1
|
Abolarin PO, Amin A, Nafiu AB, Ogundele OM, Owoyele BV. Optimization of Parkinson's disease therapy with plant extracts and nutrition's evolving roles. IBRO Neurosci Rep 2024; 17:1-12. [PMID: 38872839 PMCID: PMC11167367 DOI: 10.1016/j.ibneur.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by death of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Death of dopaminergic cells in the SNpc leads to manifestations of motor dysfunction and non-motor symptoms of PD. The progression of PD symptoms severely affects the quality of life of patients and poses socio-economic problems to families and society at large. The clinical and neuropathological characteristics of PD are triggered by multiple factors such as oxidative stress, neuroinflammation, mitochondrial dysfunction, and protein aggregation. Notwithstanding the advancements in pharmacological therapy in PD management, there is burgeoning interest in alternative and complementary approaches, essentially nutrition and plant extracts strategies. This review gives widespread analysis of the role of nutrition and plant extracts in the management of PD. Studies that investigated the effects of various dietary compounds and plant extract on PD symptoms and progression were reviewed from existing literatures. Nutraceuticals, including vitamins and phytochemicals such as Mucuna pruriens have shown potential neuroprotective functions in preclinical and clinical studies. Indeed, these strategies ameliorate mitochondrial dysfunction, oxidative stress, and neuroinflammation, all which are implicated in the pathogenesis of PD. The neuroprotective mechanisms of nutrition and plant extracts in PD, with emphasis on their capacity to target multiple pathways implicated in PD are discussed. Additionally, challenges and limitations related with translating preclinical findings into clinical practice including standardization of dosing regimens, bioavailability, and inter-individual variability are discussed. Largely, this review elucidates on the role of nutrition and plant extracts as adjunctive therapy in PD management.
Collapse
Affiliation(s)
- Patrick Oluwole Abolarin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Abdulbasit Amin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | | | - Olalekan Michael Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Bamidele Victor Owoyele
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| |
Collapse
|
2
|
Yang X, Zhang Y, Luo JX, Zhu T, Ran Z, Mu BR, Lu MH. Targeting mitophagy for neurological disorders treatment: advances in drugs and non-drug approaches. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3503-3528. [PMID: 37535076 DOI: 10.1007/s00210-023-02636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Mitochondria serve as a vital energy source for nerve cells. The mitochondrial network also acts as a defense mechanism against external stressors that can threaten the stability of the nervous system. However, excessive accumulation of damaged mitochondria can lead to neuronal death. Mitophagy is an essential pathway in the mitochondrial quality control system and can protect neurons by selectively removing damaged mitochondria. In most neurological disorders, dysfunctional mitochondria are a common feature, and drugs that target mitophagy can improve symptoms. Here, we reviewed the role of mitophagy in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, stroke, and traumatic brain injuries. We also summarized drug and non-drug approaches to promote mitophagy and described their therapeutic role in neurological disorders in order to provide valuable insight into the potential therapeutic agents available for neurological disease treatment. However, most studies on mitophagy regulation are based on preclinical research using cell and animal models, which may not accurately reflect the effects in humans. This poses a challenge to the clinical application of drugs targeting mitophagy. Additionally, these drugs may carry the risk of intolerable side effects and toxicity. Future research should focus on the development of safer and more targeted drugs for mitophagy.
Collapse
Affiliation(s)
- Xiong Yang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia-Xin Luo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Sahyadri M, Nadiga APR, Mehdi S, Mruthunjaya K, Nayak PG, Parihar VK, Manjula SN. Mitochondria-lysosome crosstalk in GBA1-associated Parkinson's disease. 3 Biotech 2022; 12:230. [PMID: 35992895 PMCID: PMC9388709 DOI: 10.1007/s13205-022-03261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/17/2022] [Indexed: 11/26/2022] Open
Abstract
Organelle crosstalk is significant in regulating their respective functions and subsequent cell fate. Mitochondria and lysosomes are amongst the essential organelles in maintaining cellular homeostasis. Mitochondria-lysosome connections, which may develop dynamically in the human neurons, have been identified as sites of bidirectional communication. Aberrancies are often associated with neurodegenerative disorders like Parkinson's disease (PD), suggesting the physical and functional link between these two organelles. PD is often linked with genetic mutations of several mutations discovered in the familial forms of the disease; some are considered risk factors. Many of these genes are either associated with mitochondrial function or belong to endo-lysosomal pathways. The recent investigations have indicated that neurons with mutant glucosylceramidase beta (GBA1) exhibit extended mitochondria-lysosome connections in individuals with PD. This may be due to impaired control of the untethering protein, which aids in the hydrolysis of Rab7 GTP required for contact untethering. A GCase modulator may be used to augment the reduced GBA1 lysosomal enzyme activity in the neurons of PD patients. This review focuses on how GBA1 mutation in PD is interlinked with mitochondria-lysosome (ML) crosstalk, exploring the pathways governing these interactions and mechanistically comprehending the mitochondrial and lysosomal miscommunication in the pathophysiology of PD. This review is based on the limited literature available on the topic and hence may be subject to bias in its views. Our estimates may be conservative and limited due to the lack of studies under the said discipline due to its inherent complex nature. The current association of GBA1 to PD pathogenesis is based on the limited scope of study and further research is necessary to explore the risk factors further and identify the relationship with more detail.
Collapse
Affiliation(s)
- M. Sahyadri
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015 Karnataka India
| | - Abhishek P. R. Nadiga
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015 Karnataka India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015 Karnataka India
| | - K. Mruthunjaya
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015 Karnataka India
| | - Pawan G. Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104 Karnataka India
| | - Vipan K. Parihar
- Department of Pharmacology and Toxicology, NIPER-Hajipur, Bihar, 844102 India
| | - S. N. Manjula
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015 Karnataka India
| |
Collapse
|
4
|
Zahra W, Birla H, Singh SS, Rathore AS, Dilnashin H, Singh R, Keshri PK, Gautam P, Singh SP. Neuroprotection by Mucuna pruriens in Neurodegenerative Diseases. Neurochem Res 2022; 47:1816-1829. [PMID: 35380400 DOI: 10.1007/s11064-022-03591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
The medicinal plant Mucuna pruriens (Fabaceae) is widely known for its anti-oxidative and anti-inflammatory properties. It is a well-established drug in Ayurveda and has been widely used for the treatment of neurological disorders and male infertility for ages. The seeds of the plant have potent medicinal value and its extract has been tested in different models of neurodegenerative diseases, especially Parkinson's disease (PD). Apart from PD, Mucuna pruriens is now being studied in models of other nervous systems disorders such as Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS) and stroke because of its neuroprotective importance. This review briefly discusses the pathogenesis of PD, AD, ALS and stroke. It aims to summarize the medicinal importance of Mucuna pruriens in treatment of these diseases, and put forward the potential targets where Mucuna pruriens can act for therapeutic interventions. In this review, the effect of Mucuna pruriens on ameliorating the neurodegeneration evident in PD, AD, ALS and stroke is briefly discussed. The potential targets for neuroprotection by the plant are delineated, which can be studied further to validate the hypothesis regarding the use of Mucuna pruriens for the treatment of these diseases.
Collapse
Affiliation(s)
- Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Gautam
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Kamkaen N, Chittasupho C, Vorarat S, Tadtong S, Phrompittayarat W, Okonogi S, Kwankhao P. Mucuna pruriens Seed Aqueous Extract Improved Neuroprotective and Acetylcholinesterase Inhibitory Effects Compared with Synthetic L-Dopa. Molecules 2022; 27:molecules27103131. [PMID: 35630617 PMCID: PMC9145663 DOI: 10.3390/molecules27103131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
L-dopa, a dopaminergic agonist, is the gold standard for the treatment of Parkinson’s disease. However, due to the long-term toxicity and adverse effects of using L-dopa as the first-line therapy for Parkinson’s disease, a search for alternative medications is an important current challenge. Traditional Ayurvedic medicine has suggested the use of Mucuna pruriens Linn. (Fabaceae) as an anti-Parkinson’s agent. The present study aimed to quantify the amount of L-dopa in M. pruriens seed extract by HPLC analysis. The cytotoxicity and neuroprotective properties of M. pruriens aqueous extract were investigated by two in vitro models including the serum deprivation method and co-administration of hydrogen peroxide assay. The results showed the significant neuroprotective activities of M. pruriens seed extracts at a concentration of 10 ng/mL. In addition, the effects of L-dopa and M. pruriens seed extract on in vitro acetylcholinesterase activities were studied. M. pruriens seed extract demonstrated acetylcholinesterase inhibitory activity, while synthetic L-dopa enhanced the activity of the enzyme. It can be concluded that the administration of M. pruriens seed might be effective in protecting the brain against neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases. M. prurience seed extract containing L-dopa has shown less acetylcholinesterase activity stimulation compared with L-dopa, suggesting that the extract might have a superior benefit for use in the treatment of Parkinson’s disease.
Collapse
Affiliation(s)
- Narisa Kamkaen
- Department of Industrial Pharmacy, School of Pharmacy, Eastern Asia University, Pathum Thani 12110, Thailand
- Correspondence: (N.K.); (C.C.)
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.K.); (C.C.)
| | - Suwanna Vorarat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| | | | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pakakrong Kwankhao
- Chao Phya Abhaibhubejhr Hospital, Ministry of Public Health, Prachin Buri 25000, Thailand;
| |
Collapse
|
6
|
Bhattacharyya K. The story of levodopa: A long and arduous journey. Ann Indian Acad Neurol 2022; 25:124-130. [PMID: 35342258 PMCID: PMC8954318 DOI: 10.4103/aian.aian_474_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 11/04/2022] Open
Abstract
Levodopa (L-dopa) is the gold standard in the management of Parkinson's disease (PD). It dates back to 1500 to 1000 BC when it was used in the Indian Ayurvedic and Chinese system of medicine. Certain beans such as velvet beans and broad beans contain L-dopa. The plant Mucuna pruriens (Mp) or velvet bean, cultivated in Eastern India and Southern China, contains L-dopa at a concentration of 5% and was used for the management of PD. Later, workers have documented the neuroprotective, neurorestorative, and immunomodulatory properties of Mp. Double-blind studies conducted in the Western world have proved the efficacy of Mp and reported some toxic side effects as well. In the Western world, the credit for isolating L-dopa from the seeds of Vicia faba or broad bean goes to Markus Guggenheim, a biochemist from Sweden in 1913. However, it has been used with success ever since Arvid Carlsson established the reversibility of reserpine-induced akinesia in rabbits in the late 1950s with the use of intravenous dopamine, and Oleh Hornykiewicz demonstrated its deficiency in the striatum in 1960–1961. George Cotzias used it in patients in a low and slow incremental fashion in 1967, and Melvin Yahr and his colleagues performed double-blind study on in-patients with success in 1969. Complications with its long-term use, particularly the on-off phenomenon, and dyskinesias appeared soon, and measures have been undertaken to reduce their incidence. Researches on alternative modes of delivery are carried out in various centers, and others are under investigation in the laboratories.
Collapse
|
7
|
Ogunmoyole T, Ola-Awe AM, Fatile OG. Ethanolic extract of Mucuna pruriens leaves ameliorates carbon tetrachloride and rifampicin-induced hepatotoxicity and nephrotoxicity in wistar albino rat. BMC Complement Med Ther 2021; 21:282. [PMID: 34789221 PMCID: PMC8596939 DOI: 10.1186/s12906-021-03455-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Background Mucuna pruriens (L.) has been used for the treatment of several ailments in folkloric medicine. The present study therefore investigates the hepatoprotective and nephroprotective potentials of its leaves extract with a view to providing a potent alternative in the management of liver and kidney diseases. Methodology Forty male albino rats were randomly placed into eight groups comprising five animals each. Animals in group I were administered with the distilled water, while groups II and VI were exposed to CCl4 and rifampicin respectively. Animals in groups III and IV were initially exposed CCl4 and treated with 50 and 100 mg/kg bw M. pruriens respectively. Similarly, groups VII and VIII animals were exposed to rifampicin and treated with 50 and 100 mg/kg bw M. pruriens respectively. Animals in group V were treated with 100 mg/kg bw silymarin by oral gavage after an initial exposure to CCl4. Selected biomarkers of liver and kidney damage were determined in the serum and organs homogenate. Liver and kidney slices of experimental animals were also stained for histopathological examination. Results Exposure to CCl4 and rifampicin respectively resulted in marked distortion in lipid profile, inhibition of antioxidant enzymes and a surge in ALT, AST, ALP, urea, uric acid, bilirubin and creatine kinase. Treatment with M. pruriens extract reversed all deranged biochemical and histopathological parameters in a dose-dependent manner. Conclusion Extract of M. pruriens leaves restored deranged biochemical and histopathological parameters in the liver and kidney with similar potency to silymarin. Hence, leaf extract of M. pruriens is a potential hepatoprotective and nephroprotective agent that can be exploited in the management of liver and kidney diseases.
Collapse
Affiliation(s)
- Temidayo Ogunmoyole
- Department of Medical Biochemistry, College of Medicine, Ekiti State University, P.M.B., 5363, Ado Ekiti, Ekiti State, Nigeria.
| | - Ayomide Micheal Ola-Awe
- Department of Science Laboratory Technology, Faculty of Science, Ekiti State University, Ado Ekiti, Nigeria
| | - Omotola Grace Fatile
- Department of Science Laboratory Technology, Faculty of Science, Ekiti State University, Ado Ekiti, Nigeria
| |
Collapse
|
8
|
The Positive Role and Mechanism of Herbal Medicine in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9923331. [PMID: 34567415 PMCID: PMC8457986 DOI: 10.1155/2021/9923331] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease, manifested by the progressive functional impairment of the midbrain nigral dopaminergic neurons. Due to the unclear underlying pathogenesis, disease-modifying drugs for PD remain elusive. In Asia, such as in China and India, herbal medicines have been used in the treatment of neurodegenerative disease for thousands of years, which recently attracted considerable attention because of the development of curative drugs for PD. In this review, we first summarized the pathogenic factors of PD including protein aggregation, mitochondrial dysfunction, ion accumulation, neuroinflammation, and oxidative stress, and the related recent advances. Secondly, we summarized 32 Chinese herbal medicines (belonging to 24 genera, such as Acanthopanax, Alpinia, and Astragalus), 22 Chinese traditional herbal formulations, and 3 Indian herbal medicines, of which the ethanol/water extraction or main bioactive compounds have been extensively investigated on PD models both in vitro and in vivo. We elaborately provided pictures of the representative herbs and the structural formula of the bioactive components (such as leutheroside B and astragaloside IV) of the herbal medicines. Also, we specified the potential targets of the bioactive compounds or extractions of herbs in view of the signaling pathways such as PI3K, NF-κB, and AMPK which are implicated in oxidative and inflammatory stress in neurons. We consider that this knowledge of herbal medicines or their bioactive components can be favorable for the development of disease-modifying drugs for PD.
Collapse
|
9
|
Rahman MH, Bajgai J, Fadriquela A, Sharma S, Trinh TT, Akter R, Jeong YJ, Goh SH, Kim CS, Lee KJ. Therapeutic Potential of Natural Products in Treating Neurodegenerative Disorders and Their Future Prospects and Challenges. Molecules 2021; 26:5327. [PMID: 34500759 PMCID: PMC8433718 DOI: 10.3390/molecules26175327] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022] Open
Abstract
Natural products derived from plants, as well as their bioactive compounds, have been extensively studied in recent years for their therapeutic potential in a variety of neurodegenerative diseases (NDs), including Alzheimer's (AD), Huntington's (HD), and Parkinson's (PD) disease. These diseases are characterized by progressive dysfunction and loss of neuronal structure and function. There has been little progress in designing efficient treatments, despite impressive breakthroughs in our understanding of NDs. In the prevention and therapy of NDs, the use of natural products may provide great potential opportunities; however, many clinical issues have emerged regarding their use, primarily based on the lack of scientific support or proof of their effectiveness and patient safety. Since neurodegeneration is associated with a myriad of pathological processes, targeting multi-mechanisms of action and neuroprotection approaches that include preventing cell death and restoring the function of damaged neurons should be employed. In the treatment of NDs, including AD and PD, natural products have emerged as potential neuroprotective agents. This current review will highlight the therapeutic potential of numerous natural products and their bioactive compounds thatexert neuroprotective effects on the pathologies of NDs.
Collapse
Affiliation(s)
- Md. Habibur Rahman
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Johny Bajgai
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Ailyn Fadriquela
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea;
| | - Subham Sharma
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Thuy Thi Trinh
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Rokeya Akter
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Yun Ju Jeong
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Seong Hoon Goh
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Cheol-Su Kim
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Kyu-Jae Lee
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| |
Collapse
|
10
|
Karuppagounder SS, Uthaythas S, Govindarajulu M, Ramesh S, Parameshwaran K, Dhanasekaran M. Caffeine, a natural methylxanthine nutraceutical, exerts dopaminergic neuroprotection. Neurochem Int 2021; 148:105066. [PMID: 34004240 DOI: 10.1016/j.neuint.2021.105066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects more than 10 million people worldwide. Oxidative stress and mitochondrial dysfunction play a significant role in altering the homeostasis of energy production and free radical generation. Current PD therapies are focused on reducing the cardinal symptoms rather than preventing disease progression in the patients. Adenosine A2A receptor (A2A R) antagonist (Istradephylline) combined with levodopa shows a promising therapy for PD. In animal studies, caffeine administration showed to improve motor functions and neuroprotective effect in the neurons. Caffeine is probably the most extensively used psychoactive substance. In this current study, we investigated the neuroprotective effect of caffeine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration. Here, we demonstrate that caffeine improves behavioral and neurotransmitter recovery against MPTP-induced toxicity. Caffeine restores endogenous antioxidant levels and suppresses neuroinflammation. Our finding suggests that the blockage of A2AR is a promising disease-modifying therapy for PD. Target engagement strategies could be more beneficial in preventing disease progression rather than symptomatic reliefs in PD patients.
Collapse
Affiliation(s)
- Senthilkumar S Karuppagounder
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA.
| | - Subramaniam Uthaythas
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Koodeswaran Parameshwaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
11
|
Vijayarani KR, Govindarajulu M, Ramesh S, Alturki M, Majrashi M, Fujihashi A, Almaghrabi M, Kirubakaran N, Ren J, Babu RJ, Smith F, Moore T, Dhanasekaran M. Enhanced Bioavailability of Boswellic Acid by Piper longum: A Computational and Pharmacokinetic Study. Front Pharmacol 2020; 11:551911. [PMID: 33384596 PMCID: PMC7770183 DOI: 10.3389/fphar.2020.551911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammation is a key culprit factor in the onset and progression of several diseases. Novel and pharmacologically effective therapeutic approaches are needed for new treatment remedy or improved pharmacokinetics and pharmacodynamics for existing synthetic drugs, in particular natural products. Boswellic acids are well-known natural products, with capacity to effectively retard inflammation without severe adverse effects. However, the therapeutic use of Boswellic acids are greatly hindered by its poor pharmacokinetic properties. Co-administration strategies that facilitate the oral absorption and distribution of Boswellic acids should lead to a safe and more effective use of this product prophylactically and therapeutically in inflammatory disorders. In this study, we examined the effect of Piper longum extract on the absorption and bioavailability of Boswellic acid in rabbits. In addition, we further explored computational pharmacodynamic interactions between Piper longum and Boswellic acid. Piper longum extract at 2.5 and 10 mg/kg, increased the bioavailability of Boswellic acid (p < 0.05). Based on our drug-based computational modeling, cytochrome P450 (CYP450)-mediated mechanism was involved in increased bioavailability. These findings confirmed that Piper longum with Boswellic acid may be administered orally together for effective therapeutic efficacy. Thus, our studies support the application of Piper longum with Boswellic acid as a novel therapeutic avenue in diseases associated with inflammation.
Collapse
Affiliation(s)
- K. Reeta Vijayarani
- Department of Pharmaceutics, Periyar College of Pharmaceutical Sciences, Tiruchirappalli, India
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Mansour Alturki
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Mohammed Almaghrabi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Department of Medicinal Chemistry, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - N. Kirubakaran
- Department of Pharmaceutics, Periyar College of Pharmaceutical Sciences, Tiruchirappalli, India
| | - Jun Ren
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, United States
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Forrest Smith
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Timothy Moore
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| |
Collapse
|
12
|
Rai SN, Chaturvedi VK, Singh P, Singh BK, Singh MP. Mucuna pruriens in Parkinson's and in some other diseases: recent advancement and future prospective. 3 Biotech 2020; 10:522. [PMID: 33194526 DOI: 10.1007/s13205-020-02532-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mucuna pruriens (Mp) is an annual and perennial legume which belongs to the family Fabaceae having different types of therapeutic activity. Anti-oxidative, anti-inflammatory, anti-epileptic, anti-microbial, etc. are the example of some most common activities of Mp. It is widely utilized as a potent aphrodisiac. The anti-Parkinsonian activity of Mp was explored since the nineteenth century. The neuroprotective activity of Mp was shown by several researchers. Levodopa (L-DOPA) is the important constituents responsible for the anti-Parkinsonian activity of Mp. Apart from L-DOPA, several other important bioactive components like Ursolic acid (UA) and Betulinic acid (BA) also exhibit a similar neuroprotective activity. Parkinson's disease (PD) is mainly sporadic. A very small proportion shows the genetic nature of PD. The anti-Parkinsonian activity of Mp was explored in different toxin-induced PD models as like MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), Rotenone, Paraquat, 6-hydroxydopamine (6-OHDA) as suggested by several pieces of literature. Various parts of Mp's like seed, leaf, and stem exhibit potent neuroprotective attributes. Among different parts, seeds are widely utilized as anti-PD agents because of the higher percentage of L-DOPA. Besides anti-PD activity, Mp's neuroprotective potential was also explored in the ischemic model of stroke that also shows positive results. Recently, several clinical trials have been performed on the anti-PD activity of Mp on PD patients that show convincing results. Although, a small population-based study needs to be further validated in the broader population. Apart from anti-PD activity, Mp also shows its therapeutic activity in some other diseases like cancer, diabetes, skin infection, anemia, antihypertensive, etc. that are summarized in Table 1. In this review, we have discussed the anti-PD potential of Mp in the sporadic and genetic model along with some clinical trials that have performed on PD patients. Some other activity of Mp is also summarized in this review. There is a strong need to test the efficacy of Mp in some other neurodegenerative diseases along with PD. Following this, this review emphasizes the role of Mp in PD systematically through literature analysis available to date. [Table: see text].
Collapse
|
13
|
Khazdair MR, Kianmehr M, Anaeigoudari A. Effects of Medicinal Plants and Flavonoids on Parkinson's Disease: A Review on Basic and Clinical Evidences. Adv Pharm Bull 2020; 11:224-232. [PMID: 33880344 PMCID: PMC8046395 DOI: 10.34172/apb.2021.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/27/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder which is characterized by typical symptoms including gradual progressive muscle rigidity, tremor and loss of motor skills. Although there is no definitive cure for PD, the extract of some medicinal plants and their ingredients have been suggested to relieve its symptoms and to prevent disability in patients. This review is focused on therapeutic effects of some medicinal plants and their ingredients on PD. The findings presented in this review were collected from experimental and clinical studies in databases including PubMed, Web of Science and Google Scholar until the end of May 2019. The keywords "neurotoxicity " or "Parkinson’s disease" or "neuroprotective" and "Medicinal plants" and "Flavonoids" were searched. Based on the results of animal and clinical studies, the extract of medicinal plants and their components which are discussed in this review have neuro-protective effects against PD. These protective properties mainly are mediated through inhibition of dopamine metabolizing enzymes, reduction oxidant markers, increase of antioxidant agents and suppression of neuro-inflammation.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
14
|
Pathania R, Chawla P, Khan H, Kaushik R, Khan MA. An assessment of potential nutritive and medicinal properties of Mucuna pruriens: a natural food legume. 3 Biotech 2020; 10:261. [PMID: 32477848 DOI: 10.1007/s13205-020-02253-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/06/2020] [Indexed: 01/31/2023] Open
Abstract
Mucuna pruriens belongs to the Fabaceae family and is ordinarily known as velvet bean, in English cowitch and Hindi Kawaanch. The restorative quality of this bean makes it an excellent component in pharmaceutical and therapeutic applications. Apart from high protein and starch content, these beans contain (l-Dopa) 3, 4-dihydroxy-l-phenylalanine, which exhibits several medicinal properties. However, it is poisonous when ingested by ruminants. The obstruction to the advancement of Mucuna as nutrition or food is the nearness of antinutrients, which are high as opposed to other uncommon vegetables. Also, this legume is considered as a future restorative herb because of its anticholesterolemic, anti-Parkinson, antioxidant, antidiabetic, sexual enhancing, anti-inflammatory, antimicrobial, and antivenom activities. It also exhibits anticancer activities, but very few studies have been done. The seeds of Mucuna pruriens also contain a vast range of phytochemical constituents such as alkaloids, glycosides, saponins, reducing sugars, and tannins, which provide an avenue to explore it for wider applications. This review sheds light on the possible mechanism of action of Mucuna pruriens on some diseases (hypoglycemia, Parkinson's disease, microbial diseases and tumor). and also fills the gap in the studies of Mucuna pruriens. and Further more in vitro and in vivo studies should be done to explore the potential of these seeds against many diseases, its application as a food source, its antinutrient, and harmful properties as well as its nutraceutical perspective.
Collapse
|
15
|
Iamsaard S, Arun S, Burawat J, Yannasithinon S, Tongpan S, Bunsueb S, Lapyuneyong N, Choowong-in P, Tangsrisakda N, Chaimontri C, Sukhorum W. Evaluation of antioxidant capacity and reproductive toxicity of aqueous extract of Thai Mucuna pruriens seeds. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:265-273. [DOI: 10.1016/j.joim.2020.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/04/2020] [Indexed: 01/23/2023]
|
16
|
Kamal M, Naz M, Jawaid T, Arif M. Natural products and their active principles used in the treatment of neurodegenerative diseases: a review. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s13596-019-00396-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Baroli B, Loi E, Solari P, Kasture A, Moi L, Muroni P, Kasture S, Setzu MD, Liscia A, Zavattari P. Evaluation of oxidative stress mechanisms and the effects of phytotherapic extracts on Parkinson's disease Drosophila PINK1B9 model. FASEB J 2019; 33:11028-11034. [PMID: 31291788 DOI: 10.1096/fj.201901010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress is commonly observed in both idiopathic and genetic cases of Parkinson's disease (PD). It plays an important role in the degeneration of dopaminergic neurons, and it has been associated with altered telomere length (TL). There is currently no cure for PD, and extracts of antioxidative plant, such as Mucuna pruriens and Withania somnifera, are commonly used in Ayurveda to treat patients with PD. In this study, we evaluated 2 enzymatic markers of oxidative stress, glutathione (GSH) system and superoxide dismutase (SOD), and TL in a Drosophila melanogaster model for PD [phosphatase and tensin homolog-induced putative kinase 1 (PINK1)B9]. This evaluation was also performed after treatment with the phytoextracts. PINK1B9 mutants showed a decrease in GSH amount and SOD activity and unexpected longer telomeres compared with wild-type flies. M. pruriens treatment seemed to have a beneficial effect on the oxidative stress conditions. On the other hand, W. somnifera treatment did not show any improvements in the studied oxidative stress mechanisms and even seemed to favor the selection of flies with longer telomeres. In summary, our study suggests the importance of testing antioxidant phytoextracts in a PINK1B9 model to identify beneficial effects for PD.-Baroli, B., Loi, E., Solari, P., Kasture, A., Moi, L., Muroni, P., Kasture, S., Setzu, M. D., Liscia, A., Zavattari, P. Evaluation of oxidative stress mechanisms and the effects of phytotherapic extracts on Parkinson's disease Drosophila PINK1B9 model.
Collapse
Affiliation(s)
- Biancamaria Baroli
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Eleonora Loi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paolo Solari
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Ameya Kasture
- Department of Neurobiology, University of Vienna, Vienna, Austria
| | - Loredana Moi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Patrizia Muroni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | | | - Anna Liscia
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Patrizia Zavattari
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
18
|
Khan AU, Akram M, Daniyal M, Zainab R. Awareness and current knowledge of Parkinson’s disease: a neurodegenerative disorder. Int J Neurosci 2018; 129:55-93. [DOI: 10.1080/00207454.2018.1486837] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Asmat Ullah Khan
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Department of Eastern Medicine and Surgery, School of Medical and Health Sciences, The University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation and Development Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Hunan University, Changsha, China
| | - Rida Zainab
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| |
Collapse
|
19
|
Solari P, Maccioni R, Marotta R, Catelani T, Debellis D, Baroli B, Peddio S, Muroni P, Kasture S, Solla P, Stoffolano JG, Liscia A. The imbalance of serotonergic circuitry impairing the crop supercontractile muscle activity and the mitochondrial morphology of PD PINK1 B9Drosophila melanogaster are rescued by Mucuna pruriens. JOURNAL OF INSECT PHYSIOLOGY 2018; 111:32-40. [PMID: 30393142 DOI: 10.1016/j.jinsphys.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Despite its great potentiality, little attention has been paid to modelling gastrointestinal symptoms of Parkinson's disease (PD) in Drosophila melanogaster (Dm). Our previous studies on standardized Mucuna pruriens extract (Mpe) have shown usefulness in the Drosophila model of PD. In this communication, we provide new information on the effect of Mpe on basal and serotonin treated contractions in the crop (i.e., an important and essential part of the gut) in Drosophila PD mutant for PTEN-induced putative kinase 1 (PINK1B9) gene. The effect of Mpe on PINK1B9 supplied with standard diet to larvae and/or adults, were assayed on 10-15 days old flies. Conversely from what we observed in the wild type flies, recordings demonstrated that exogenous applications of serotonin on crop muscles of untreated PINK1B9 affect neither the frequency nor the amplitude of the crop contraction, while the same muscle parameters are enhanced following brain injections of serotonin, thus suggesting that PINK1B9 mutants may likely have an impairment in the serotonergic pathways. Also, the mitochondrial morphology in the crop muscles is strongly compromised, as demonstrated by the transmission electron microscopy analysis. The Mpe treatment rescued the crop muscle parameters and also the mitochondrial morphology when supplied to both larvae and adults. Overall, this study strengthens the relevance of using PINK1B9 Dm as a translational model to study the gastrointestinal symptoms in PD and also confirms the useful employment of M. pruriens for PD treatment.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Riccardo Maccioni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Roberto Marotta
- Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Tiziano Catelani
- Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Doriana Debellis
- Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Biancamaria Baroli
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Stefania Peddio
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Patrizia Muroni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | | | - Paolo Solla
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Monserrato, Italy
| | - John G Stoffolano
- Stockbridge School of Agriculture, College of Natural Sciences, University of Massachusetts, Amherst, MA, United States
| | - Anna Liscia
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy.
| |
Collapse
|
20
|
Banjari I, Marček T, Tomić S, Waisundara VY. Forestalling the Epidemics of Parkinson's Disease Through Plant-Based Remedies. Front Nutr 2018; 5:95. [PMID: 30425989 PMCID: PMC6218400 DOI: 10.3389/fnut.2018.00095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) as the second leading neurodegenerative disease, imposes a heavy burden among individuals as well as economies worldwide. The main characteristics of PD is a progressive loss of dopaminergic neurons resulting in the loss of motor function, the occurrence of non-motor symptoms, and cognitive decline. Similar to many other chronic diseases, complementary and alternative therapies (CAT) are very popular for the treatment of this disease. This review evaluates six plants, three each from European and Asian traditional medicinal systems: (1) Atropa belladonna, (2) Hyoscyamus niger, (3) Lepidium meyenii, (4) Aspargus racemosus, (5) Mucuna pruriens L., and (6) Gingko biloba. Atropa belladonna, and Hyoscyamus niger in particular, are better known for their poisonous and narcotic effects than as potentially effective plants for the treatment of neurodegenerative diseases. Ginkgo biloba is one of the most widely cultured plants in Traditional Chinese Medicine with high antioxidant potential which contributes to its neuroprotective/ anti-apoptotic activity. The bioactive compounds, anti-neurodegenerative effects and other neuroprotective effects of all six plants are discussed herein.
Collapse
Affiliation(s)
- Ines Banjari
- Department of Food and Nutrition Research, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Tihana Marček
- Department of Food and Nutrition Research, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Svetlana Tomić
- Department of Neurology, Osijek University Hospital Center, Osijek, Croatia
| | - Viduranga Y Waisundara
- Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| |
Collapse
|
21
|
Adi YK, Widayanti R, Pangestiningsih TW. n-Propanol extract of boiled and fermented koro benguk ( Mucuna pruriens seed) shows a neuroprotective effect in paraquat dichloride-induced Parkinson's disease rat model. Vet World 2018; 11:1250-1254. [PMID: 30410229 PMCID: PMC6200579 DOI: 10.14202/vetworld.2018.1250-1254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/26/2018] [Indexed: 11/16/2022] Open
Abstract
Aim: n-Propanol extracts from fresh, boiled, and fermented seeds were studied to evaluate their neuroprotective effects in a Parkinson’s disease (PD) rat model, based on the total number of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Materials and Methods: Rats were induced with paraquat dichloride at a dosage of 7 mg/kg BW intraperitoneally twice a week and at the same time supplemented with extract at a dosage of 70 mg/kg BW orally every day for 3 weeks. On the 24th day, all rats were perfused and fixed with 4% paraformaldehyde. The left part of the SNpc was processed for immunohistochemical staining with tyrosine hydroxylase (TH)-antibody. The total number of DA neurons in SNpc was evaluated with a stereological method. Results: TH-immunoreactive cells found in the SNpc were identified as DA neurons. The average total number of DA neurons in the SNpc increased significantly in the PD rat model that was given an n-propanol extract of boiled and fermented seeds compared with a control PD rat model. Surprisingly, there was no significant difference in the average total number of DA neurons in SNpc between the PD rat model that was given n-propanol extract of fresh seeds and the control PD rat model. Conclusion: n-Propanol extract of boiled and fermented seeds could produce a higher neuroprotective effect against DA neuron than fresh seeds in a PD rat model.
Collapse
Affiliation(s)
- Yosua Kristian Adi
- Master Program of Veterinary Science, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rini Widayanti
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Wahyu Pangestiningsih
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
22
|
Levodopa-Reduced Mucuna pruriens Seed Extract Shows Neuroprotective Effects against Parkinson's Disease in Murine Microglia and Human Neuroblastoma Cells, Caenorhabditis elegans, and Drosophila melanogaster. Nutrients 2018; 10:nu10091139. [PMID: 30131460 PMCID: PMC6164394 DOI: 10.3390/nu10091139] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Mucuna pruriens (Mucuna) has been prescribed in Ayurveda for various brain ailments including 'kampavata' (tremors) or Parkinson's disease (PD). While Mucuna is a well-known natural source of levodopa (L-dopa), published studies suggest that other bioactive compounds may also be responsible for its anti-PD effects. To investigate this hypothesis, an L-dopa reduced (<0.1%) M. pruriens seeds extract (MPE) was prepared and evaluated for its anti-PD effects in cellular (murine BV-2 microglia and human SH-SY5Y neuroblastoma cells), Caenorhabditis elegans, and Drosophila melanogaster models. In BV-2 cells, MPE (12.5⁻50 μg/mL) reduced hydrogen peroxide-induced cytotoxicity (15.7-18.6%), decreased reactive oxygen species production (29.1-61.6%), and lowered lipopolysaccharide (LPS)-induced nitric oxide species release by 8.9⁻60%. MPE (12.5-50 μg/mL) mitigated SH-SY5Y cell apoptosis by 6.9-40.0% in a non-contact co-culture assay with cell-free supernatants from LPS-treated BV-2 cells. MPE (12.5-50 μg/mL) reduced 6-hydroxydopamine (6-OHDA)-induced cell death of SH-SY5Y cells by 11.85⁻38.5%. Furthermore, MPE (12.5-50 μg/mL) increased median (25%) and maximum survival (47.8%) of C. elegans exposed to the dopaminergic neurotoxin, methyl-4-phenylpyridinium. MPE (40 μg/mL) ameliorated dopaminergic neurotoxin (6-OHDA and rotenone) induced precipitation of innate negative geotaxis behavior of D. melanogaster by 35.3 and 32.8%, respectively. Therefore, MPE contains bioactive compounds, beyond L-dopa, which may impart neuroprotective effects against PD.
Collapse
|
23
|
Sinha S, Sharma S, Vora J, Shah H, Srivastava A, Shrivastava N. Mucuna pruriens (L.) DC chemo sensitize human breast cancer cells via downregulation of prolactin-mediated JAK2/STAT5A signaling. JOURNAL OF ETHNOPHARMACOLOGY 2018; 217:23-35. [PMID: 29427634 DOI: 10.1016/j.jep.2018.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/03/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mucuna pruriens (L.) DC (MP) is an ancient Indian medicinal plant traditionally used to treat Parkinson's disease. L-Dopa (LD), precursor of dopamine is abundantly found in the seeds of MP. L-dopa is a natural inhibitor of prolactin (PRL) hormone which is required to maintain lactation in women but it's over production (hyperprolactinemia) plays critical role in advancement of breast cancer. AIM OF THE STUDY We aim to examine the pharmacological effect of LD and MP on this hyperprolactinemia associated breast cancer and related signaling for effective management of the disease. We also investigated chemo-sensitizing effect of MP on hyperprolactinemia-mediated cisplatin resistance. MATERIALS AND METHODS Methanolic seed extract of MP were prepared and analysed using HPLC. Effect of LD and MP on the cellular viability of breast cancer cells (T47D, MCF-7, MDA-MB-468 and MDA-MB-231) were evaluated using MTT assay. Further, effect of LD and MP on colony forming potential, DNA damage, cell cycle distribution and apoptosis was determined using agar/agarose method, comet assay and annexin and PI method followed by FACS analysis. To reveal the molecular mechanism involved in the anti-cancer activity of MP, transcriptional and translational level analysis of the key proteins involved in the PRL-mediated signaling, was performed using RT-PCR and western blot analysis. The effect of MP extract on PRL-mediated signaling was validated using dopaminergic agonist bromocriptine. MP extract and cisplatin was given in different combination with appropriate controls to check their effect on chemo-resistivity of breast cancer cells. RESULTS Our results demonstrated that MP seed extract has the potential to inhibit cellular proliferation of PRL expressing T47D and MCF-7 breast cancer cells via induction of DNA damage, G1 phase of cell cycle arrest and apoptosis more effectively as compare to LD. Further, MP-mediated anti-cancerous effect was associated with the downregulation of PRL expression, further suppressing the JAK2/STAT5A/Cyclin D1 signaling pathway which has been validated using dopaminergic agonist bromocriptine. Cancer-related hyperprolactinemia confers cisplatin resistance, we observed that MP via PRL inhibition, enhances cisplatin efficacy after their combinatorial treatment in breast cancer cells. CONCLUSIONS Collectively, our study suggests that MP could be recommended as dietary supplement along with the chemotherapeutic agents against breast cancer.
Collapse
Affiliation(s)
- Sonam Sinha
- Department of Pharmacognosy and Phytochemistry, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India; Registered Ph.D. student at Department of Life Science, School of Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Sonal Sharma
- Department of Pharmacognosy and Phytochemistry, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
| | - Jaykant Vora
- Department of Pharmacognosy and Phytochemistry, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India; Registered Ph.D. student at Department of Life Science, School of Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Heta Shah
- Department of Pharmacognosy and Phytochemistry, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Anshu Srivastava
- Department of Pharmacognosy and Phytochemistry, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
| | - Neeta Shrivastava
- Department of Pharmacognosy and Phytochemistry, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India.
| |
Collapse
|
24
|
Singh SK, Dhawan SS. Analyzing trichomes and spatio-temporal expression of a cysteine protease gene Mucunain in Mucuna pruriens L. (DC). PROTOPLASMA 2018; 255:575-584. [PMID: 28975523 DOI: 10.1007/s00709-017-1164-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Mucuna pruriens is a well-known legume for the itching attributes of the trichome and a valuable medicinal herb that is used for the treatment of Parkinson's disease, sexual debilities, etc. Its cultivation was deprived due to its itching behavior. The wild genotype of M. pruriens have the largest trichome length (2015 ± 29 μm) compared to other genotype and mutants. The white-seeded variety of M. pruriens was found to be the most suitable for large-scale cultivation due to the small trichome size and less trichome density on the pod. The external surface trichomes have protuberance with unknown function. The unicellular trichomes of Mucuna show the flowing fluid or cytoplasm inside the trichome. The unigenes regulating the differentiation and development of the trichome such as GLABRA-1, GLABRA-2, and cpr-5 have been identified in M. pruriens transcriptome of the leaf. The Mucunain shows a higher transcript abundance in the flower and pod cover compared to the seeds. The Mucunain was found in every stage of plant growth, but it was highly expressed during maturity (about 170 days) with a high fragment per kilobase per million value.
Collapse
Affiliation(s)
- Susheel Kumar Singh
- CSIR-Central Institute of Medicinal And Aromatic Plants, P.O.-CIMAP, Lucknow, 226015, India
| | - Sunita Singh Dhawan
- CSIR-Central Institute of Medicinal And Aromatic Plants, P.O.-CIMAP, Lucknow, 226015, India.
| |
Collapse
|
25
|
Abstract
Immune control is associated with nigrostriatal neuroprotection for Parkinson's disease (PD); though its direct cause and effect relationships have not yet been realized and modulating the immune system for therapeutic gain has been openly discussed. While the pathobiology of PD remains in study, neuroinflammation is thought to speed nigrostriatal degeneration. The neuroinflammatory cascade associated with PD begins with aggregation of misfolded or post-translationally modified α-synuclein (α-syn). Such aggregation results in neuronal cell death and the presence of chronically activated glia (microglia and astroglia), leading to the production of proinflammatory cytokines like tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, and enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and cyclooxygenase-2 (COX-2). These changes in the glial phenotype can affect the central nervous system (CNS) microenvironment by producing a pro-inflammatory milieu that speeds PD pathogenesis. Mucuna pruriens (Mp) is the most popular drug in Ayurveda, the Indian system of medicine. Several reports have suggested that it possesses analgesic, anti-inflammatory, anti-neoplastic, anti-epileptic and anti-microbial activities. Mp contain L-DOPA and ursolic acid which has an anti-inflammatory property. There are very few literatures which show the immunomodulatory activity of Mp in PD, several researchers have tried to work on the immunomodulatory activity of Mp in some other diseases. The results of several studies show that Mp modulate the immune components like TNF-α, IL-6, IFN-λ, IL-1β, iNOS and IL-2 in the CNS. It also modulates the activity of the transcription factor NF-kB which plays an important role in the progression of the PD. Thus, by altering these cytokines or transcription factors, Mp protects or prevents the progression of PD. Thus in this review we try to explore the immunomodulatory activity of Mp in PD.
Collapse
|
26
|
Pathak-Gandhi N, Vaidya ADB. Management of Parkinson's disease in Ayurveda: Medicinal plants and adjuvant measures. JOURNAL OF ETHNOPHARMACOLOGY 2017; 197:46-51. [PMID: 27544001 DOI: 10.1016/j.jep.2016.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/04/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants like Mucuna pruriens L.(DC) and Withania somnifera L.(Dunal) have been used in traditional Ayurvedic medicine to manage neurodegenerative diseases like Parkinson's disease. AIM The aim of this review is to share the role of Ayurveda's insights, traditional usage and contemporary investigations for translational, integrative applications to manage Idiopathic Parkinson's Disease. MATERIALS AND METHODS High impact journals for Parkinson's diseases, traditional textbooks from Ayurveda as well as relevant clinical and para clinical studies with botanicals are selectively incorporated to evolve the aforesaid translational application. RESULTS . A. CONTEMPORARY UNDERSTANDING AND EXISTING THERAPEUTIC GAPS Parkinson's disease (PD) is a complex multi-system, neurodegenerative disease. Though predominantly perceived as a motor disease, it also has debilitating non- motor features, which are frequently missed and not treated. Major treatment goals are to increase striatal dopamine levels with precursor-substitution and/or reduce its breakdown. As the disease progresses, a steady increase in the dose of levodopa is inevitable. However, higher doses cause motor complications of dyskinesia and dystonia and compromise medical treatment. B. ROLE OF MUCUNA PRURIENS L.DC), THE MOST PROMISING BOTANICAL FROM AYURVEDA: Ayurveda offers a natural source of levodopa - the seeds of Mucuna pruriens L.(DC)- which have a long standing safe use in the condition. Its clinical studies have shown pharmacokinetic profile distinct from synthetic levodopa, which is likely to reduce the untoward motor complications. Additionally, its seed extracts have shown neuroprotective benefits which are unrelated to levodopa. C. AYURVEDIC REGIMENS AND MEDICINAL PLANTS FOR NEUROPROTECTIVE AND SYMPTOMATIC BENEFITS: Other regimens (Panchakarma) and medicinal plants used in Ayurveda have been subjected to exploratory studies with promising early results in the condition. The debilitating non motor symptoms in patients have shown response with one of the regimens - medicated oil enema (basti). Effects of two medicinal plants Withania somnifera(L.)Dunal and Curcuma longa Linn in Parkinson's Disease related models have been discussed in detail. We have also shared a shortlist of medicinal plants most likely to be useful in management of specific features of the disease such as cognitive decline, mood disorders, risk of osteoporosis amongst others. CONCLUSION Ayurveda with its medicinal plants and treatment approaches, can strengthen the therapeutic armamentarium of PD to improve clinical outcomes, if these leads are systematically further investigated by well-designed longer term studies.
Collapse
Affiliation(s)
| | - Ashok D B Vaidya
- Medical Research Centre - Kasturba Health Society, 17 K Desai Road, Mumbai, India.
| |
Collapse
|
27
|
Therapies for Parkinson’s diseases: alternatives to current pharmacological interventions. J Neural Transm (Vienna) 2016; 123:1279-1299. [DOI: 10.1007/s00702-016-1603-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022]
|
28
|
Evaluating the neurotoxic effects of Deepwater Horizon oil spill residues trapped along Alabama's beaches. Life Sci 2016; 155:161-6. [DOI: 10.1016/j.lfs.2016.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/18/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
|
29
|
Abstract
Current pharmacological strategies for Parkinson’s disease (PD), the most common neurological movement disorder worldwide, are predominantly symptom relieving and are often plagued with undesirable side effects after prolonged treatment. Despite this, they remain as the mainstay treatment for PD due to the lack of better alternatives. Nutraceuticals are compounds derived from natural food sources that have certain therapeutic value and the advent of which has opened doors to the use of alternative strategies to tackle neurodegenerative diseases such as PD. Notably, nutraceuticals are able to position themselves as a “safer” strategy due to the fact that they are naturally derived compounds, therefore possibly having less side effects. Significant efforts have been put into better comprehending the role of nutraceuticals in PD, and we will look at some of them in this review. Broadly speaking, these compounds execute their positive effects via modulating signalling pathways, inhibiting oxidative stress, inflammation and apoptosis, as well as regulating mitochondrial homoeostasis. Importantly, we will highlight how a component of green tea, epigallocatechin-3-gallate (EGCG), confers neuroprotection in PD via its ability to activate AMP kinase and articulate how its beneficial effects in PD are possibly due to enhancing mitochondrial quality control.
Collapse
|
30
|
Kumar A, Gupta C, Nair DT, Salunke DM. MP-4 Contributes to Snake Venom Neutralization by Mucuna pruriens Seeds through an Indirect Antibody-mediated Mechanism. J Biol Chem 2016; 291:11373-84. [PMID: 26987900 DOI: 10.1074/jbc.m115.699173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 11/06/2022] Open
Abstract
Mortality due to snakebite is a serious public health problem, and available therapeutics are known to induce debilitating side effects. Traditional medicine suggests that seeds of Mucuna pruriens can provide protection against the effects of snakebite. Our aim is to identify the protein(s) that may be important for snake venom neutralization and elucidate its mechanism of action. To this end, we have identified and purified a protein from M. pruriens, which we have named MP-4. The full-length polypeptide sequence of MP-4 was obtained through N-terminal sequencing of peptide fragments. Sequence analysis suggested that the protein may belong to the Kunitz-type protease inhibitor family and therefore may potentially neutralize the proteases present in snake venom. Using various structural and biochemical tools coupled with in vivo assays, we are able to show that MP-4 does not afford direct protection against snake venom because it is actually a poor inhibitor of serine proteases. Further experiments showed that antibodies generated against MP-4 cross-react with the whole venom and provide protection to mice against Echis carinatus snake venom. This study shows that the MP-4 contributes significantly to the snake venom neutralization activity of M. pruriens seeds through an indirect antibody-mediated mechanism.
Collapse
Affiliation(s)
- Ashish Kumar
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110 067, India, the Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, India, and
| | - Chitra Gupta
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110 067, India
| | - Deepak T Nair
- the Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, India, and
| | - Dinakar M Salunke
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110 067, India, the Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, India, and the International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
31
|
A Potential Alternative against Neurodegenerative Diseases: Phytodrugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8378613. [PMID: 26881043 PMCID: PMC4736801 DOI: 10.1155/2016/8378613] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022]
Abstract
Neurodegenerative diseases (ND) primarily affect the neurons in the human brain secondary to oxidative stress and neuroinflammation. ND are more common and have a disproportionate impact on countries with longer life expectancies and represent the fourth highest source of overall disease burden in the high-income countries. A large majority of the medicinal plant compounds, such as polyphenols, alkaloids, and terpenes, have therapeutic properties. Polyphenols are the most common active compounds in herbs and vegetables consumed by man. The biological bioactivity of polyphenols against neurodegeneration is mainly due to its antioxidant, anti-inflammatory, and antiamyloidogenic effects. Multiple scientific studies support the use of herbal medicine in the treatment of ND; however, relevant aspects are still pending to explore such as metabolic analysis, pharmacokinetics, and brain bioavailability.
Collapse
|
32
|
Vijayakumar S, Prabhu S, Rajalakhsmi S, Manogar P. Review on potential phytocompounds in drug development for Parkinson disease: A pharmacoinformatic approach. INFORMATICS IN MEDICINE UNLOCKED 2016. [DOI: 10.1016/j.imu.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
33
|
Mannangatti P, Naidu KN. Indian Herbs for the Treatment of Neurodegenerative Disease. ADVANCES IN NEUROBIOLOGY 2016; 12:323-36. [PMID: 27651261 DOI: 10.1007/978-3-319-28383-8_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ayurveda, an ancient system of medicine that is indigenous to India, is believed to be the world's oldest comprehensive health-care system and is now one of the most recognized and widely practiced disciplines of alternative medicine in the world. Medicinal herbs have been in use for treating diseases since ancient times in India. Ayurvedic therapies with medicinal herbs and herbomineral products generally provide relief without much adverse effects even after prolonged administration. Neurodegenerative disorders are a major cause of mortality and disability, and increasing life spans represent one of the key challenges of medical research. Ayurvedic medicine describes most neurodegenerative diseases and has defined a number of plants with therapeutic benefits for the treatment of neurodegenerative diseases having antioxidant activities. In this chapter, the role of four important Ayurvedic medicinal plants, viz., Withania somnifera (ashwagandha), Bacopa monnieri (brahmi), Centella asiatica (gotu kola), and Mucuna pruriens (velvet bean), on neurodegenerative diseases are discussed.
Collapse
Affiliation(s)
- Padmanabhan Mannangatti
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | | |
Collapse
|
34
|
Sengupta T, Vinayagam J, Singh R, Jaisankar P, Mohanakumar KP. Plant-Derived Natural Products for Parkinson's Disease Therapy. ADVANCES IN NEUROBIOLOGY 2016; 12:415-96. [PMID: 27651267 DOI: 10.1007/978-3-319-28383-8_23] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plant-derived natural products have made their own niche in the treatment of neurological diseases since time immemorial. Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, has no cure and the treatment available currently is symptomatic. This chapter thoughtfully and objectively assesses the scientific basis that supports the increasing use of these plant-derived natural products for the treatment of this chronic and progressive disorder. Proper considerations are made on the chemical nature, sources, preclinical tests and their validity, and mechanisms of behavioural or biochemical recovery observed following treatment with various plants derived natural products relevant to PD therapy. The scientific basis underlying the neuroprotective effect of 6 Ayurvedic herbs/formulations, 12 Chinese medicinal herbs/formulations, 33 other plants, and 5 plant-derived molecules have been judiciously examined emphasizing behavioral, cellular, or biochemical aspects of neuroprotection observed in the cellular or animal models of the disease. The molecular mechanisms triggered by these natural products to promote cell survivability and to reduce the risk of cellular degeneration have also been brought to light in this study. The study helped to reveal certain limitations in the scenario: lack of preclinical studies in all cases barring two; heavy dependence on in vitro test systems; singular animal or cellular model to establish any therapeutic potential of drugs. This strongly warrants further studies so as to reproduce and confirm these reported effects. However, the current literature offers scientific credence to traditionally used plant-derived natural products for the treatment of PD.
Collapse
Affiliation(s)
- T Sengupta
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - J Vinayagam
- Division of Chemistry, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - R Singh
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - P Jaisankar
- Division of Chemistry, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - K P Mohanakumar
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India. .,Inter University Centre for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam, 686009, Kerala, India.
| |
Collapse
|
35
|
Mechanisms for alternative treatments in Parkinson's disease: acupuncture, tai chi, and other treatments. Curr Neurol Neurosci Rep 2014; 14:451. [PMID: 24760476 DOI: 10.1007/s11910-014-0451-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
At least 40% of patients with Parkinson's disease (PD) use one or more forms of alternative therapy (AT) to complement standard treatments. This article reviews the commonest forms of AT for PD, including acupuncture, tai chi, yoga, mindfulness, massage, herbal medicine, and cannabis. We discuss the current evidence for the clinical efficacy of each AT and discuss potential mechanisms, including those suggested by animal and human studies. With a few notable exceptions, none of the treatments examined were investigated rigorously enough to draw definitive conclusions about efficacy or mechanism. Tai chi, acupuncture, Mucuna pruriens, cannabinoids, and music therapy have all been proposed to work through specific mechanisms, although current evidence is insufficient to support or refute these claims, with the possible exception of Mucuna pruriens (which contains levodopa). It is likely that most ATs predominantly treat PD patients through general mechanisms, including placebo effects, stress reduction, and improved mood and sleep, and AT may provide patients with a greater locus of control regarding their illness.
Collapse
|
36
|
Rana DG, Galani VJ. Dopamine mediated antidepressant effect of Mucuna pruriens seeds in various experimental models of depression. Ayu 2014; 35:90-7. [PMID: 25364207 PMCID: PMC4213977 DOI: 10.4103/0974-8520.141949] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The effects of antidepressant treatments have traditionally been discussed primarily in terms of effects on noradrenergic and serotonergic systems. Multiple lines of investigation have also explored the role of dopaminergic systems in mental depression. Seed of Mucuna pruriens Linn. (DC) (Leguminoseae) is well-known with dopaminergic action and has several therapeutic applications in folk medicine in curing or managing a wide range of diseases including Parkinsonism. AIM To elucidate the anti-depressent profile and possible dopaminergic modulating action of M. pruriens seeds in various experimental models of depression. MATERIALS AND METHODS In the present study, antidepressant effect of the hydroalcoholic extract of the M. pruriens seeds (MPE) (100 and 200 mg/kg, p.o.) was investigated in the Forced Swimming Test (FST), Tail Suspension Test (TST), and Chronic Unpredictable Mild Stress (CUMS) test in mice. Further, dopaminergic interaction of same doses of MPE in the FST and TST were checked by the administration of a haloperidol (0.1 mg/kg, i.p.) and bromocriptine (2 mg/kg, i.p.) on the 7(th) day of MPE treatment. Effect of MPE on locomotor activity was also checked using actophotometer. RESULTS MPE produced a significant reduction of the immobility time in the FST and TST. Further, antidepressant action of MPE was significantly inhibited by haloperidol and potentiated by bromocriptine in the FST and TST. 21 days of MPE treatment produced protection in CUMS as indicated by a significant increase of sucrose intake of stressed mice. Locomotor activities of mice were not significantly changed after 1 h and 7(th) day of the MPE treatment. CONCLUSION The results of this study indicate that hydroalcoholic extract of MPE have antidepressant action, which may be mediated by an interaction with the dopaminergic system.
Collapse
Affiliation(s)
- Digvijay G Rana
- Department of Pharmacology, Sigma Institute of Pharmacy, Baroda, India
| | - Varsha J Galani
- Department of Pharmacology, A. R. College of Pharmacy and G. H. Patel Institute of Pharmacy, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
37
|
Poddighe S, De Rose F, Marotta R, Ruffilli R, Fanti M, Secci PP, Mostallino MC, Setzu MD, Zuncheddu MA, Collu I, Solla P, Marrosu F, Kasture S, Acquas E, Liscia A. Mucuna pruriens (Velvet bean) rescues motor, olfactory, mitochondrial and synaptic impairment in PINK1B9 Drosophila melanogaster genetic model of Parkinson's disease. PLoS One 2014; 9:e110802. [PMID: 25340511 PMCID: PMC4207759 DOI: 10.1371/journal.pone.0110802] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/17/2014] [Indexed: 01/02/2023] Open
Abstract
The fruit fly Drosophila melanogaster (Dm) mutant for PTEN-induced putative kinase 1 (PINK1B9) gene is a powerful tool to investigate physiopathology of Parkinson's disease (PD). Using PINK1B9 mutant Dm we sought to explore the effects of Mucuna pruriens methanolic extract (Mpe), a L-Dopa-containing herbal remedy of PD. The effects of Mpe on PINK1B9 mutants, supplied with standard diet to larvae and adults, were assayed on 3-6 (I), 10-15 (II) and 20-25 (III) days old flies. Mpe 0.1% significantly extended lifespan of PINK1B9 and fully rescued olfactory response to 1-hexanol and improved climbing behavior of PINK1B9 of all ages; in contrast, L-Dopa (0.01%, percentage at which it is present in Mpe 0.1%) ameliorated climbing of only PINK1B9 flies of age step II. Transmission electron microscopy analysis of antennal lobes and thoracic ganglia of PINK1B9 revealed that Mpe restored to wild type (WT) levels both T-bars and damaged mitochondria. Western blot analysis of whole brain showed that Mpe, but not L-Dopa on its own, restored bruchpilot (BRP) and tyrosine hydroxylase (TH) expression to age-matched WT control levels. These results highlight multiple sites of action of Mpe, suggesting that its effects cannot only depend upon its L-Dopa content and support the clinical observation of Mpe as an effective medication with intrinsic ability of delaying the onset of chronic L-Dopa-induced long-term motor complications. Overall, this study strengthens the relevance of using PINK1B9 Dm as a translational model to study the properties of Mucuna pruriens for PD treatment.
Collapse
Affiliation(s)
- Simone Poddighe
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Roberto Marotta
- Electron Microscopy Lab, Nanochemistry Department, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Roberta Ruffilli
- Electron Microscopy Lab, Nanochemistry Department, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Maura Fanti
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | | | | | | | - Ignazio Collu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Paolo Solla
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Sanjay Kasture
- Sanjivani College of Pharmaceutical Education and Research, Kopargaon, Ahmednagar, Maharashtra, India
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Center of Excellence for the Study of Neurobiology of Addiction, University of Cagliari, Cagliari, Italy
- National Institute of Neuroscience - INN, University of Cagliari, Cagliari, Italy
| | - Anna Liscia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
38
|
|
39
|
Fomogne-Fodjo MCY, Van Vuuren S, Ndinteh DT, Krause RWM, Olivier DK. Antibacterial activities of plants from Central Africa used traditionally by the Bakola pygmies for treating respiratory and tuberculosis-related symptoms. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:123-131. [PMID: 24786571 DOI: 10.1016/j.jep.2014.04.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/15/2014] [Accepted: 04/19/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The antibacterial activities of 18 plants from 10 different families were investigated for their antimicrobial efficacy, based on the traditional uses of these species by Bakola pygmies living in Central Africa, especially along the Ngoyang area in Cameroon for the treatment of respiratory and tuberculosis-related symptoms. The aim of the study is to test the antimicrobial efficacy of these plants against some pathogens associated with respiratory disease and to determine if there is any validation for the traditional use against Mycobacterium species. MATERIALS AND METHODS Medium polar extracts were prepared in MeOH/DCM (1:1, v/v) from the plant parts of each species used traditionally and were assayed against pathogens associated with respiratory tract ailments [Staphylococcus aureus (ATCC 25923), Klebsiella pneumoniae (ATCC 13883) and Morexella cattarhalis (ATCC 14468)] using the minimum inhibitory concentration (MIC) method. Two additional faster growing Mycobacterium strains [Mycobacterium smegmatis (ATCC 23246) and Mycobacterium aurum (NCTC 10437)] were included in the assay as predictive test organisms for the more pathogenic strain Mycobacterium tuberculosis. RESULTS Some plant species, such as Alchornea floribunda, Musanga cecropioides (both leaves and stem bark), Tetracera potatoria and Xylopia aethiopica (stem bark), were effective in inhibiting Morexella cattarhalis, having MIC values between 65 and 250 μg/mL. Some noteworthy antimycobacterial inhibition (MIC≤200 μg/mL and as low as MIC 6.5 µg/mL) for 54% of the extracts were observed. CONCLUSION While moderate activity was shown for pathogens causing respiratory tract infections, these plant species seems to be selectively targeting Mycobacteria spp. suggesting that the traditional use for treating tuberculosis related symptoms may be indeed be accurate.
Collapse
Affiliation(s)
- M C Y Fomogne-Fodjo
- Department of Applied Chemistry, University of Johannesburg, PO Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - S Van Vuuren
- Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - D T Ndinteh
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - R W M Krause
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| | - D K Olivier
- Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| |
Collapse
|
40
|
Karuppagounder SS, Bhattacharya D, Ahuja M, Suppiramaniam V, DeRuiter J, Clark R, Dhanasekaran M. Elucidating the neurotoxic effects of MDMA and its analogs. Life Sci 2014; 101:37-42. [DOI: 10.1016/j.lfs.2014.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/21/2014] [Accepted: 02/08/2014] [Indexed: 10/25/2022]
|
41
|
Yadav SK, Prakash J, Chouhan S, Westfall S, Verma M, Singh TD, Singh SP. Comparison of the neuroprotective potential of Mucuna pruriens seed extract with estrogen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Neurochem Int 2013; 65:1-13. [PMID: 24333323 DOI: 10.1016/j.neuint.2013.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/11/2013] [Accepted: 12/02/2013] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disease found in the aging population. Currently, many studies are being conducted to find a suitable and effective cure for PD, with an emphasis on the use of herbal plants. In Ayurveda, Mucuna pruriens (Mp), a leguminous plant, is used as an anti-inflammatory drug. In this study, the neuroprotective effect of an ethanolic extract of Mp seed is evaluated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD and compared to estrogen, a well reported neuroprotective agent used for treating PD. Twenty-four Swiss albino mice were randomly divided into four groups: Control, MPTP, MPTP+Mp and MPTP+estrogen. The behavioural recovery in both Mp and estrogen treated mice was investigated using the rotarod, foot printing and hanging tests. The recovery of dopamine neurons in the substantia nigra (SN) region was estimated by tyrosine hydroxylase (TH), immunostaining. Additionally inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP) immunoreactivity was evaluated to assess the level of oxidative damage and glial activation respectively. The levels of dopamine and its metabolite in the nigrostriatal region were measured by HPLC. Mp treatment restored all the deficits induced by MPTP more effectively than estrogen. Mp treatment recovered the number of TH-positive cells in both the SN region and the striatum while reducing the expression of iNOS and GFAP in the SN. Treatment with Mp significantly increased the levels of dopamine, DOPAC and homovanillic acid compared to MPTP intoxicated mice. Notably, the effect of Mp was greater than that elicited by estrogen. Mp down regulates NO production, neuroinflammation and microglial activation and all of these actions contribute to Mp's neuroprotective activity. These results suggest that Mp can be an effective treatment for neurodegenerative diseases, especially PD by decreasing oxidative stress and possibly by implementing neuronal and glial cell crosstalk.
Collapse
Affiliation(s)
- Satyndra Kumar Yadav
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Jay Prakash
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Shikha Chouhan
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Susan Westfall
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Mradul Verma
- Department of Medicinal Chemistry, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, India.
| | - Tryambak Deo Singh
- Department of Medicinal Chemistry, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, India.
| | - Surya Pratap Singh
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
42
|
Advances in neuroprotective ingredients of medicinal herbs by using cellular and animal models of Parkinson's disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:957875. [PMID: 24073012 PMCID: PMC3774059 DOI: 10.1155/2013/957875] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is a multifactorial disorder, which is neuropathologically identified by age-dependent neurodegeneration of dopaminergic neurons in the substantia nigra. Development of symptomatic treatments has been partly successful for PD research, but there remain a number of inadequacies in therapeutic strategies for the disease. The pathogenesis of PD remains intricate, and the present anti-PD treatments appears to be clinically insufficient. Comprehensive research on discovery of novel drug candidates has demonstrated that natural products, such as medicinal herbs, plant extracts, and their secondary metabolites, have great potential as therapeutics with neuroprotective activity in PD. Recent preclinical studies suggest that a number of herbal medicines and their bioactive ingredients can be developed into optimum pharmaceuticals for treating PD. In many countries, traditional herbal medicines are used to prevent or treat neurodegenerative disorders, and some have been developed as nutraceuticals or functional foods. Here we focus on recent advances of the evidence-linked neuroprotective activity of bioactive ingredients of herbal origin in cellular and animal models of PD research.
Collapse
|
43
|
Kasture S, Mohan M, Kasture V. Mucuna pruriens seeds in treatment of Parkinson’s disease: pharmacological review. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13596-013-0126-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Mucuna pruriens seed extract reduces oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in paraquat-induced Parkinsonian mouse model. Neurochem Int 2013; 62:1039-47. [DOI: 10.1016/j.neuint.2013.03.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/15/2013] [Accepted: 03/24/2013] [Indexed: 12/21/2022]
|
45
|
Patel JS, Galani VJ. Investigation of noradrenaline and serotonin mediated antidepressant action of Mucuna pruriens (L) D.C seeds using various experimental models. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13596-012-0089-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
The Antiparkinsonian and Antidyskinetic Mechanisms of Mucuna pruriens in the MPTP-Treated Nonhuman Primate. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:840247. [PMID: 22997535 PMCID: PMC3445014 DOI: 10.1155/2012/840247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 07/27/2012] [Indexed: 12/01/2022]
Abstract
Chronic treatment with levodopa (LD) in Parkinson's disease (PD) can cause drug induced dyskinesias. Mucuna pruriens endocarp powder (MPEP) contains several compounds including natural LD and has been reported to not cause drug-induced dyskinesias. We evaluated the effects of Mucuna pruriens to determine if its underlying mechanistic actions are exclusively due to LD. We first compared MPEP with and without carbidopa (CD), and LD+CD in hemiparkinsonian (HP) monkeys. Each treatment ameliorated parkinsonism. We then compared the neuronal firing properties of the substantia nigra reticulata (SNR) and subthalamic nucleus (STN) in HP monkeys with MPEP+CD and LD+CD to evaluate basal ganglia circuitry alterations. Both treatments decreased SNR firing rate compared to HP state. However, LD+CD treatments significantly increased SNR bursting firing patterns that were not seen with MPEP+CD treatments. No significant changes were seen in STN firing properties. We then evaluated the effects of a water extract of MPEP. Oral MPWE ameliorated parkinsonism without causing drug-induced dyskinesias. The distinctive neurophysiological findings in the basal ganglia and the ability to ameliorate parkinsonism without causing dyskinesias strongly suggest that Mucuna pruriens acts through a novel mechanism that is different from that of LD.
Collapse
|
47
|
Chao J, Leung Y, Wang M, Chang RCC. Nutraceuticals and their preventive or potential therapeutic value in Parkinson's disease. Nutr Rev 2012; 70:373-86. [PMID: 22747840 DOI: 10.1111/j.1753-4887.2012.00484.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Parkinson's disease (PD) is the second most common aging-related disorder in the world, after Alzheimer's disease. It is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and other parts of the brain, leading to motor impairment, cognitive impairment, and dementia. Current treatment methods, such as L-dopa therapy, are focused only on relieving symptoms and delaying progression of the disease. To date, there is no known cure for PD, making prevention of PD as important as ever. More than a decade of research has revealed a number of major risk factors, including oxidative stress and mitochondrial dysfunction. Moreover, numerous nutraceuticals have been found to target and attenuate these risk factors, thereby preventing or delaying the progression of PD. These nutraceuticals include vitamins C, D, E, coenzyme Q10, creatine, unsaturated fatty acids, sulfur-containing compounds, polyphenols, stilbenes, and phytoestrogens. This review examines the role of nutraceuticals in the prevention or delay of PD as well as the mechanisms of action of nutraceuticals and their potential applications as therapeutic agents, either alone or in combination with current treatment methods.
Collapse
Affiliation(s)
- Jianfei Chao
- Laboratory of Neurodegenerative Diseases, Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | |
Collapse
|
48
|
Raghavendra S, Kumar V, Ramesh C, Khan MM. Enhanced production ofL-DOPA in cell cultures ofMucuna pruriensL. andMucuna pruritaH. Nat Prod Res 2012; 26:792-801. [DOI: 10.1080/14786419.2011.553721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
49
|
Song JX, Sze SCW, Ng TB, Lee CKF, Leung GPH, Shaw PC, Tong Y, Zhang YB. Anti-Parkinsonian drug discovery from herbal medicines: what have we got from neurotoxic models? JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:698-711. [PMID: 22212501 DOI: 10.1016/j.jep.2011.12.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal medicines are used to treat Parkinson's disease (PD) in ancient medical systems in Asian countries such as India, China, Japan and Korea based on their own anecdotal or experience-based theories. AIM OF THE REVIEW To systematically summarize and analyze the anti-Parkinsonian activities of herbal preparations (including active compounds, herbal extracts and formulations) investigated in the neurotoxic models of PD and provide future references for basic and clinical investigations. MATERIALS AND METHODS All the herbal materials tested on in vitro and in vivo neurotoxic models of PD were retrieved from PubMed database by using pre-set searching strings. The relevant compounds and herbal extracts with anti-Parkinsonian activities were included and analyzed according to their chemical classifications or biological activities. RESULTS A total of 51 herbal medicines were analyzed. A diversity of compounds isolated from herbal materials were reported to be effective on neurotoxic models of PD by modulating multiple key events or signaling pathways implicated in the pathogenesis of PD. The main structure types of these compounds belong to catechols, stilbenoids, flavonoids, phenylpropanoids and lignans, phenylethanoid glycosides and terpenes. Although some herbal extracts and formulations have shown positive results on PD animal models, the relative compounds accounting for the effects and the underlying mechanisms remain to be further investigated. CONCLUSIONS Herbal medicines can be an alternative and valuable source for anti-Parkinsonian drug discovery. Compounds classified into stilbenoids, flavonoids, catechols and terpenes may be the most promising candidates for further investigation. Some well-studies compounds such as baicalein, puerarin, resveratrol, curcumin and ginsenosides deserve further consideration in clinical trials. In-depth experimental studies are still needed to evaluate the efficacy of herbal extracts and formulations in PD models.
Collapse
Affiliation(s)
- Ju-Xian Song
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Simmons AD. Parkinson Disease. Integr Med (Encinitas) 2012. [DOI: 10.1016/b978-1-4377-1793-8.00013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|