1
|
Liu H, Ibrahim EIK, Centanni M, Sarr C, Venkatakrishnan K, Friberg LE. Integrated modeling of biomarkers, survival and safety in clinical oncology drug development. Adv Drug Deliv Rev 2025; 216:115476. [PMID: 39577694 DOI: 10.1016/j.addr.2024.115476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/12/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Model-based approaches, including population pharmacokinetic-pharmacodynamic modeling, have become an essential component in the clinical phases of oncology drug development. Over the past two decades, models have evolved to describe the temporal dynamics of biomarkers and tumor size, treatment-related adverse events, and their links to survival. Integrated models, defined here as models that incorporate at least two pharmacodynamic/ outcome variables, are applied to answer drug development questions through simulations, e.g., to support the exploration of alternative dosing strategies and study designs in subgroups of patients or other tumor indications. It is expected that these pharmacometric approaches will be expanded as regulatory authorities place further emphasis on early and individualized dosage optimization and inclusive patient-focused development strategies. This review provides an overview of integrated models in the literature, examples of the considerations that need to be made when applying these advanced pharmacometric approaches, and an outlook on the expected further expansion of model-informed drug development of anticancer drugs.
Collapse
Affiliation(s)
- Han Liu
- Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden
| | - Eman I K Ibrahim
- Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden
| | - Maddalena Centanni
- Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden
| | - Céline Sarr
- Pharmetheus AB, Dragarbrunnsgatan 77, 753 19, Uppsala, Sweden
| | | | - Lena E Friberg
- Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden.
| |
Collapse
|
2
|
Mak WY, He Q, Yang W, Xu N, Zheng A, Chen M, Lin J, Shi Y, Xiang X, Zhu X. Application of MIDD to accelerate the development of anti-infectives: Current status and future perspectives. Adv Drug Deliv Rev 2024; 214:115447. [PMID: 39277035 DOI: 10.1016/j.addr.2024.115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/27/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
This review examines the role of model-informed drug development (MIDD) in advancing antibacterial and antiviral drug development, with an emphasis on the inclusion of host system dynamics into modeling efforts. Amidst the growing challenges of multidrug resistance and diminishing market returns, innovative methodologies are crucial for continuous drug discovery and development. The MIDD approach, with its robust capacity to integrate diverse data types, offers a promising solution. In particular, the utilization of appropriate modeling and simulation techniques for better characterization and early assessment of drug resistance are discussed. The evolution of MIDD practices across different infectious disease fields is also summarized, and compared to advancements achieved in oncology. Moving forward, the application of MIDD should expand into host system dynamics as these considerations are critical for the development of "live drugs" (e.g. chimeric antigen receptor T cells or bacteriophages) to address issues like antibiotic resistance or latent viral infections.
Collapse
Affiliation(s)
- Wen Yao Mak
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China; Clinical Research Centre (Penang General Hospital), Institute for Clinical Research, National Institute of Health, Malaysia
| | - Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Wenyu Yang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Nuo Xu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Aole Zheng
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Min Chen
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Jiaying Lin
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Yufei Shi
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China.
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China.
| |
Collapse
|
3
|
Ferdous S, Shihab IF, Chowdhury R, Reuel NF. Reinforcement learning-guided control strategies for CAR T-cell activation and expansion. Biotechnol Bioeng 2024; 121:2868-2880. [PMID: 38812405 DOI: 10.1002/bit.28753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/12/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Reinforcement learning (RL), a subset of machine learning (ML), could optimize and control biomanufacturing processes, such as improved production of therapeutic cells. Here, the process of CAR T-cell activation by antigen-presenting beads and their subsequent expansion is formulated in silico. The simulation is used as an environment to train RL-agents to dynamically control the number of beads in culture to maximize the population of robust effector cells at the end of the culture. We make periodic decisions of incremental bead addition or complete removal. The simulation is designed to operate in OpenAI Gym, enabling testing of different environments, cell types, RL-agent algorithms, and state inputs to the RL-agent. RL-agent training is demonstrated with three different algorithms (PPO, A2C, and DQN), each sampling three different state input types (tabular, image, mixed); PPO-tabular performs best for this simulation environment. Using this approach, training of the RL-agent on different cell types is demonstrated, resulting in unique control strategies for each type. Sensitivity to input-noise (sensor performance), number of control step interventions, and advantages of pre-trained RL-agents are also evaluated. Therefore, we present an RL framework to maximize the population of robust effector cells in CAR T-cell therapy production.
Collapse
Affiliation(s)
- Sakib Ferdous
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | | | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Nigel F Reuel
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
4
|
Minichmayr IK, Dreesen E, Centanni M, Wang Z, Hoffert Y, Friberg LE, Wicha SG. Model-informed precision dosing: State of the art and future perspectives. Adv Drug Deliv Rev 2024; 215:115421. [PMID: 39159868 DOI: 10.1016/j.addr.2024.115421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Model-informed precision dosing (MIPD) stands as a significant development in personalized medicine to tailor drug dosing to individual patient characteristics. MIPD moves beyond traditional therapeutic drug monitoring (TDM) by integrating mathematical predictions of dosing, and considering patient-specific factors (patient characteristics, drug measurements) as well as different sources of variability. For this purpose, rigorous model qualification is required for the application of MIPD in patients. This review delves into new methods in model selection and validation, also highlighting the role of machine learning in improving MIPD, the utilization of biosensors for real-time monitoring, as well as the potential of models integrating biomarkers for efficacy or toxicity for precision dosing. The clinical evidence of TDM and MIPD is discussed for various medical fields including infection medicine, oncology, transplant medicine, and inflammatory bowel diseases, thereby underscoring the role of pharmacokinetics/pharmacodynamics and specific biomarkers. Further research, particularly randomized clinical trials, is warranted to corroborate the value of MIPD in enhancing patient outcomes and advancing personalized medicine.
Collapse
Affiliation(s)
- I K Minichmayr
- Dept. of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - E Dreesen
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - M Centanni
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Z Wang
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Y Hoffert
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - L E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - S G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
5
|
Joslyn LR, Huang W, Miles D, Hosseini I, Ramanujan S. "Digital twins elucidate critical role of T scm in clinical persistence of TCR-engineered cell therapy". NPJ Syst Biol Appl 2024; 10:11. [PMID: 38278838 PMCID: PMC10817974 DOI: 10.1038/s41540-024-00335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Despite recent progress in adoptive T cell therapy for cancer, understanding and predicting the kinetics of infused T cells remains a challenge. Multiple factors can impact the distribution, expansion, and decay or persistence of infused T cells in patients. We have developed a novel quantitative systems pharmacology (QSP) model of TCR-transgenic T cell therapy in patients with solid tumors to describe the kinetics of endogenous T cells and multiple memory subsets of engineered T cells after infusion. These T cells undergo lymphodepletion, proliferation, trafficking, differentiation, and apoptosis in blood, lymph nodes, tumor site, and other peripheral tissues. Using the model, we generated patient-matched digital twins that recapitulate the circulating T cell kinetics reported from a clinical trial of TCR-engineered T cells targeting E7 in patients with metastatic HPV-associated epithelial cancers. Analyses of key parameters influencing cell kinetics and differences among digital twins identify stem cell-like memory T cells (Tscm) cells as an important determinant of both expansion and persistence and suggest that Tscm-related differences contribute significantly to the observed variability in cellular kinetics among patients. We simulated in silico clinical trials using digital twins and predict that Tscm enrichment in the infused product improves persistence of the engineered T cells and could enable administration of a lower dose. Finally, we verified the broader relevance of the QSP model, the digital twins, and findings on the importance of Tscm enrichment by predicting kinetics for two patients with pancreatic cancer treated with KRAS G12D targeting T cell therapy. This work offers insight into the key role of Tscm biology on T cell kinetics and provides a quantitative framework to evaluate cellular kinetics for future efforts in the development and clinical application of TCR-engineered T cell therapies.
Collapse
Affiliation(s)
| | - Weize Huang
- Genentech Inc., South San Francisco, CA, USA
| | - Dale Miles
- Genentech Inc., South San Francisco, CA, USA
| | | | | |
Collapse
|
6
|
Mc Laughlin AM, Milligan PA, Yee C, Bergstrand M. Model-informed drug development of autologous CAR-T cell therapy: Strategies to optimize CAR-T cell exposure leveraging cell kinetic/dynamic modeling. CPT Pharmacometrics Syst Pharmacol 2023; 12:1577-1590. [PMID: 37448343 PMCID: PMC10681459 DOI: 10.1002/psp4.13011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023] Open
Abstract
Autologous Chimeric antigen receptor (CAR-T) cell therapy has been highly successful in the treatment of aggressive hematological malignancies and is also being evaluated for the treatment of solid tumors as well as other therapeutic areas. A challenge, however, is that up to 60% of patients do not sustain a long-term response. Low CAR-T cell exposure has been suggested as an underlying factor for a poor prognosis. CAR-T cell therapy is a novel therapeutic modality with unique kinetic and dynamic properties. Importantly, "clear" dose-exposure relationships do not seem to exist for any of the currently approved CAR-T cell products. In other words, dose increases have not led to a commensurate increase in the measurable in vivo frequency of transferred CAR-T cells. Therefore, alternative approaches beyond dose titration are needed to optimize CAR-T cell exposure. In this paper, we provide examples of actionable variables - design elements in CAR-T cell discovery, development, and clinical practice, which can be modified to optimize autologous CAR-T cell exposure. Most of these actionable variables can be assessed throughout the various stages of discovery and development as part of a well-informed research and development program. Model-informed drug development approaches can enable such study and program design choices from discovery through to clinical practice and can be an important contributor to cell therapy effectiveness and efficiency.
Collapse
Affiliation(s)
| | | | - Cassian Yee
- Department of Melanoma Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | | |
Collapse
|
7
|
Jayachandran P, Desikan R, Krishnaswami S, Hennig S. Role of pharmacometrics and systems pharmacology in facilitating efficient dose optimization in oncology. CPT Pharmacometrics Syst Pharmacol 2023; 12:1569-1572. [PMID: 37849052 PMCID: PMC10681474 DOI: 10.1002/psp4.13066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Affiliation(s)
| | - Rajat Desikan
- Clinical Pharmacology Modeling & SimulationGlaxoSmithKline (GSK)StevenageHertfordshireUK
| | | | - Stefanie Hennig
- Certara, Inc.MelbourneVictoriaAustralia
- School of Clinical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| |
Collapse
|