1
|
Li Y, Shao W, Wang X, Geng K, Wang W, Liu Z, Chen Y, Shen C, Xie H. Physiologically based pharmacokinetic model of brivaracetam to predict the exposure and dose exploration in hepatic impairment and elderly populations. J Pharm Sci 2024; 113:3286-3296. [PMID: 39243975 DOI: 10.1016/j.xphs.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
Brivaracetam (BRV) is a new third-generation antiseizure medication for the treatment of focal epileptic seizures. Its use has been increasing among epileptic populations in recent years, but pharmacokinetic (PK) behavior may change in hepatic impairment and the elderly populations. Due to ethical constraints, clinical trials are difficult to conduct and data are limited. This study used PK-Sim® to develop a physiologically based pharmacokinetic (PBPK) model for adults and extrapolate it to hepatic impairment and the elderly populations. The model was evaluated with clinical PK data, and dosage explorations were conducted. For the adult population with mild hepatic impairment, the dose is recommended to be adjusted to 70 % of the recommended dose, and to 60 % for moderate and severe hepatic impairment. For the elderly population with mild hepatic impairment under 80 years old, it is recommended that the dose be adjusted to 60 % of the recommended dose and to 50 % for moderate and severe conditions. The elderly population with hepatic impairment over 80 years old is adjusted to 50 % of the recommended dose for all stages. Healthy elderly do not need to adjust. The BRV PBPK model was successfully developed, studying exposure in hepatic impairment and elderly populations and optimizing dosing regimens.
Collapse
Affiliation(s)
- Yiming Li
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, PR China; Wannan Medical College, No. 22, Wenchang West Road, Yijiang District, Wuhu 241002, PR China
| | - Wenxin Shao
- Department of Pharmacy, The First People's Hospital of Yibin, No. 65, Wenxing Street, Yinbin 644000, PR China
| | - Xingwen Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, PR China; Wannan Medical College, No. 22, Wenchang West Road, Yijiang District, Wuhu 241002, PR China
| | - Kuo Geng
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, PR China; Wannan Medical College, No. 22, Wenchang West Road, Yijiang District, Wuhu 241002, PR China
| | - Wenhui Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, PR China; Wannan Medical College, No. 22, Wenchang West Road, Yijiang District, Wuhu 241002, PR China
| | - Zhiwei Liu
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, PR China; Wannan Medical College, No. 22, Wenchang West Road, Yijiang District, Wuhu 241002, PR China
| | - Youjun Chen
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, PR China; Wannan Medical College, No. 22, Wenchang West Road, Yijiang District, Wuhu 241002, PR China
| | - Chaozhuang Shen
- Department of Clinical Pharmacy and Pharmacy Administration, West China school of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, PR China.
| |
Collapse
|
2
|
van der Heijden JEM, de Hoop-Sommen M, Hoevenaars N, Freriksen JJM, Joosten K, Greupink R, de Wildt SN. Getting the dose right using physiologically-based pharmacokinetic modeling: dexamethasone to prevent post-extubation stridor in children as proof of concept. Front Pediatr 2024; 12:1416440. [PMID: 39035463 PMCID: PMC11257885 DOI: 10.3389/fped.2024.1416440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Critically ill patients show large variability in drug disposition due to e.g., age, size, disease and treatment modalities. Physiologically-based pharmacokinetic (PBPK) models can be used to design individualized dosing regimens taking this into account. Dexamethasone, prescribed for the prevention post-extubation stridor (PES), is metabolized by the drug metabolizing enzyme CYP3A. As CYP3A4 undergoes major changes during childhood, we aimed to develop age-appropriate dosing recommendations for children of dexamethasone for PES, as proof of concept for PBPK modeling to individualize dosing for critically ill patients. Methods All simulations were conducted in Simcyp™ v21 (a population-based PBPK modeling platform), using an available dexamethasone compound model and pediatric population model in which CYP3A4 ontogeny is incorporated. Published pharmacokinetic (PK) data was used for model verification. Evidence for the dose to prevent post-extubation stridor was strongest for 2-6 year old children, hence simulated drug concentrations resulting from this dose from this age group were targeted when simulating age-appropriate doses for the whole pediatric age range. Results Dexamethasone plasma concentrations upon single and multiple intravenous administration were predicted adequately across the pediatric age range. Exposure-matched predictions of dexamethasone PK indicated that doses (in mg/kg) for the 2-6 years olds can be applied in 3 month-2 year old children, whereas lower doses are needed in children of other age groups (60% lower for 0-2 weeks, 40% lower for 2-4 weeks, 20% lower for 1-3 months, 20% lower for 6-12 year olds, 40% lower for 12-18 years olds). Discussion We show that PBPK modeling is a valuable tool that can be used to develop model-informed recommendations using dexamethasone to prevent PES in children. Based on exposure matching, the dose of dexamethasone should be reduced compared to commonly used doses, in infants <3 months and children ≥6 years, reflecting age-related variation in drug disposition. PBPK modeling is an promising tool to optimize dosing of critically ill patients.
Collapse
Affiliation(s)
- Joyce E. M. van der Heijden
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marika de Hoop-Sommen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Noa Hoevenaars
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jolien J. M. Freriksen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Koen Joosten
- Department of Neonatal and Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Rick Greupink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Saskia N. de Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Neonatal and Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| |
Collapse
|
3
|
Lava SAG, Laurence C, Di Deo A, Sekarski N, Burch M, Della Pasqua O. Dapagliflozin and Empagliflozin in Paediatric Indications: A Systematic Review. Paediatr Drugs 2024; 26:229-243. [PMID: 38635113 DOI: 10.1007/s40272-024-00623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION In adults, sodium-glucose cotransporter type 2 inhibitors have revolutionised the treatment of type 2 diabetes mellitus, heart failure, and chronic kidney disease. OBJECTIVE We aimed to review information on compassionate use, clinical pharmacology, efficacy, and safety of dapagliflozin and empagliflozin in children. METHODS We conducted a systematic review of published clinical trials, case reports, and observational studies in Medline, Excerpta Medica, and Web of Science databases from inception to September 2023. For the two randomised controlled trials on type 2 diabetes mellitus (T2DM), we implemented a meta-analysis on the primary outcome (mean difference in glycosylated haemoglobin [HbA1c] between intervention and placebo groups). Review Manager (RevMan), version 5.4.1, was used for this purpose. RESULTS Thirty-five articles (nine case reports, ten case series, one prospective non-controlled trial, four controlled randomised trials, two surveys, six pharmacokinetic studies, and three pharmacovigilance studies) were selected, in which 415 children were exposed to either dapagliflozin or empagliflozin: 189 diabetic patients (mean age 14.7 ± 2.9 years), 32 children with glycogen storage disease type Ib (GSD Ib), glucose-6-phosphatase catalytic subunit 3 (G6PC3) deficiency, or severe congenital neutropenia type 4 (8.5 ± 5.1 years), 47 children with kidney disease or heart failure (11.2 ± 6.1 years), 84 patients in pharmacokinetic studies (15.1 ± 2.3 years), and 63 patients in toxicological series. The effect of dapagliflozin and empagliflozin in T2DM was demonstrated by HbA1c reduction in two randomised trials among a total of 177 adolescents, with a mean HbA1c difference of -0.82% (95% confidence interval -1.34 to -0.29) as compared to placebo (no heterogeneity, I2 = 0%). Dosage ranged between 5 and 20 mg (mean 11.4 ± 3.7) once daily for dapagliflozin and between 5 and 25 mg (mean 15.4 ± 7.4) once daily for empagliflozin. Among the paediatric cases of GSD Ib, empagliflozin 0.1-1.3 mg/kg/day improved neutropenia, infections, and gastrointestinal health. Dapagliflozin (mean dosage 6.9 ± 5.2 mg once daily) was well-tolerated in children with chronic kidney disease and heart failure. Side effects were generally mild, the most frequent being hypoglycaemia in children with GSD Ib (33% of patients) or T2DM (14% of patients) on concomitant hypoglycaemic drugs. Diabetic ketoacidosis is rare in children. CONCLUSION Early evidence suggests that dapagliflozin and empagliflozin are well tolerated in children. A clinical pharmacology rationale currently exists only for adolescents with diabetes mellitus. PROSPERO REGISTRATION NUMBER CRD42023438162.
Collapse
Affiliation(s)
- Sebastiano A G Lava
- Pediatric Cardiology Unit, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland.
- Heart Failure and Transplantation, Department of Paediatric Cardiology, Great Ormond Street Hospital, London, UK.
- Clinical Pharmacology and Therapeutics Group, University College London, London, UK.
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.
| | - Craig Laurence
- Heart Failure and Transplantation, Department of Paediatric Cardiology, Great Ormond Street Hospital, London, UK
| | - Alessandro Di Deo
- Clinical Pharmacology and Therapeutics Group, University College London, London, UK
| | - Nicole Sekarski
- Pediatric Cardiology Unit, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Michael Burch
- Heart Failure and Transplantation, Department of Paediatric Cardiology, Great Ormond Street Hospital, London, UK
| | - Oscar Della Pasqua
- Clinical Pharmacology and Therapeutics Group, University College London, London, UK
| |
Collapse
|
4
|
van der Heijden JEM, Freriksen JJM, de Hoop-Sommen MA, Greupink R, de Wildt SN. Physiologically-Based Pharmacokinetic Modeling for Drug Dosing in Pediatric Patients: A Tutorial for a Pragmatic Approach in Clinical Care. Clin Pharmacol Ther 2023; 114:960-971. [PMID: 37553784 DOI: 10.1002/cpt.3023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
It is well-accepted that off-label drug dosing recommendations for pediatric patients should be based on the best available evidence. However, the available traditional evidence is often low. To bridge this gap, physiologically-based pharmacokinetic (PBPK) modeling is a scientifically well-founded tool that can be used to enable model-informed dosing (MID) recommendations in children in clinical practice. In this tutorial, we provide a pragmatic, PBPK-based pediatric modeling workflow. For this approach to be successfully implemented in pediatric clinical practice, a thorough understanding of the model assumptions and limitations is required. More importantly, careful evaluation of an MID approach within the context of overall benefits and the potential risks is crucial. The tutorial is aimed to help modelers, researchers, and clinicians, to effectively use PBPK simulations to support pediatric drug dosing.
Collapse
Affiliation(s)
- Joyce E M van der Heijden
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jolien J M Freriksen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marika A de Hoop-Sommen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rick Greupink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Saskia N de Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatric and Neonatal Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Dong J, Prieto Garcia L, Huang Y, Tang W, Lundahl A, Elebring M, Ahlström C, Vildhede A, Sjögren E, Någård M. Understanding Statin-Roxadustat Drug-Drug-Disease Interaction Using Physiologically-Based Pharmacokinetic Modeling. Clin Pharmacol Ther 2023; 114:825-835. [PMID: 37376792 DOI: 10.1002/cpt.2980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
A different drug-drug interaction (DDI) scenario may exist in patients with chronic kidney disease (CKD) compared with healthy volunteers (HVs), depending on the interplay between drug-drug and disease (drug-drug-disease interaction (DDDI)). Physiologically-based pharmacokinetic (PBPK) modeling, in lieu of a clinical trial, is a promising tool for evaluating these complex DDDIs in patients. However, the prediction confidence of PBPK modeling in the severe CKD population is still low when nonrenal pathways are involved. More mechanistic virtual disease population and robust validation cases are needed. To this end, we aimed to: (i) understand the implications of severe CKD on statins (atorvastatin, simvastatin, and rosuvastatin) pharmacokinetics (PK) and DDI; and (ii) predict untested clinical scenarios of statin-roxadustat DDI risks in patients to guide suitable dose regimens. A novel virtual severe CKD population was developed incorporating the disease effect on both renal and nonrenal pathways. Drug and disease PBPK models underwent a four-way validation. The verified PBPK models successfully predicted the altered PKs in patients for substrates and inhibitors and recovered the observed statin-rifampicin DDIs in patients and the statin-roxadustat DDIs in HVs within 1.25- and 2-fold error. Further sensitivity analysis revealed that the severe CKD effect on statins PK is mainly mediated by hepatic BCRP for rosuvastatin and OATP1B1/3 for atorvastatin. The magnitude of statin-roxadustat DDI in patients with severe CKD was predicted to be similar to that in HVs. PBPK-guided suitable dose regimens were identified to minimize the risk of side effects or therapeutic failure of statins when co-administered with roxadustat.
Collapse
Affiliation(s)
- Jin Dong
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Luna Prieto Garcia
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Uppsala, Sweden
| | - Yingbo Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Weifeng Tang
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Anna Lundahl
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Marie Elebring
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
| | - Christine Ahlström
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Vildhede
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
| | - Erik Sjögren
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Uppsala, Sweden
| | - Mats Någård
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| |
Collapse
|
6
|
Machado TR, Honorio T, Souza Domingos TF, Candido de Paula DDS, Cabral LM, Rodrigues CR, Abrahim-Vieira BA, Teles de Souza AM. Physiologically based pharmacokinetic modelling of semaglutide in children and adolescents with healthy and obese body weights. Br J Clin Pharmacol 2023; 89:3175-3194. [PMID: 37293836 DOI: 10.1111/bcp.15816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/23/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
AIMS To develop paediatric physiologically based pharmacokinetic modelling (PBPK) models of semaglutide to estimate the pharmacokinetic profile for subcutaneous injections in children and adolescents with healthy and obese body weights. METHODS Pharmacokinetic modelling and simulations of semaglutide subcutaneous injections were performed using the Transdermal Compartmental Absorption & Transit model implemented in GastroPlus v.9.5 modules. A PBPK model of semaglutide was developed and verified in the adult population, by comparing the simulated plasma exposure with the observed data, and further scaled to the paediatric populations with normal and obese body weight. RESULTS The semaglutide PBPK model was successfully developed in adults and scaled to the paediatric population. Our paediatric PBPK simulations indicated a significant increase in maximum plasma concentrations for the 10-14 years' paediatric population with healthy body weights, which was higher than the observed values in adults at the reference dose. Since gastrointestinal adverse events are related to increased semaglutide concentrations, peak concentrations outside the target range may represent a safety risk for this paediatric age group. Besides, paediatric PBPK models indicated that body weight was inversely related to semaglutide maximum plasma concentration, corroborating the consensus on the influence of body weight on semaglutide PK in adults. CONCLUSION Paediatric PBPK was successfully achieved using a top-down approach and drug-related parameters. The development of unprecedented PBPK models will support paediatric clinical therapy for applying aid-safe dosing regimens for the paediatric population in diabetes treatment.
Collapse
Affiliation(s)
- Thayná Rocco Machado
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago Honorio
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Dailane da Silva Candido de Paula
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio Mendes Cabral
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos R Rodrigues
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bárbara A Abrahim-Vieira
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra Mendonça Teles de Souza
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Small BG, Johnson TN, Rowland Yeo K. Another Step Toward Qualification of Pediatric Physiologically Based Pharmacokinetic Models to Facilitate Inclusivity and Diversity in Pediatric Clinical Studies. Clin Pharmacol Ther 2023; 113:735-745. [PMID: 36306419 DOI: 10.1002/cpt.2777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Robust prediction of pharmacokinetics (PKs) in pediatric subjects of diverse ages, ethnicities, and morbidities is critical. Qualification of pediatric physiologically-based pharmacokinetic (P-PBPK) models is an essential step toward enabling precision dosing of these vulnerable groups. Twenty-two manuscripts involving P-PBPK predictions and corresponding observed PK data (e.g., area under the curve and clearance) for 22 small-molecule compounds metabolized by CYP (3A4, 1A2, and 2C9), UGT (1A9 and 2B7), FMO3, renal, non-renal, and complex routes were identified; ratios of mean predicted/observed (P/O) PK parameters were calculated. Seventy-eight of 115 mean predicted PK parameters were within 0.8 to 1.25-fold of observed data, 98 within 0.67 to 1.5-fold, 109 within 2-fold, and only 6 P/O ratios were outside of these bounds. A set of 12 CYP3A4-metabolized compounds and a set of 6 metabolized by other enzymes, CYP1A2 (1 compound), CYP2C9 (2 compounds), UGT1A9 (1 compound) and UGT2B7 (2 compounds) had 56 of 59 and 22 of 25 mean P/O ratios, respectively, that fell within the > 0.5 and < 2.0-fold boundaries. For compounds covering renal, non-renal, complex, and FM03 routes of elimination, 29 of 31 mean P/O ratios fell within the 0.67 to 1.5-fold bounds, including 4 of 5 P/O ratios from newborns. P-PBPK modeling and simulation is a strategic component of the complement of precision dosing methods and has a vital role to play in dose adjustment in vulnerable pediatric populations, such as those with disease or in different ethnic groups. Qualification of such models is an essential step toward acceptance of this methodology by regulators.
Collapse
Affiliation(s)
- Ben G Small
- Certara UK Limited (Simcyp Division), Sheffield, UK
| | | | | |
Collapse
|
8
|
Thangaraju P, Velmurugan H, Neelambaran K. Current Status of Pharmacokinetic Research in Children: A Systematic Review of Clinical Trial Records. Curr Rev Clin Exp Pharmacol 2023; 19:78-92. [PMID: 36573054 DOI: 10.2174/2772432818666221223155455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/05/2022] [Accepted: 10/18/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Many medications have different pharmacokinetics in children than in adults. Knowledge about the safety and efficacy of medications in children requires research into the pharmacokinetic profiles of children's medicines. By analysing registered clinical trial records, this study determined how frequently pharmacokinetic data is gathered in paediatric drug trials. METHODS We searched for the pharmacokinetic data from clinical trial records for preterm infants and children up to the age of 16 from January 2011 to April 2022. The records of trials involving one or more drugs in preterm infants and children up to the age of 16 were examined for evidence that pharmacokinetic data would be collected. RESULTS In a total of 1483 records of interventional clinical trials, 136 (9.17%) pharmacokinetic data involved adults. Of those 136 records, 60 (44.1%) records were pharmacokinetics trials involving one or more medicines in children up to the age of 16.20 (33.3%) in America, followed by 19 (31.6%) in Europe. Most trials researched medicines in the field of infection or parasitic diseases 20 (33.3%). 27 (48.2%) and 26 (46.4%) trials investigated medicines that were indicated as essential medicine. CONCLUSION The pharmacokinetic characteristics of children's drugs need to be better understood. The current state of pharmacokinetic research appears to address the knowledge gap in this area adequately. Despite slow progress, paediatric clinical trials have experienced a renaissance as the significance of paediatric trials has gained international attention. The outcome of paediatric trials will have an impact on children's health in the future. In recent years, the need for greater availability and access to safe child-size pharmaceuticals has received a lot of attention.
Collapse
Affiliation(s)
- Pugazhenthan Thangaraju
- Department of Pharmacology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Hemasri Velmurugan
- Department of Pharmacology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Krishnapriya Neelambaran
- Department of Pharmacology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| |
Collapse
|
9
|
In-Depth Analysis of Physiologically Based Pharmacokinetic (PBPK) Modeling Utilization in Different Application Fields Using Text Mining Tools. Pharmaceutics 2022; 15:pharmaceutics15010107. [PMID: 36678737 PMCID: PMC9860979 DOI: 10.3390/pharmaceutics15010107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
In the past decade, only a small number of papers have elaborated on the application of physiologically based pharmacokinetic (PBPK) modeling across different areas. In this review, an in-depth analysis of the distribution of PBPK modeling in relation to its application in various research topics and model validation was conducted by text mining tools. Orange 3.32.0, an open-source data mining program was used for text mining. PubMed was used for data retrieval, and the collected articles were analyzed by several widgets. A total of 2699 articles related to PBPK modeling met the predefined criteria. The number of publications per year has been rising steadily. Regarding the application areas, the results revealed that 26% of the publications described the use of PBPK modeling in early drug development, risk assessment and toxicity assessment, followed by absorption/formulation modeling (25%), prediction of drug-disease interactions (20%), drug-drug interactions (DDIs) (17%) and pediatric drug development (12%). Furthermore, the analysis showed that only 12% of the publications mentioned model validation, of which 51% referred to literature-based validation and 26% to experimentally validated models. The obtained results present a valuable review of the state-of-the-art regarding PBPK modeling applications in drug discovery and development and related fields.
Collapse
|
10
|
Grube PM, Beckett RD. Clinical studies of dapagliflozin in pediatric patients: a rapid review. Ann Pediatr Endocrinol Metab 2022; 27:265-272. [PMID: 36567463 PMCID: PMC9816466 DOI: 10.6065/apem.2244166.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/19/2022] [Indexed: 12/27/2022] Open
Abstract
The oral sodium-glucose cotransporter 2 inhibitor, dapagliflozin, is used to treat kidney disease, heart failure, and diabetes in adults, but has not been well studied in pediatrics, and does not have a recognized place in therapy in current practice guidelines. The purpose of this review is to summarize studies that have investigated the efficacy of dapagliflozin in pediatric patients. A systematic review was performed to identify clinical studies of oral dapagliflozin in children 0 to 17 years. Studies were identified through searches of Scopus, Web of Science, PubMed, Google Scholar, Embase, clinical trial registries, research registries, and key journals through August 2022. The Cochrane scoring system was used to assess the methodological quality of the included randomized trials. Five studies were reviewed and included in this analysis. Dapagliflozin at a dose of 5 to 10 mg was utilized in adolescents and young adults with heart failure, chronic kidney disease with proteinuria, type 1 diabetes, or type 2 diabetes. Studies evaluating dapagliflozin in type 1 diabetes evaluated single doses while the other studies monitored long-term use. Dapagliflozin was overall considered to be safe and effective in the studies included in this review, but further studies in larger populations and over extended periods of time are necessary.
Collapse
Affiliation(s)
- Paige M. Grube
- Kentucky Children's Hospital, University of Kentucky Healthcare, Lexington, KY, USA
| | - Robert D. Beckett
- College of Pharmacy Natural and Health Sciences, Manchester University, Fort Wayne, IN, USA,Address for correspondence: Robert D. Beckett Manchester University, College of Pharmacy, Natural and Health Sciences, 10627 Diebold Road, Fort Wayne, IN 46845, USA
| |
Collapse
|
11
|
Zhou X, Dun J, Chen X, Xiang B, Dang Y, Cao D. Predicting the correct dose in children: Role of computational Pediatric Physiological-based pharmacokinetics modeling tools. CPT Pharmacometrics Syst Pharmacol 2022; 12:13-26. [PMID: 36330677 PMCID: PMC9835135 DOI: 10.1002/psp4.12883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
The pharmacokinetics (PKs) and safety of medications in particular groups can be predicted using the physiologically-based pharmacokinetic (PBPK) model. Using the PBPK model may enable safe pediatric clinical trials and speed up the process of new drug research and development, especially for children, a population in which it is relatively difficult to conduct clinical trials. This review summarizes the role of pediatric PBPK (P-PBPK) modeling software in dose prediction over the past 6 years and briefly introduces the process of general P-PBPK modeling. We summarized the theories and applications of this software and discussed the application trends and future perspectives in the area. The modeling software's extensive use will undoubtedly make it easier to predict dose prediction for young patients.
Collapse
Affiliation(s)
- Xu Zhou
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Jiening Dun
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Xiao Chen
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Bai Xiang
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Yunjie Dang
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Deying Cao
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| |
Collapse
|