was held as a satellite meeting to the 10th Juvenile Toxicity Symposium. This symposium brought together scientists from academia, industry, and clinical research organizations with the aim to update each other on the current knowledge on pediatric drug development. Through more knowledge on specific ontogeny profiles of drug metabolism and transporter proteins, integrated into physiologically-based pharmacokinetic (PBPK) models, we have gained a more integrated understanding of age-related differences in pharmacokinetics (PKs), Relevant examples were presented during the meeting. PBPK may be considered the gold standard for pediatric PK prediction, but still it is important to know that simpler methods, such as allometry, allometry combined with maturation function, functions based on the elimination pathway, or linear models, also perform well, depending on the age range or the mechanisms involved. Knowledge from different methods and information sources should be combined (e.g., microdosing can reveal early read-out of age-related differences in exposure), and such results can be a value to verify models. To further establish best practices for dose setting in pediatrics, more in vitro and in vivo research is needed on aspects such as age-related changes in the exposure-response relationship and the impact of disease on PK. New information coupled with the refining of model-based drug development approaches will allow faster targeting of intended age groups and allow more efficient design of pediatric clinical trials.
Collapse
Affiliation(s)
- Bianca D. van Groen
- Intensive Care and Department of Pediatric SurgeryErasmus MC‐Sophia Children’s HospitalRotterdamThe Netherlands
- Roche Pharma and Early Development (pRED)Roche Innovation Center BaselBaselSwitzerland
| | | | - Justine Badée
- Center for Pharmacometrics & Systems PharmacologyDepartment of PharmaceuticsUniversity of Florida at Lake NonaOrlandoFloridaUSA
- Modelling & SimulationNovartis Institutes for Biomedical ResearchBaselSwitzerland
| | | | | | - Johan Nicolaï
- Development ScienceUCB BioPharma SRLBraine‐l’AlleudBelgium
| | - Pieter Annaert
- Drug Delivery and DispositionKU Leuven Department of Pharmaceutical and Pharmacological SciencesLeuvenBelgium
| | - Anne Smits
- Neonatal Intensive Care UnitUniversity Hospitals LeuvenLeuvenBelgium
- Department of Development and RegenerationKU LeuvenLeuvenBelgium
| | - Saskia N. de Wildt
- Intensive Care and Department of Pediatric SurgeryErasmus MC‐Sophia Children’s HospitalRotterdamThe Netherlands
- Department of Pharmacology and ToxicologyRadboud Institute for Health SciencesRadboud UniversityNijmegenThe Netherlands
| | - Catherijne A. J. Knibbe
- Systems Biomedicine and PharmacologyLeiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
- Department of Clinical PharmacySt. Antonius HospitalNieuwegeinThe Netherlands
| | - Loeckie de Zwart
- Drug Metabolism and PharmacokineticsJanssen R&D, a Division of Janssen Pharmaceutica NVBeerseBelgium
| |
Collapse
|
9
|
Rostami-Hodjegan A, Toon S. Physiologically Based Pharmacokinetics as a Component of Model-Informed Drug Development: Where We Were, Where We Are, and Where We Are Heading. J Clin Pharmacol 2020; 60 Suppl 1:S12-S16. [PMID: 33205426 DOI: 10.1002/jcph.1654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/10/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research (CAPKR), The University of Manchester, Manchester, UK
- Certara UK Limited, Simcyp Division, Sheffield, UK
| | - Stephen Toon
- Certara UK Limited, Simcyp Division, Sheffield, UK
| |
Collapse
|
10
|
Cristea S, Krekels EHJ, Allegaert K, Knibbe CAJ. The Predictive Value of Glomerular Filtration Rate-Based Scaling of Pediatric Clearance and Doses for Drugs Eliminated by Glomerular Filtration with Varying Protein-Binding Properties. Clin Pharmacokinet 2020; 59:1291-1301. [PMID: 32314184 PMCID: PMC7550283 DOI: 10.1007/s40262-020-00890-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION For drugs eliminated by glomerular filtration (GF), clearance (CL) is determined by GF rate (GFR) and the unbound fraction of the drug. When predicting CL of GF-eliminated drugs in children, instead of physiologically based pharmacokinetic (PBPK) methods that consider changes in both GFR and protein binding, empiric bodyweight-based methods are often used. In this article, we explore the predictive value of scaling using a GFR function, and compare the results with linear and allometric scaling methods for drugs with different protein-binding properties. METHODS First, different GFR maturation functions were compared to identify the GFR function that would yield the most accurate GFR predictions across the pediatric age range compared with published pediatric inulin/mannitol CL values. Subsequently, the accuracy of pediatric CL scaling using this GFR maturation function was assessed and compared with PBPK CL predictions for hypothetical drugs binding, to varying extents, to serum albumin or α-acid glycoprotein across the pediatric age range. Additionally, empiric bodyweight-based methods were assessed. RESULTS The published GFR maturation functions yielded comparable maturation profiles, with the function reported by Salem et al. leading to the most accurate predictions. On the basis of this function, GFR-based scaling yields reasonably accurate (percentage prediction error ≤ 50%) pediatric CL values for all drugs, except for some drugs highly bound to AGP in neonates. Overall, this method was more accurate than linear or 0.75 allometric bodyweight-based scaling. CONCLUSION When scaling CL and dose by GFR function, maturational changes in plasma protein concentrations impact GF minimally, making this method a superior alternative to empiric bodyweight-based scaling.
Collapse
Affiliation(s)
- Sinziana Cristea
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elke H J Krekels
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Clinical Pharmacy, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - Catherijne A J Knibbe
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
- Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, The Netherlands.
| |
Collapse
|
11
|
Allegaert K, van den Anker J. Ontogeny of Phase I Metabolism of Drugs. J Clin Pharmacol 2020; 59 Suppl 1:S33-S41. [PMID: 31502685 DOI: 10.1002/jcph.1483] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
Capturing ontogeny of enzymes involved in phase I metabolism is crucial to improve prediction of dose-concentration and concentration-effect relationships throughout infancy and childhood. Once captured, these patterns can be integrated in semiphysiologically or physiology-based pharmacokinetic models to support predictions in specific pediatric settings or to support pediatric drug development. Although these translational efforts are crucial, isoenzyme-specific ontogeny-based models should also incorporate data on variability of maturational and nonmaturational covariates (eg, disease, treatment modalities, pharmacogenetics). Therefore, this review provides a summary of the ontogeny of phase I drug-metabolizing enzymes, indicating current knowledge gaps and recent progresses. Furthermore, we tried to illustrate that straightforward translation of isoenzyme-specific ontogeny to predictions does not allow full exploration of scenarios of potential variability related to maturational (non-age-related variability, other isoenzymes or transporters) or nonmaturational (disease, pharmacogenetics) covariates, and necessitates integration in a "systems" concept.
Collapse
Affiliation(s)
- Karel Allegaert
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Health System, Washington, DC, USA
- Division of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
- Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Krekels EHJ, Knibbe CAJ. Pharmacokinetics and Pharmacodynamics of Drugs in Obese Pediatric Patients: How to Map Uncharted Clinical Territories. Handb Exp Pharmacol 2020; 261:231-255. [PMID: 31598838 DOI: 10.1007/164_2019_250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clinicians are increasingly faced with challenges regarding the pharmacological treatment of obese pediatric patients. To provide guidance for these treatments, a better understanding of the impact of obesity on pharmacological processes in children is needed. Results on pharmacological studies in adults show however ambiguous patterns regarding the impact of obesity on ADME processes or on drug pharmacodynamics. Additionally, based on the limited research performed in obese pediatric patients, it becomes clear that findings from obese adults cannot be expected to always translate directly to similar findings in obese children. To improve knowledge on drug pharmacology in obese pediatric patients, studies should focus on quantifying the impact of maturation, obesity, and other relevant variables on primary pharmacological parameters and on disentangling systemic (renal and/or hepatic) and presystemic (gut and/or first-pass hepatic) clearance. For this, data is required from well-designed clinical trials that include patients with not only a wide range in age but also a range in excess body weight, upon oral and intravenous dosing. Population modelling approaches are ideally suitable for this purpose and can also be used to link the pharmacokinetics to pharmacodynamics and to derive drug dosing regimens. Generalizability of research findings can be achieved by including mechanistic aspects in the data analysis, for instance, using either extrapolation approaches in population modelling or by applying physiologically based modelling principles. It is imperative that more and smarter studies are performed in obese pediatric patients to provide safe and effective treatment for this special patient population.
Collapse
Affiliation(s)
- Elke H J Krekels
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Catherijne A J Knibbe
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
- Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, The Netherlands.
| |
Collapse
|
13
|
Ladumor MK, Bhatt DK, Gaedigk A, Sharma S, Thakur A, Pearce RE, Leeder JS, Bolger MB, Singh S, Prasad B. Ontogeny of Hepatic Sulfotransferases and Prediction of Age-Dependent Fractional Contribution of Sulfation in Acetaminophen Metabolism. Drug Metab Dispos 2019; 47:818-831. [PMID: 31101678 PMCID: PMC6614793 DOI: 10.1124/dmd.119.086462] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022] Open
Abstract
Cytosolic sulfotransferases (SULTs), including SULT1A, SULT1B, SULT1E, and SULT2A isoforms, play noteworthy roles in xenobiotic and endobiotic metabolism. We quantified the protein abundances of SULT1A1, SULT1A3, SULT1B1, and SULT2A1 in human liver cytosol samples (n = 194) by liquid chromatography-tandem mass spectrometry proteomics. The data were analyzed for their associations by age, sex, genotype, and ethnicity of the donors. SULT1A1, SULT1B1, and SULT2A1 showed significant age-dependent protein abundance, whereas SULT1A3 was invariable across 0-70 years. The respective mean abundances of SULT1A1, SULT1B1, and SULT2A1 in neonatal samples was 24%, 19%, and 38% of the adult levels. Interestingly, unlike UDP-glucuronosyltransferases and cytochrome P450 enzymes, SULT1A1 and SULT2A1 showed the highest abundance during early childhood (1 to <6 years), which gradually decreased by approx. 40% in adolescents and adults. SULT1A3 and SULT1B1 abundances were significantly lower in African Americans compared with Caucasians. Multiple linear regression analysis further confirmed the association of SULT abundances by age, ethnicity, and genotype. To demonstrate clinical application of the characteristic SULT ontogeny profiles, we developed and validated a proteomics-informed physiologically based pharmacokinetic model of acetaminophen. The latter confirmed the higher fractional contribution of sulfation over glucuronidation in the metabolism of acetaminophen in children. The study thus highlights that the ontogeny-based age-dependent fractional contribution (fm) of individual drug-metabolizing enzymes has better potential in prediction of drug-drug interactions and the effect of genetic polymorphisms in the pediatric population.
Collapse
Affiliation(s)
- Mayur K Ladumor
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India (M.K.L., S.Sh., A.T., S.Si.); Department of Pharmaceutics, University of Washington, Seattle, Washington (D.K.B., B.P.); Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); and Simulations Plus, Inc., Lancaster, California (M.B.B.)
| | - Deepak Kumar Bhatt
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India (M.K.L., S.Sh., A.T., S.Si.); Department of Pharmaceutics, University of Washington, Seattle, Washington (D.K.B., B.P.); Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); and Simulations Plus, Inc., Lancaster, California (M.B.B.)
| | - Andrea Gaedigk
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India (M.K.L., S.Sh., A.T., S.Si.); Department of Pharmaceutics, University of Washington, Seattle, Washington (D.K.B., B.P.); Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); and Simulations Plus, Inc., Lancaster, California (M.B.B.)
| | - Sheena Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India (M.K.L., S.Sh., A.T., S.Si.); Department of Pharmaceutics, University of Washington, Seattle, Washington (D.K.B., B.P.); Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); and Simulations Plus, Inc., Lancaster, California (M.B.B.)
| | - Aarzoo Thakur
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India (M.K.L., S.Sh., A.T., S.Si.); Department of Pharmaceutics, University of Washington, Seattle, Washington (D.K.B., B.P.); Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); and Simulations Plus, Inc., Lancaster, California (M.B.B.)
| | - Robin E Pearce
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India (M.K.L., S.Sh., A.T., S.Si.); Department of Pharmaceutics, University of Washington, Seattle, Washington (D.K.B., B.P.); Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); and Simulations Plus, Inc., Lancaster, California (M.B.B.)
| | - J Steven Leeder
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India (M.K.L., S.Sh., A.T., S.Si.); Department of Pharmaceutics, University of Washington, Seattle, Washington (D.K.B., B.P.); Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); and Simulations Plus, Inc., Lancaster, California (M.B.B.)
| | - Michael B Bolger
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India (M.K.L., S.Sh., A.T., S.Si.); Department of Pharmaceutics, University of Washington, Seattle, Washington (D.K.B., B.P.); Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); and Simulations Plus, Inc., Lancaster, California (M.B.B.)
| | - Saranjit Singh
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India (M.K.L., S.Sh., A.T., S.Si.); Department of Pharmaceutics, University of Washington, Seattle, Washington (D.K.B., B.P.); Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); and Simulations Plus, Inc., Lancaster, California (M.B.B.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India (M.K.L., S.Sh., A.T., S.Si.); Department of Pharmaceutics, University of Washington, Seattle, Washington (D.K.B., B.P.); Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.); and Simulations Plus, Inc., Lancaster, California (M.B.B.)
| |
Collapse
|
14
|
van Groen BD, Vaes WH, Park BK, Krekels EHJ, van Duijn E, Kõrgvee LT, Maruszak W, Grynkiewicz G, Garner RC, Knibbe CAJ, Tibboel D, de Wildt SN, Turner MA. Dose-linearity of the pharmacokinetics of an intravenous [ 14 C]midazolam microdose in children. Br J Clin Pharmacol 2019; 85:2332-2340. [PMID: 31269280 PMCID: PMC6783587 DOI: 10.1111/bcp.14047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 01/27/2023] Open
Abstract
Aims Drug disposition in children may vary from adults due to age‐related variation in drug metabolism. Microdose studies present an innovation to study pharmacokinetics (PK) in paediatrics; however, they should be used only when the PK is dose linear. We aimed to assess dose linearity of a [14C]midazolam microdose, by comparing the PK of an intravenous (IV) microtracer (a microdose given simultaneously with a therapeutic midazolam dose), with the PK of a single isolated microdose. Methods Preterm to 2‐year‐old infants admitted to the intensive care unit received [14C]midazolam IV as a microtracer or microdose, followed by dense blood sampling up to 36 hours. Plasma concentrations of [14C]midazolam and [14C]1‐hydroxy‐midazolam were determined by accelerator mass spectrometry. Noncompartmental PK analysis was performed and a population PK model was developed. Results Of 15 infants (median gestational age 39.4 [range 23.9–41.4] weeks, postnatal age 11.4 [0.6–49.1] weeks), 6 received a microtracer and 9 a microdose of [14C]midazolam (111 Bq kg−1; 37.6 ng kg−1). In a 2‐compartment PK model, bodyweight was the most significant covariate for volume of distribution. There was no statistically significant difference in any PK parameter between the microdose and microtracer, nor in the area under curve ratio [14C]1‐OH‐midazolam/[14C]midazolam, showing the PK of midazolam to be linear within the range of the therapeutic and microdoses. Conclusion Our data support the dose linearity of the PK of an IV [14C]midazolam microdose in children. Hence, a [14C]midazolam microdosing approach may be used as an alternative to a therapeutic dose of midazolam to study developmental changes in hepatic CYP3A activity in young children.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Catherijne A J Knibbe
- Leiden University, Leiden, The Netherlands.,Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Dick Tibboel
- Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Saskia N de Wildt
- Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands.,Radboud University, Nijmegen, the Netherlands
| | | |
Collapse
|
15
|
Brussee JM, Krekels EHJ, Calvier EAM, Palić S, Rostami-Hodjegan A, Danhof M, Barrett JS, de Wildt SN, Knibbe CAJ. A Pediatric Covariate Function for CYP3A-Mediated Midazolam Clearance Can Scale Clearance of Selected CYP3A Substrates in Children. AAPS JOURNAL 2019; 21:81. [PMID: 31250333 PMCID: PMC6597607 DOI: 10.1208/s12248-019-0351-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Recently a framework was presented to assess whether pediatric covariate models for clearance can be extrapolated between drugs sharing elimination pathways, based on extraction ratio, protein binding, and other drug properties. Here we evaluate when a pediatric covariate function for midazolam clearance can be used to scale clearance of other CYP3A substrates. A population PK model including a covariate function for clearance was developed for midazolam in children aged 1–17 years. Commonly used CYP3A substrates were selected and using the framework, it was assessed whether the midazolam covariate function accurately scales their clearance. For eight substrates, reported pediatric clearance values were compared numerically and graphically with clearance values scaled using the midazolam covariate function. For sildenafil, clearance values obtained with population PK modeling based on pediatric concentration-time data were compared with those scaled with the midazolam covariate function. According to the framework, a midazolam covariate function will lead to systemically accurate clearance scaling (absolute prediction error (PE) < 30%) for CYP3A substrates binding to albumin with an extraction ratio between 0.35 and 0.65 when binding < 10% in adults, between 0.05 and 0.55 when binding > 90%, and with an extraction ratio ranging between these values when binding between 10 and 90%. Scaled clearance values for eight commonly used CYP3A substrates were reasonably accurate (PE < 50%). Scaling of sildenafil clearance was accurate (PE < 30%). We defined for which CYP3A substrates a pediatric covariate function for midazolam clearance can accurately scale plasma clearance in children. This scaling approach may be useful for CYP3A substrates with scarce or no available pediatric PK information.
Collapse
Affiliation(s)
- Janneke M Brussee
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Elke H J Krekels
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Elisa A M Calvier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Semra Palić
- Dutch Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.,Simcyp Limited (A Certara Company), Sheffield, UK
| | - Meindert Danhof
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Jeffrey S Barrett
- Bill & Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA.,Department of Pediatrics, Division of Clinical Pharmacology & Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Intensive Care and Department of Pediatric Surgery, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Catherijne A J Knibbe
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands. .,Department of Clinical Pharmacy, St. Antonius Hospital, PO Box 2500, 3430, EM, Nieuwegein, The Netherlands.
| |
Collapse
|
16
|
Ollivier C, Thomson A, Manolis E, Blake K, Karlsson KE, Knibbe CA, Pons G, Hemmings R. Commentary on the EMA Reflection Paper on the use of extrapolation in the development of medicines for paediatrics. Br J Clin Pharmacol 2019; 85:659-668. [PMID: 30707770 PMCID: PMC6422728 DOI: 10.1111/bcp.13883] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
Adopted guidelines reflect a harmonised European approach to a specific scientific issue and should reflect the most recent scientific knowledge. However, whilst EU regulations are mandatory for all member states and EU directives must be followed by national laws in line with the directive, EMA guidelines do not have legal force and alternative approaches may be taken, but these obviously require more justification. This new series of the BJCP, developed in collaboration with the EMA, aims to address this issue by providing an annotated version of some relevant EMA guidelines and regulatory documents by experts. Hopefully, this will help in promoting their diffusion and in opening a forum for discussion with our readers.
Collapse
Affiliation(s)
- Cécile Ollivier
- Human Medicines Research & Development Support DivisionEuropean Medicines AgencyLondonUK
| | - Andrew Thomson
- Human Medicines Research & Development Support DivisionEuropean Medicines AgencyLondonUK
| | - Efthymios Manolis
- Human Medicines Research & Development Support DivisionEuropean Medicines AgencyLondonUK
| | - Kevin Blake
- Human Medicines Research & Development Support DivisionEuropean Medicines AgencyLondonUK
| | - Kristin E. Karlsson
- Department of Efficacy and SafetySwedish Medicinal Products AgencyUppsalaSweden
| | - Catherijne A.J. Knibbe
- Department of Clinical PharmacySt. Antonius HospitalNieuwegeinThe Netherlands
- Faculty of Science, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | | | - Robert Hemmings
- Licensing DivisionMedicines and Healthcare products Regulatory AgencyLondonUK
| |
Collapse
|
17
|
Calvier EAM, Krekels EHJ, Johnson TN, Rostami-Hodjegan A, Tibboel D, Knibbe CAJ. Scaling Drug Clearance from Adults to the Young Children for Drugs Undergoing Hepatic Metabolism: A Simulation Study to Search for the Simplest Scaling Method. AAPS J 2019; 21:38. [PMID: 30850923 PMCID: PMC6505506 DOI: 10.1208/s12248-019-0295-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022] Open
Abstract
Previous research showed that scaling drug clearance from adults to children based on body weight alone is not accurate for all hepatically cleared drugs in very young children. This study systematically assesses the accuracy of scaling methods that, in addition to body weight, also take age-based variables into account for drugs undergoing hepatic metabolism in children younger than five years, namely scaling with (1) a body weight-based function using an age-dependent exponent (ADE) and (2) a body weight-based function with fixed exponent of 0.75 (AS0.75) combined with isoenzyme maturation functions (MFPBPK) similar to those implemented in physiologically based pharmacokinetic (PBPK) models (AS0.75 + MFPBPK). A PBPK-based simulation workflow was used, including hypothetical drugs with a wide range of properties and metabolized by different isoenzymes. Adult clearance values were scaled to seven typical children between one day and four years. Prediction errors of ± 50% were considered reasonably accurate. Isoenzyme maturation was found to be an important driver of changes in hepatic metabolic clearance in children younger than five years, which prevents the systematic accuracy of ADE scaling. AS0.75 + MFPBPK, when accounting for maturation of isoenzymes and microsomal protein per gram of liver (MPPGL), can reasonably accurately scale hepatic metabolic clearance for all low and intermediate extraction ratio drugs except for drugs binding to alpha-1-acid glycoprotein in neonates. As differences in the impact of changes in system-specific parameters on drugs with different properties yield differences in clearance ontogeny, it is unlikely that for the remaining drugs, scaling methods that do not take drug properties into account will be systematically accurate.
Collapse
Affiliation(s)
- E A M Calvier
- Division Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - E H J Krekels
- Division Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | | | - A Rostami-Hodjegan
- Certara UK Limited, Sheffield, UK
- Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester, UK
| | - D Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Catherijne A J Knibbe
- Division Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands.
- Department of Clinical Pharmacy, St. Antonius Hospital, P.O. Box 2500, 3430 EM, Nieuwegein, The Netherlands.
| |
Collapse
|
18
|
Krekels EHJ, Calvier EAM, van der Graaf PH, Knibbe CAJ. Children Are Not Small Adults, but Can We Treat Them As Such? CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 8:34-38. [PMID: 30689298 PMCID: PMC6363065 DOI: 10.1002/psp4.12366] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/18/2018] [Indexed: 02/04/2023]
Abstract
Although children cannot be considered small adults due to nonlinear processes underlying the pharmacokinetics of drugs, pediatric doses are typically still expressed per kilogram. We use a physiologically based pharmacokinetic (PBPK) workflow to assess the accuracy of linear scaling of plasma clearance (CLp) for hypothetical drugs with ranges of realistic parameter values in pediatric patients of different ages. The results are compared with 0.75 fixed allometric scaling (AS 0.75). Linear CLp scaling is accurate down to the age of 1 month for drugs undergoing glomerular filtration, except when these drugs are highly bound to alpha‐1‐acid glycoprotein (AGP). For hepatically cleared drugs, linear scaling is reasonably accurate down the age of 2 years, except for AGP‐bound drugs with a low extraction ratio and mature isoenzymes. In neonates, linear scaling outperforms AS 0.75 for human serum albumin (HSA) and AGP‐bound drugs excreted through glomerular filtration. These results suggest that pediatric patients can, in many cases, be treated as small adults.
Collapse
Affiliation(s)
- Elke H J Krekels
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center of Drug Research, Leiden University, Leiden, The Netherlands
| | - Elisa A M Calvier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center of Drug Research, Leiden University, Leiden, The Netherlands
| | - Piet H van der Graaf
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center of Drug Research, Leiden University, Leiden, The Netherlands.,Certara QSP, Canterbury, UK
| | - Catherijne A J Knibbe
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center of Drug Research, Leiden University, Leiden, The Netherlands.,Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, The Netherlands
| |
Collapse
|
19
|
van den Anker J. Paediatric extrapolation: the panacea for paediatric drug development? Br J Clin Pharmacol 2018; 85:672-674. [PMID: 30536691 DOI: 10.1111/bcp.13836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- John van den Anker
- Paediatric Pharmacology and Pharmacometrics Research Program, University of Basel Children's Hospital, Basel, Switzerland.,Division of Clinical Pharmacology, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
20
|
Duan P, Wu F, Moore JN, Fisher J, Crentsil V, Gonzalez D, Zhang L, Burckart GJ, Wang J. Assessing CYP2C19 Ontogeny in Neonates and Infants Using Physiologically Based Pharmacokinetic Models: Impact of Enzyme Maturation Versus Inhibition. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 8:158-166. [PMID: 30520273 PMCID: PMC6430158 DOI: 10.1002/psp4.12350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022]
Abstract
The objective of this study was to develop pediatric physiologically based pharmacokinetic (PBPK) models for pantoprazole and esomeprazole. Pediatric PBPK models were developed by Simcyp version 15 by incorporating cytochrome P450 (CYP)2C19 maturation and auto-inhibition. The predicted-to-observed pantoprazole clearance (CL) ratio ranged from 0.96-1.35 in children 1-17 years of age and 0.43-0.70 in term infants. The predicted-to-observed esomeprazole CL ratio ranged from 1.08-1.50 for children 6-17 years of age, and 0.15-0.33 for infants. The prediction was markedly improved by assuming no auto-inhibition of esomeprazole in infants in the PBPK model. Our results suggested that the CYP2C19 auto-inhibition model was appropriate for esomeprazole in adults and older children but could not be directly extended to infants. A better understanding of the complex interplay of enzyme maturation, inhibition, and compensatory mechanisms for CYP2C19 is necessary for PBPK modeling in infants.
Collapse
Affiliation(s)
- Peng Duan
- Office of New Drug Product, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Fang Wu
- Office of New Drug Product, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jason N Moore
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jeffrey Fisher
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Victor Crentsil
- Office of Drug Evaluation III, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gilbert J Burckart
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jian Wang
- Office of Drug Evaluation IV, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
21
|
Howard M, Barber J, Alizai N, Rostami-Hodjegan A. Dose adjustment in orphan disease populations: the quest to fulfill the requirements of physiologically based pharmacokinetics. Expert Opin Drug Metab Toxicol 2018; 14:1315-1330. [PMID: 30465453 DOI: 10.1080/17425255.2018.1546288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION While the media is engaged and fascinated by the idea of 'Precision Medicine', the nuances related to 'Precision Dosing' seem to be largely ignored. Assuming the 'right drug' is selected, clinicians still need to decide on the 'right dose' for individuals. Ideally, optimal dosing should be studied in clinical trials; however, many drugs on the market lack evidence-based dosing recommendations, and small groups of patients (orphan disease populations) are dependent on local guidance and clinician experience to determine drug dosage adjustments. Areas Covered: This report explores the current understanding of dosing adjustment in special populations and examines the requirements for developing 'in silico' models for pediatric, elderly and pregnant patients. The report also highlights current use of modeling to provide evidence-based recommendations for drug labeling in the absence of complete clinical trials in orphan disease populations. Expert Opinion: Physiologically based pharmacokinetics (PBPK) is an attractive prospect for determining the best drug dosage adjustments in special populations. However, it is not sufficient for individualized, or even stratified dosing, unless the systems (drug-independent) data required to build robust PBPK models are obtained. Such models are not a substitute for clinical trials, but they are an alternative to undocumented and inconsistent guesswork.
Collapse
Affiliation(s)
- Martyn Howard
- a Centre for Applied Pharmacokinetic Research , University of Manchester , Manchester , UK
| | - Jill Barber
- a Centre for Applied Pharmacokinetic Research , University of Manchester , Manchester , UK
| | - Naved Alizai
- b Leeds General Infirmary , Leeds Children's Hospital , Leeds , UK
| | - Amin Rostami-Hodjegan
- a Centre for Applied Pharmacokinetic Research , University of Manchester , Manchester , UK
| |
Collapse
|