1
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
2
|
Ku S, Park G, Jang YP. Two-Dimensional High-Performance Thin-Layer Chromatography with Bioautography for Distinguishing Angelicae Dahuricae Radix Varieties: Chemical Fingerprinting and Antioxidant Profiling. PLANTS (BASEL, SWITZERLAND) 2024; 13:1348. [PMID: 38794421 PMCID: PMC11125029 DOI: 10.3390/plants13101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Angelicae Dahuricae Radix (ADR) holds a prominent place in traditional medicine for its remarkable antioxidative, anti-allergic, and antiproliferative capabilities. Recognized within the Korean Pharmacopoeia (KP 12th), Angelica dahurica (Hoffm.) Benth. and Hook.f. ex Franch. and Sav. (AD) and Angelica dahurica var. formosana (H. Boissieu) Yen (ADF) serve as the botanical origins for ADR. Differentiating these two varieties is crucial for the formulation and quality control of botanical drugs, as they are categorized under the same medicinal label. This research utilized two-dimensional high-performance thin-layer chromatography (2D-HPTLC) to effectively distinguish AD from ADF. Additionally, a quantitative analysis reveals significant differences in the concentrations of key active constituents such as oxypeucedanin, imperatorin, and isoimperatorin, with AD showing higher total coumarin levels. We further enhanced our investigative depth by incorporating a DPPH bioautography, which confirmed known antioxidant coumarins and unearthed previously undetected antioxidant profiles, including byakangelicin, byakangelicol, falcarindiol in both AD and ADF, and notably, 2-linoleoyl glycerol detected only in AD as an antioxidant spot. This comprehensive approach affords a valuable tool set for botanical drug development, emphasizing the critical need for accurate source plant identification and differentiation in ensuring the efficacy and safety of herbal medicine products.
Collapse
Affiliation(s)
- Sejin Ku
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
- Division of Pharmacognosy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Geonha Park
- Division of Pharmacognosy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Young Pyo Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
- Division of Pharmacognosy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Zhang W, Dong J, Xu J, Qian Y, Chen D, Fan Z, Yang H, Xiang J, Xue X, Luo X, Jiang Y, Wang Y, Huang Z. Columbianadin suppresses glioblastoma progression by inhibiting the PI3K-Akt signaling pathway. Biochem Pharmacol 2024; 223:116112. [PMID: 38458331 DOI: 10.1016/j.bcp.2024.116112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Glioblastoma (GBM) is the most common malignant glioma among brain tumors with low survival rate and high recurrence rate. Columbianadin (CBN) has pharmacological properties such as anti-inflammatory, analgesic, thrombogenesis-inhibiting and anti-tumor effects. However, it remains unknown that the effect of CBN on GBM cells and its underlying molecular mechanisms. In the present study, we found that CBN inhibited the growth and proliferation of GBM cells in a dose-dependent manner. Subsequently, we found that CBN arrested the cell cycle in G0/G1 phase and induced the apoptosis of GBM cells. In addition, CBN also inhibited the migration and invasion of GBM cells. Mechanistically, we chose network pharmacology approach by screening intersecting genes through targets of CBN in anti-GBM, performing PPI network construction followed by GO analysis and KEGG analysis to screen potential candidate signaling pathway, and found that phosphatidylinositol 3-kinase/Protein Kinase-B (PI3K/Akt) signaling pathway was a potential target signaling pathway of CBN in anti-GBM. As expected, CBN treatment indeed inhibited the PI3K/Akt signaling pathway in GBM cells. Furthermore, YS-49, an agonist of PI3K/Akt signaling, partially restored the anti-GBM effect of CBN. Finally, we found that CBN inhibited GBM growth in an orthotopic mouse model of GBM through inhibiting PI3K/Akt signaling pathway. Together, these results suggest that CBN has an anti-GBM effect by suppressing PI3K/Akt signaling pathway, and is a promising drug for treating GBM effectively.
Collapse
Affiliation(s)
- Wei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jianhong Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jiayun Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yiming Qian
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Danni Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Ziwei Fan
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hao Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jianglei Xiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Xiumin Xue
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Xuan Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yuanyuan Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| |
Collapse
|
4
|
Wang Z, Tao H, Chu M, Yu L, Yang P, Wang Q, Lu J, Yang H, Wang Z, Zhang H, Geng D. Byakangelicol suppresses TiPs-stimulated osteoclastogenesis and bone destruction via COX-2/NF-κB signaling pathway. Regen Biomater 2023; 11:rbad092. [PMID: 38173778 PMCID: PMC10758544 DOI: 10.1093/rb/rbad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 01/05/2024] Open
Abstract
Aseptic loosening (AL) is considered a significant cause of prosthesis revision after arthroplasty and a crucial factor in the longevity of an artificial joint prosthesis. The development of AL is primarily attributed to a series of biological reactions, such as peri-prosthetic osteolysis (PPO) induced by wear particles around the prosthesis. Chronic inflammation of the peri-prosthetic border tissue and hyperactivation of osteoclasts are key factors in this process, which are induced by metallic wear particles like Ti particles (TiPs). In our in vitro study, we observed that TiPs significantly enhanced the expression of inflammation-related genes, including COX-2, IL-1β and IL-6. Through screening a traditional Chinese medicine database, we identified byakangelicol, a traditional Chinese medicine molecule that targets COX-2. Our results demonstrated that byakangelicol effectively inhibited TiPs-stimulated osteoclast activation. Mechanistically, we found that byakangelicol suppressed the expression of COX-2 and related pro-inflammatory factors by modulating macrophage polarization status and NF-κB signaling pathway. The in vivo results also demonstrated that byakangelicol effectively inhibited the expression of inflammation-related factors, thereby significantly alleviating TiPs-induced cranial osteolysis. These findings suggested that byakangelicol could potentially be a promising therapeutic approach for preventing PPO.
Collapse
Affiliation(s)
- Zhidong Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Peng Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Changshu 215500, China
| | - Jun Lu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhong Shan Road, Nanjing 210000, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Zhenheng Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Hailin Zhang
- Department of Orthopedics, Jiangyin People’s Hospital Affiliated to Nantong University, No. 163 Shoushan Road, Jiangyin 214400, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| |
Collapse
|
5
|
Wang Q, Li Y, Wang S, Xiang Z, Dong W, Li X, Wei Y, Gao P, Dai L. A review of the historical records, chemistry, pharmacology, pharmacokinetics and edibility of Angelica dahurica. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
|
6
|
Gao H, Li Q. Study on the spatial distribution of coumarins in Angelica dahurica root by MALDI-TOF-MSI. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:139-148. [PMID: 36376257 DOI: 10.1002/pca.3186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION The main chemical components of Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. are coumarins and volatile oils, and coumarins are regarded as the representative constituents with various pharmacological effects. OBJECTIVE Based on matrix-assisted laser desorption/ionization time of flight mass spectrometry imaging (MALDI-TOF-MSI), a method for spatial distribution analysis of coumarins in primary root and lateral root of A. dahurica was established. Also, spatial visualization of coumarins in the roots of A. dahurica was realized. MATERIALS AND METHODS α-Cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid, and 9-aminoacridine were used as matrices. MALDI-TOF-MSI was employed to analyze the standards of imperatorin, oxypeucedanin, and osthole. Based on the higher sensitivity and repeatability of MALDI-TOF-MSI, the CHCA matrix was selected. The matrix was used for MALDI-TOF-MSI in positive mode to analyze the distribution of coumarins in primary root and lateral root of A. dahurica. RESULTS In total, 37 coumarins were detected in primary root and 36 coumarins were detected in lateral root by MALDI-TOF-MSI. The results showed that the coumarin content in primary root was higher than that in lateral root. Coumarins in primary root of A. dahurica were concentrated in the periderm, cortex, and phloem, whereas coumarins in lateral roots were concentrated in the phloem. CONCLUSION The coumarins in primary root and lateral root of A. dahurica were directly analyzed without extraction and isolation, and the spatial distribution of coumarins was comprehensively visualized for the first time by MALDI-TOF-MSI, which provided a basis for distinguishing primary root and lateral root.
Collapse
Affiliation(s)
- Hui Gao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Qian Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Phytochemical Constituents, Folk Medicinal Uses, and Biological Activities of Genus Angelica: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010267. [PMID: 36615460 PMCID: PMC9822461 DOI: 10.3390/molecules28010267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Genus Angelica is one of the widely distributed and well-known genera of family Umbelliferae. It is utilized mainly by Chinese and Korean populations especially in their folk medicine. Angelica comprises a lot of medicinally important phytoconstituents such as coumarins, furanocoumarins, flavonoids, essential oils, verbascosides, polysaccharides, etc. Members of this genus play important roles, namely antioxidant, anti-inflammatory, anti-microbial, anti-diabetic, skin-whitening, cytotoxic, hepatoprotective, and many others. This review draws attention to many species of genus Angelica with much focus on A. dahurica being one of the highly medicinally used species within this genus.
Collapse
|
8
|
In situ visual and content changes analysis of coumarins in Radix Angelicae dahuricae by LSCM combined with LC-MS technology. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
9
|
Gao L, Gou N, Amakye WK, Wu J, Ren J. Bioactivity guided isolation and identification of phenolic compounds from Citrus aurantium L. with anti-colorectal cancer cells activity by UHPLC-Q-TOF/MS. Curr Res Food Sci 2022; 5:2251-2260. [DOI: 10.1016/j.crfs.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/19/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
|
10
|
Selection of oxypeucedanin as a potential antagonist from molecular docking analysis of HSP90. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2019-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
HSP90 is observed as one of the copious molecular chaperones that play a key role in mediating appropriate folding, maturation, and firmness of many client proteins in cells. The expression rate of HSP90 in cancer cells is at a level of 2- to 10-fold higher than the 1- to 2-fold of its unstressed and healthy ones. To combat this, several inhibitors to HSP90 protein have been studied (such as geldanamycin and its derivative 17-AAG and 17-DMAG) and have shown some primary side effects including plague, nausea, vomiting, and liver toxicity, hence the search for the best-in-class inhibitor for this protein through in silico. This study is aimed at analyzing the inhibitory potency of oxypeucedanin-a furocoumarin derivations, which have been reported to have antipoliferative activity in human prostrate carcinoma DN145 cells, and three other drug candidates retrieved from the literature via computational docking studies. The results showed oxypeucedanin as the compound with the highest binding energy of −9.2 kcal/mol. The molecular docking study was carried out using PyRx, Auto Dock Vina option, and the target was validated to confirm the proper target and the docking procedure employed for this study.
Collapse
|
11
|
yingBai Y, meiCheng Y, Wang W, Yang L, Yang Y. In vivo and in vitro studies of Alloimperatorin induced autophagy in cervical cancer cells via reactive oxygen species pathway. Bioengineered 2022; 13:14299-14314. [PMID: 36708242 PMCID: PMC9995126 DOI: 10.1080/21655979.2022.2084243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 01/29/2023] Open
Abstract
Alloimperatorin (Alloi) has been shown to have anti-proliferative effects in our previous studies. we aimed to investigate whether Alloimperatorin induces autophagy through the reactive oxygen species (ROS) pathway and anticancer activity in vivo. The anti-proliferative effect of Alloimperatorin was evaluated using a cell counting kit (CCK-8 kit). Apoptosis was detected using flow cytometry. Confocal microscopy, immunofluorescence, and mRFP-GFP-LC3 lentivirus transfection were used to verify autophagy. Electron microscopy detection of autophagosomes was induced by Alloimperatorin. Western blotting was used to detect autophagy proteins in HeLa and SiHa cells. A xenograft model was used to monitor the inhibitory effect of Alloimperatorin on tumor growth in nude mice. The results showed that Alloimperatorin induced ROS production and inhibited the proliferation of HeLa and SiHa cells. Furthermore, Alloimperatorin increased the apoptosis rate in HeLa and SiHa cells. Confocal microscopy fluorescence indicated that Alloimperatorin increased autophagy fluorescence of HeLa and SiHa cells. mRFP-GFP-LC3 lentivirus transfection and electron microscopy demonstrated that Alloimperatorin increased autophagy in HeLa and SiHa cells. Western blotting showed that Alloimperatorin induced the expression of autophagy proteins in HeLa and SiHa cells. However, N-acetylcysteine reversed the autophagy. These results demonstrate that Alloimperatorin can induce autophagy in HeLa and SiHa cells through the ROS pathway. In vivo xenograft experiments showed that Alloimperatorin could inhibit tumor growth in nude mice. Alloimperatorin is expected to be an effective new drug for cervical cancer treatment.Abbreviations: ROS, reactive oxygen species; Alloi, Alloimperatorin; CCK-8, Cell Counting Kit-8; NAC, N-acetyl-L-cysteine; DCFH-DA, 2,7-dichlorodihydrofluorescein diacetate; OD, optical density; PBS, phosphate buffer solution; BCA, bicinchoninic acid; DAPI, 4,6-diamidino-2-phenylindole; DMSO, dimethyl sulfoxide.
Collapse
Affiliation(s)
- Ying yingBai
- The First Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Yue meiCheng
- The First Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Wenhua Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Lijuan Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Yongxiu Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, PR China
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, PR China
| |
Collapse
|
12
|
Zhu C, Wang M, Guo J, Su SL, Yu G, Yang Y, Zhou Y, Tang Z. Angelica dahurica Extracts Attenuate CFA-Induced Inflammatory Pain via TRPV1 in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4684830. [PMID: 35656472 PMCID: PMC9152374 DOI: 10.1155/2022/4684830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/13/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
Angelica dahurica, belonging to the family Apiaceae, is a well-known herbal medicine. The roots of Angelica dahurica are commonly used for the treatment of headache, toothache, abscess, furunculosis, and acne. However, little is known about their analgesic molecular mechanism underlying pain relief. In this study, we used behavioral tests to assess the analgesic effect of the ADE (Angelica dahurica extracts) on CFA (complete Freund's adjuvant)-induced inflammatory pain mice models. TRPV1 (Transient Receptor Potential Cation Channel Subfamily V Member 1) protein activity in dorsal root ganglion (DRG) was assessed with a calcium imaging assay. TRPV1 expression was detected with western blot and immunohistochemistry. Then, we examined the constituents of ADE using combined ultra-performance liquid chromatography-quadrupole time-of-light mass spectrometry (UPLC/Q-TOF-MS). Our results showed that ADE effectively attenuated mechanical and thermal hypersensitivities in CFA-induced inflammatory pain model in mice. ADE also significantly reduced the activity and the protein expression of TRPV1 in DRG from CFA mice. Therefore, ADE might be an attractive and suitable analgesic agent for the management of chronic inflammatory pain.
Collapse
Affiliation(s)
- Chan Zhu
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Meiyuan Wang
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jun Guo
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Shu Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Guang Yu
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yan Yang
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yuan Zhou
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Zongxiang Tang
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
13
|
Jiang W, Zhou X, Ni K. Study on imperatorin extracted from Angelica dahurica and its UV photocatalytic reaction with collagen. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Soxhlet extraction method was used to extract imperatorin from Angelica dahurica, and the extraction ratio under different extraction condition was optimized to attain the best condition. Then, XAD-16 macroporous resin was selected as the optimal resin to boost the extraction ratio of imperatorin. Afterwards, the higher purity of imperatorin (96.84±0.2%) was separated by preparative HPLC system. Next, the photocatalytic reaction between the above imperatorin and collagen which the highest levels in skin was investigated using UV-vis spectroscopy, amino acid analysis and HPLC analysis. The results showed that imperatorin reacted with collagen only under ultraviolet light which caused the denaturation of collagen, and three new products were generated. The ultraviolet products were isolated by preparative HPLC system and separately detected by high-resolution mass spectrum. The possible UV photocatalytic reaction mechanism between imperatorin and collagen is that ultraviolet light induces the increase of the activity of the imperatorin to react with the tyrosine in the collagen, resulted in the denaturation of collagen and reestablish of the normal epidermal tissue in skin.
Collapse
Affiliation(s)
- Wen Jiang
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, PR China
| | - Xiaohua Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, PR China
| | - Ke Ni
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, PR China
| |
Collapse
|
14
|
Tian Z, Zhang X, Sun M. Phytochemicals Mediate Autophagy Against Osteoarthritis by Maintaining Cartilage Homeostasis. Front Pharmacol 2022; 12:795058. [PMID: 34987406 PMCID: PMC8722717 DOI: 10.3389/fphar.2021.795058] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease and is a leading cause of disability and reduced quality of life worldwide. There are currently no clinical treatments that can stop or slow down OA. Drugs have pain-relieving effects, but they do not slow down the course of OA and their long-term use can lead to serious side effects. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Autophagy is an intracellular protective mechanism, and targeting autophagy-related pathways has been found to prevent and treat various diseases. Attenuation of the autophagic pathway has now been found to disrupt cartilage homeostasis and plays an important role in the development of OA. Therefore, modulation of autophagic signaling pathways mediating cartilage homeostasis has been considered as a potential therapeutic option for OA. Phytochemicals are active ingredients from plants that have recently been found to reduce inflammatory factor levels in cartilage as well as attenuate chondrocyte apoptosis by modulating autophagy-related signaling pathways, which are not only widely available but also have the potential to alleviate the symptoms of OA. We reviewed preclinical studies and clinical studies of phytochemicals mediating autophagy to regulate cartilage homeostasis for the treatment of OA. The results suggest that phytochemicals derived from plant extracts can target relevant autophagic pathways as complementary and alternative agents for the treatment of OA if subjected to rigorous clinical trials and pharmacological tests.
Collapse
Affiliation(s)
- Zheng Tian
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xinan Zhang
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|
15
|
A Phenylfurocoumarin Derivative Reverses ABCG2-Mediated Multidrug Resistance In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms222212502. [PMID: 34830383 PMCID: PMC8618058 DOI: 10.3390/ijms222212502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
The ATP-binding cassette subfamily G member 2 (ABCG2) transporter is involved in the development of multidrug resistance in cancer patients. Many inhibitors of ABCG2 have been reported to enhance the chemosensitivity of cancer cells. However, none of these inhibitors are being used clinically. The aim of this study was to identify novel ABCG2 inhibitors by high-throughput screening of a chemical library. Among the 5812 compounds in the library, 23 compounds were selected in the first screening, using a fluorescent plate reader-based pheophorbide a (PhA) efflux assay. Thereafter, to validate these compounds, a flow cytometry-based PhA efflux assay was performed and 16 compounds were identified as potential inhibitors. A cytotoxic assay was then performed to assess the effect these 16 compounds had on ABCG2-mediated chemosensitivity. We found that the phenylfurocoumarin derivative (R)-9-(3,4-dimethoxyphenyl)-4-((3,3-dimethyloxiran-2-yl)methoxy)-7H-furo [3,2-g]chromen-7-one (PFC) significantly decreased the IC50 of SN-38 in HCT-116/BCRP colon cancer cells. In addition, PFC stimulated ABCG2-mediated ATP hydrolysis, suggesting that this compound interacts with the substrate-binding site of ABCG2. Furthermore, PFC reversed the resistance to irinotecan without causing toxicity in the ABCG2-overexpressing HCT-116/BCRP cell xenograft mouse model. In conclusion, PFC is a novel inhibitor of ABCG2 and has promise as a therapeutic to overcome ABCG2-mediated MDR, to improve the efficiency of cancer chemotherapy.
Collapse
|
16
|
Kiyonga AN, Park GH, Kim HS, Suh YG, Kim TK, Jung K. An Efficient Ionic Liquid-Mediated Extraction and Enrichment of Isoimperatorin from Ostericum koreanum (Max.) Kitagawa. Molecules 2021; 26:6555. [PMID: 34770966 PMCID: PMC8588393 DOI: 10.3390/molecules26216555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022] Open
Abstract
Ionic liquids (ILs) have attracted significant interest because of their desirable properties. These characteristics have improved their application to overcome the shortcomings of conventional separation techniques for phytochemicals. In this study, several ILs were investigated for their capacity to extract isoimperatorin, a bioactive furanocoumarin, from the roots of Ostericum koreanum. Herein, 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) was selected as a promising IL for separating isoimperatorin. A central composite design was applied to optimize the extraction conditions. Under the optimal conditions, the yield of isoimperatorin reached 97.17 ± 1.84%. Additionally, the recovery of isoimperatorin from the [Bmim][BF4] solution was successfully achieved (87.73 ± 2.37%) by crystallization using water as an antisolvent. The purity of the isoimperatorin was greatly enhanced, from 0.26 ± 0.28% in the raw material to 26.94 ± 1.26% in the product, in a one-step crystallization process. Namely, an enhancement of approximately 103-folds was reached. The developed approach overcomes the shortcomings of conventional separation methods applied for gaining isoimperatorin by significantly reducing the laboriousness of the process and the consumption of volatile organic solvents. Moreover, the simplicity and effectiveness of the method are assumed to be valuable for producing isoimperatorin-enriched products and for promoting its purification. This work also confirms the efficiency of ILs as a promising material for the separation of phytochemicals.
Collapse
Affiliation(s)
- Alice Nguvoko Kiyonga
- Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University, Sungnam 13844, Korea; (A.N.K.); (H.S.K.); (Y.-G.S.)
| | - Gyu Hwan Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Hyun Su Kim
- Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University, Sungnam 13844, Korea; (A.N.K.); (H.S.K.); (Y.-G.S.)
| | - Young-Ger Suh
- Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University, Sungnam 13844, Korea; (A.N.K.); (H.S.K.); (Y.-G.S.)
| | - Tae Kon Kim
- College of Science and Engineering, Jungwon University, Geosan-gun, Chungbuk 28024, Korea
| | - Kiwon Jung
- Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University, Sungnam 13844, Korea; (A.N.K.); (H.S.K.); (Y.-G.S.)
| |
Collapse
|
17
|
Banikazemi Z, Mirazimi SM, Dashti F, Mazandaranian MR, Akbari M, Morshedi K, Aslanbeigi F, Rashidian A, Chamanara M, Hamblin MR, Taghizadeh M, Mirzaei H. Coumarins and Gastrointestinal Cancer: A New Therapeutic Option? Front Oncol 2021; 11:752784. [PMID: 34707995 PMCID: PMC8542999 DOI: 10.3389/fonc.2021.752784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Cancers of the gastrointestinal (GI) tract are often life-threatening malignancies, which can be a severe burden to the health care system. Globally, the mortality rate from gastrointestinal tumors has been increasing due to the lack of adequate diagnostic, prognostic, and therapeutic measures to combat these tumors. Coumarin is a natural product with remarkable antitumor activity, and it is widely found in various natural plant sources. Researchers have explored coumarin and its related derivatives to investigate their antitumor activity, and the potential molecular mechanisms involved. These mechanisms include hormone antagonists, alkylating agents, inhibitors of angiogenesis, inhibitors of topoisomerase, inducers of apoptosis, agents with antimitotic activity, telomerase inhibitors, inhibitors of human carbonic anhydrase, as well as other potential mechanisms. Consequently, drug design and discovery scientists and medicinal chemists have collaborated to identify new coumarin-related agents in order to produce more effective antitumor drugs against GI cancers. Herein, we summarize the therapeutic effects of coumarin and its derivatives against GI cancer.
Collapse
Affiliation(s)
- Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Mirazimi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Reza Mazandaranian
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akbari
- Department of Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Korosh Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Aslanbeigi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran.,Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Li HH, Livneh H, Chen WJ, Lu MC, Chiou WY, Hung SK, Yeh CC, Tsai TY. Chinese Herbal Medicine to Reduce Radiation-Induced Oral Mucositis in Head and Neck Cancer Patients: Evidence From Population-Based Health Claims. Integr Cancer Ther 2021; 20:15347354211044833. [PMID: 34477012 PMCID: PMC8422821 DOI: 10.1177/15347354211044833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Subjects with head and neck cancer (HNC) often experience post-treatment side effects, particularly radiation-induced oral mucositis (RIOM). This study aimed to explore the association of Chinese herbal medicine use with the sequent risk of RIOM among them. METHODS This cohort study used a nationwide health insurance database to identify subjects newly diagnosed with HNC, aged 20 to 60 years, who received treatment between 2000 and 2007. Among them, a total of 561 cases received CHM after HNC onset (CHM users); the remaining 2395 cases were non-CHM users. All patients were followed to the end of 2012 to identify any treatment for RIOM as the end point. Cox proportional hazards regression was used to compute the adjusted hazard ratio (aHR) of RIOM by CHM use. RESULTS During the follow-up period, 183 CHM users and 989 non-CHM users developed RIOM at incidence rates of 40.98 and 57.91 per 1000 person-years, respectively. CHM users had a lower RIOM risk than the non-CHM users (aHR: 0.68; 95% Confidence Interval: 0.58-0.80). The most potent effect was observed in those taking CHM for more than 1 year. Use of Baizhi, Danshen, Shao-Yao-Gan-Cao-Tang, Gan-Lu-Yin, Huangqin, Shu-Jing-Huo-Xue-Tang, and Xin-Yi-Qing-Fei-Tang, was significantly related to a lower risk of RIOM. CONCLUSION Findings of this study indicated that adding CHM to conventional clinical care could be helpful in protecting those with HNC against the onset of RIOM. Further clinical and mechanistic studies are warranted.
Collapse
Affiliation(s)
- Hsin-Hua Li
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan.,Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hanoch Livneh
- Rehabilitation Counseling Program, Portland State University, Portland, OR, USA
| | - Wei-Jen Chen
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan.,Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.,Center of Sports Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,Department of Medical Research, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,Department of Medical Research, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Chia-Chou Yeh
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tzung-Yi Tsai
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Research, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan.,Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
19
|
Mottaghipisheh J. Oxypeucedanin: Chemotaxonomy, Isolation, and Bioactivities. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081577. [PMID: 34451622 PMCID: PMC8401860 DOI: 10.3390/plants10081577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 05/10/2023]
Abstract
The present review comprehensively gathered phytochemical, bioactivity, and pharmacokinetic reports on a linear furanocoumarin, namely oxypeucedanin. Oxypeucedanin (OP), which structurally contains an epoxide ring, has been majorly isolated from ethyl acetate-soluble partitions of several genera, particularly Angelica, Ferulago, and Prangos of the Apiaceae family; and Citrus, belonging to the Rutaceae family. The methanolic extract of Angelica dahurica roots has been analytically characterized as the richest natural OP source. This naturally occurring secondary metabolite has been described to possess potent antiproliferative, cytotoxic, anti-influenza, and antiallergic activities, as assessed in preclinical studies. In order to explore potential drug candidates, oxypeucedanin, its derivatives, and semi-synthetically optimized analogues can be considered for the complementary assessments of biological assays.
Collapse
Affiliation(s)
- Javad Mottaghipisheh
- Center for Molecular Biosciences (CMBI), Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
20
|
Structural characteristics and in vitro and in vivo immunoregulatory properties of a gluco-arabinan from Angelica dahurica. Int J Biol Macromol 2021; 183:90-100. [PMID: 33872613 DOI: 10.1016/j.ijbiomac.2021.04.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
A water-soluble polysaccharide identified here as ADP80-2 was acquired from Angelica dahurica. ADP80-2 was a gluco-arabinan composed of arabinose and a trace of glucose with a molecular weight of 9950 g/mol. The backbone of ADP80-2 comprised →5)-α-L-Araf-(1→, →3, 5)-α-L-Araf-(1→, →6)-α-D-Glcp-(1→, with a terminal branch α-L-Araf-(1 → residue. In terms of immunoregulatory activity, ADP80-2 can significantly promote the phagocytosis, the production of nitric oxide (NO), and the secretion of cytokines (IL-6, IL-1β, and TNF-α) of macrophage. In addition to the cellular immunomodulatory activities, the chemokines related to immunoregulation were significantly increased in the zebrafish model after treated with ADP80-2. These biological results indicated that ADP80-2 with immunomodulatory effects was expected to be useful for the development of new immunomodulatory agents. Simultaneously, the discovery of ADP80-2 further revealed the chemical composition of A. dahurica used as a traditional Chinese medicine and spice.
Collapse
|
21
|
Wróblewska-Łuczka P, Grabarska A, Florek-Łuszczki M, Plewa Z, Łuszczki JJ. Synergy, Additivity, and Antagonism between Cisplatin and Selected Coumarins in Human Melanoma Cells. Int J Mol Sci 2021; 22:ijms22020537. [PMID: 33430369 PMCID: PMC7827586 DOI: 10.3390/ijms22020537] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 12/26/2022] Open
Abstract
(1) Cisplatin (CDDP) is used in melanoma chemotherapy, but it has many side effects. Hence, the search for natural substances that can reduce the dose of CDDP, and CDDP-related toxicity, is highly desired. Coumarins have many biological properties, including anticancer and antiproliferative effects. (2) An in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay on two human melanoma cell lines (FM55P and FM55M2) examined the antitumor properties of CDDP and five naturally occurring coumarins (osthole, xanthotoxin, xanthotoxol, isopimpinellin, and imperatorin). The antiproliferative effects produced by combinations of CDDP with the coumarins were assessed using type I isobolographic analysis. (3) The most potent anticancer properties of coumarins were presented by osthole and xanthotoxol. These compounds were characterized by the lowest median inhibitory concentration (IC50) values relative to the FM55P and FM55M2 melanoma cells. Isobolographic analysis showed that for both melanoma cell lines, the combination of CDDP and osthole exerted synergistic and additive interactions, while the combination of CDDP and xanthotoxol exerted additive interactions. Combinations of CDDP with xanthotoxin, isopimpinellin, and imperatorin showed antagonistic and additive interactions in two melanoma cell lines. (4) The combination of CDDP and osthole was characterized by the most desirable synergistic interaction. Isobolographic analysis allows the selection of potential candidates for cancer drugs among natural substances.
Collapse
Affiliation(s)
| | - Aneta Grabarska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-090 Lublin, Poland;
| | | | - Zbigniew Plewa
- Department of General, Oncological, and Minimally Invasive Surgery, 1 Military Clinical Hospital with the Outpatient Clinic in Lublin, 20-400 Lublin, Poland;
| | - Jarogniew J. Łuszczki
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-65-03
| |
Collapse
|
22
|
Zhao Q, Sun X, Wu B, Shang Y, Huang X, Dong H, Liu H, Chen W, Gui R, Li J. Construction of homologous cancer cell membrane camouflage in a nano-drug delivery system for the treatment of lymphoma. J Nanobiotechnology 2021; 19:8. [PMID: 33407527 PMCID: PMC7789287 DOI: 10.1186/s12951-020-00738-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-Hodgkin's lymphoma (NHL) possesses great heterogeneity in cytogenetics, immunophenotype and clinical features, and chemotherapy currently serves as the main treatment modality. Although employing monoclonal antibody targeted drugs has significantly improved its overall efficacy, various patients continue to suffer from drug resistance or recurrence. Chinese medicine has long been used in the treatment of malignant tumors. Therefore, we constructed a low pH value sensitivity drug delivery system based on the cancer cell membrane modified mesoporous silica nanoparticles loaded with traditional Chinese medicine, which can reduce systemic toxicity and improve the therapeutic effect for the targeted drug delivery of tumor cells. RESULTS Accordingly, this study put forward the construction of a nano-platform based on mesoporous silica nanoparticles (MSNs) loaded with the traditional Chinese medicine isoimperatorin (ISOIM), which was camouflaged by the cancer cell membrane (CCM) called CCM@MSNs-ISOIM. The proposed nano-platform has characteristics of immune escape, anti-phagocytosis, high drug loading rate, low pH value sensitivity, good biocompatibility and active targeting of the tumor site, blocking the lymphoma cell cycle and promoting mitochondrial-mediated apoptosis. CONCLUSIONS Furthermore, this study provides a theoretical basis in finding novel clinical treatments for lymphoma.
Collapse
Affiliation(s)
- Qiangqiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China
| | - Xiaoying Sun
- School of Nursing, Medical College, Soochow University, Suzhou, 215006, People's Republic of China
- Department of Emergency, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China
| | - Bin Wu
- Department of Transfusion Medicine, Tongji Medical College, Wuhan Hospital of Traditional Chinese and Western Medicine, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yinghui Shang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Xueyuan Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Hang Dong
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Haiting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China.
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China.
| |
Collapse
|
23
|
Ahmed S, Khan H, Aschner M, Mirzae H, Küpeli Akkol E, Capasso R. Anticancer Potential of Furanocoumarins: Mechanistic and Therapeutic Aspects. Int J Mol Sci 2020; 21:E5622. [PMID: 32781533 PMCID: PMC7460698 DOI: 10.3390/ijms21165622] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most extreme medical conditions in both developing and developed countries around the world, causing millions of deaths each year. Chemotherapy and/or radiotherapy are key for treatment approaches, but both have numerous adverse health effects. Furthermore, the resistance of cancerous cells to anticancer medication leads to treatment failure. The rising burden of cancer overall requires novel efficacious treatment modalities. Natural medications offer feasible alternative options against malignancy in contrast to western medication. Furanocoumarins' defensive and restorative impacts have been observed in leukemia, glioma, breast, lung, renal, liver, colon, cervical, ovarian, and prostate malignancies. Experimental findings have shown that furanocoumarins activate multiple signaling pathways, leading to apoptosis, autophagy, antioxidant, antimetastatic, and cell cycle arrest in malignant cells. Additionally, furanocoumarins have been shown to have chemo preventive and chemotherapeutic synergistic potential when used in combination with other anticancer drugs. Here, we address different pathways which are activated by furanocoumarins and their therapeutic efficacy in various tumors. Ideally, this review will trigger interest in furanocoumarins and their potential efficacy and safety as a cancer lessening agents.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA;
| | - Hamed Mirzae
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan 8715973474, Iran;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
24
|
Zhang J, Li X, Huang L. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Adv Drug Deliv Rev 2020; 154-155:245-273. [PMID: 32473991 PMCID: PMC7704676 DOI: 10.1016/j.addr.2020.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Various bioactive ingredients have been extracted from Chinese herbal medicines (CHMs) that affect tumor progression and metastasis. To further understand the mechanisms of CHMs in cancer therapy, this article summarizes the effects of five categories of CHMs and their active ingredients on tumor cells and the tumor microenvironment. Despite their treatment potential, the undesirable physicochemical properties (poor permeability, instability, high hydrophilicity or hydrophobicity, toxicity) and unwanted pharmacokinetic profiles (short half-life in blood and low bioavailability) restrict clinical studies of CHMs. Therefore, development of liposomes through relevant surface modifying techniques to achieve targeted CHM delivery for cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature, have been reviewed. Current challenges of liposomal targeting of these phytoconstituents and future perspective of CHM applications are discussed to provide an informative reference for interested readers.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
25
|
Yu X, Chen YF, Huang GJ, Zhang YF, Yang WD. Synthesis and crystal structure of 4-(3-acetyl-5-(thiophen-2-yl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)-7-(diethylamino)-2 H-chromen-2-one, C 21H 21N 3O 4S. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2019-0807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C21H21N3O4S, triclinic, P1̄ (no. 2), a = 9.4256(9) Å, b = 10.1906(9) Å, c = 11.6539(9) Å, α = 101.896(7)°, β = 104.770(8)°, γ = 93.271(8)°, V = 1052.01(16) Å3, Z = 2, R
gt(F) = 0.0469, wR
ref(F
2) = 0.1354, T = 293(2) K.
Collapse
Affiliation(s)
- Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine , Guiyang 550025, P.R. China
| | - Ya-Fang Chen
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine , Guiyang 550025, P.R. China
| | - Guo-Juan Huang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine , Guiyang 550025, P.R. China
| | - You-Fang Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine , Guiyang 550025, P.R. China
| | - Wu-De Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine , Guiyang 550025, P.R. China
| |
Collapse
|
26
|
Zeng B, Li K, Yang Z, Wang H, Wang C, Huang P, Pan Y. Isoimperatorin (ISO) reduces melanin content in keratinocytes via miR-3619/CSTB and miR-3619/CSTD axes. Biosci Biotechnol Biochem 2020; 84:1436-1443. [PMID: 32299303 DOI: 10.1080/09168451.2020.1751581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Melanin metabolism disorders may cause severe impacts on the psychological and social activities of patients. Different from the other two steps of melanin metabolism, namely synthesis and transport, little has been known about the mechanism of melanin degradation. Isoimperatorin (ISO) suppressed the activity of tyrosinase, an essential enzyme in melanin biosynthesis, hence, we investigated the effects and mechanism of ISO in melanin reduction. ISO stimulation significantly reduces the melanin contents and PMEL 17 protein levels; meanwhile, the activity and the protein levels of two critical lysosomal enzymes, Cathepsin B and Cathepsin D, can be significantly increased by ISO treatment. MiR-3619 inhibited the expression of CSTB and CSTD, therefore affecting ISO-induced degradation of melanin. In summary, ISO reduces the melanin content via miR-3619/CSTB and miR-3619/CSTD axes. ISO could be a potent skin-whitening agent, which needs further in vivo and clinical investigation.
Collapse
Affiliation(s)
- Bijun Zeng
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine , Changsha, Hunan, China
| | - Kai Li
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine , Changsha, Hunan, China
| | - Zhibo Yang
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine , Changsha, Hunan, China
| | - Haizhen Wang
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine , Changsha, Hunan, China
| | - Chang Wang
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine , Changsha, Hunan, China
| | - Pan Huang
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine , Changsha, Hunan, China
| | - Yi Pan
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine , Changsha, Hunan, China
| |
Collapse
|
27
|
Shi B, Liu J, Zhang Q, Wang S, Jia P, Bian L, Zheng X. Effect of co-administration of Acori Tatarinowii Rhizoma volatile oil on pharmacokinetic fate of xanthotoxol, oxypeucedanin hydrate, and byakangelicin from Angelicae Dahuricae Radix in rat. J Sep Sci 2020; 43:2349-2362. [PMID: 32222035 DOI: 10.1002/jssc.201901250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/29/2022]
Abstract
A combination of Angelicae Dahuricae Radix and Acori Tatarinowii Rhizoma has been widely used as the herb pair in traditional Chinese medicine to treat stroke, migraine, and epilepsy. However, the underlying synergistic mechanism of the herb pair remains unknown. This study was aimed at investigating the effects of Acori Tatarinowii Rhizoma volatile oil on the pharmacokinetic parameters of xanthotoxol, oxypeucedanin hydrate, and byakangelicin from Angelicae Dahuricae Radix in rat, and in vitro absorption behavior of the three compounds using rat everted gut sac, in situ single-pass intestinal perfusion, and Caco-2 cell monolayer models. The pharmacokinetic study exhibited clear changes in the key pharmacokinetic parameters of the three main coumarins through co-administering with Acori Tatarinowii Rhizoma volatile oil (50 mg/kg), the area under curve and the maximum plasma concentration of xanthotoxol increased 1.36 and 1.31 times; the area under curve, the maximum plasma concentration, mean residence time, half-life of elimination, and the time to reach peak concentration of oxypeucedanin hydrate increased by 1.35, 1.18, 1.24, 1.19 and 1.49 times, respectively; the area under curve, mean residence time, half-life of elimination, and time to reach peak concentration of byakangelicin climbed 1.29, 1.27, 1.37, and 1.28 times, respectively. The three coumarin components were absorbed well in the jejunum and ileum in the intestinal perfusion model, when co-administered with Acori Tatarinowii Rhizoma volatile oil (100 μg/mL). The in vivo and in vitro experiments showed good relevance and consistency. The results demonstrated that the three coumarin compounds from Angelicae Dahuricae Radix were absorbed through the active transportation, and Acori Tatarinowii Rhizoma volatile oil could promote the intestinal absorption and transport of these compounds by inhibiting P-glycoprotein (P-gp)-mediated efflux.
Collapse
Affiliation(s)
- Baimei Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Jianghong Liu
- Shenzhen Longhua District Central Hospital, Shenzhen, 518110, P. R. China
| | - Qian Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China.,District Traditional Chinese Medicine Hospital of Xi'an, Shaanxi Province, Xi'an, 710100, P. R. China
| | - Shixiang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Liujiao Bian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
28
|
Bao X, Huang B, Mao Y, Zhang Z, Zhou Y, Wen C, Zhou Q. Pharmacokinetic UPLC–MS/MS studies on byakangelicol after oral and intravenous administration to rats. ACTA CHROMATOGR 2020. [DOI: 10.1556/1326.2019.00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Byakangelicol is one of coumarins from Baizhi and has been shown to inhibit the release of PGE2 from human lung epithelial A549 cells in a dose-dependent manner. A sensitive ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed and full validated for the quantification of byakangelicol in rat plasma. The pharmacokinetics of byakangelicol after both intravenous (5 mg/kg) and oral (15 mg/kg) administrations were studied. Chromatographic separation was performed on an ultra-performance liquid chromatography ethylene bridged hybrid (UPLC BEH) C18 column with acetonitrile and 0.1% formic acid as the mobile phase at a flow rate of 0.4 mL/min; fargesin was used as the internal standard (IS). The following quantitative analysis of byakangelicol was utilized in the multiple reaction monitoring mode. The samples were extracted from rat plasma via protein precipitation using acetonitrile. In the concentration range of 1–2000 ng/mL, the method correlated linearity (r > 0.995) with a lower limit of quantitation (LLOQ) of 1 ng/mL. Intra-day precision was less than 11%, and inter-day precision was less than 12%. The accuracy was between 92.0% and 108.7%, the recovery was better than 89.6%, and the matrix effect was between 85.9% and 98.6%. The method was successfully applied to a pharmacokinetic study of byakangelicol after intravenous and oral administration, and the absolute bioavailability was 3.6%.
Collapse
Affiliation(s)
- Xi Bao
- 1 The First Affiliated Hospital of Wenzhou Medical University Wenzhou 325000 China
| | - Bingge Huang
- 2 Laboratory Animal Centre, Wenzhou Medical UniversityWenzhou 325035China
| | - Yiting Mao
- 2 Laboratory Animal Centre, Wenzhou Medical UniversityWenzhou 325035China
| | - Zhiguang Zhang
- 2 Laboratory Animal Centre, Wenzhou Medical UniversityWenzhou 325035China
| | - Yunfang Zhou
- 3 The Laboratory of Clinical Pharmacy, The People's Hospital of LishuiLishui 323000China
| | - Congcong Wen
- 2 Laboratory Animal Centre, Wenzhou Medical UniversityWenzhou 325035China
| | - Quan Zhou
- 3 The Laboratory of Clinical Pharmacy, The People's Hospital of LishuiLishui 323000China
| |
Collapse
|
29
|
Sumorek-Wiadro J, Zając A, Maciejczyk A, Jakubowicz-Gil J. Furanocoumarins in anticancer therapy - For and against. Fitoterapia 2020; 142:104492. [PMID: 32032635 DOI: 10.1016/j.fitote.2020.104492] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
Furanocoumarins are a class of natural compounds produced by several plants, including those consumed by humans. They have been used medicinally in eastern countries for ages. Given the growing body of evidence about their anticancer potential and observations that naturally occurring compounds potentiate the antitumor activity of chemotherapeutics, more attention is paid to elucidation of the nature of furanocoumarins and the possibility of using thereof in practice. The general mechanism by which furanocoumarins eliminate cancer cells is based on cell cycle blockage and initiation of programmed death like apoptosis or autophagy. The precise molecular mechanism of such an action depends on the chemical structure of furanocoumarins, which is based on the furan ring attached to the coumarin backbone in a linear or angular form as well as the type, location, and number of the substituents attached. The review summarizes the current evidence of the antitumor properties of linear and angular furanocoumarins with special emphasis on the molecular mechanism of elimination of cancer cells via apoptosis and autophagy. Negative aspects of the use of coumarins in anticancer therapy will be also discussed especially in the context of their phototoxicity and potential cancerogenic effect.
Collapse
Affiliation(s)
- Joanna Sumorek-Wiadro
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Aleksandra Maciejczyk
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
30
|
Kang U, Han AR, So Y, Jin CH, Ryu SM, Lee D, Seo EK. Furanocoumarins from the Roots of Angelica dahurica with Inhibitory Activity against Intracellular Reactive Oxygen Species Accumulation. JOURNAL OF NATURAL PRODUCTS 2019; 82:2601-2607. [PMID: 31464439 DOI: 10.1021/acs.jnatprod.9b00547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Five new furanocoumarins, dahuribirin H (1), dahuribirin I (2), (2'S)-(+)-5-(2'-hydroxy-3'-methylbut-3'-enyloxy)-8-(3''-methylbut-2″-enyloxy)psoralen (3), (2'R)-(+)-5-(2',3'-epoxy-3'-methylbutoxy)-8-(3″-methylbut-2″-enyloxy)psoralen (4), and 5-methoxy-8-((Z)-4'-(3″-methylbutanoate)-3'-methylbut-2'-enyloxy)psoralen (5), along with 15 known compounds (6-20), were isolated from the roots of Angelica dahurica. The structures of the new compounds were elucidated by spectroscopic analysis, along with electronic circular dichroism calculations and Mosher ester analysis. Compounds 3, 4, 11, 13, and 16 reduced H2O2-induced cell death in HepG2 cells and attenuated reactive oxygen species (ROS) formation without showing cytotoxicity, suggesting that these compounds might have cytoprotective effects against H2O2-induced oxidative damage via ROS scavenging activities.
Collapse
Affiliation(s)
- Unwoo Kang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute , Korea Atomic Energy Research Institute , Jeongeup-si , Jeollabuk-do 56212 , Korea
| | - Yangkang So
- Advanced Radiation Technology Institute , Korea Atomic Energy Research Institute , Jeongeup-si , Jeollabuk-do 56212 , Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute , Korea Atomic Energy Research Institute , Jeongeup-si , Jeollabuk-do 56212 , Korea
| | - Seung Mok Ryu
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Korea
| | - Dongho Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Korea
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Korea
| |
Collapse
|
31
|
Yu X, Zhao YF, Qin Y, Yan J, Chen YF. The crystal structure of N′-((1E,2E)-4-(7-methoxy-2-oxo-2H-chromen-8-yl)-2-methylbut-2-en-1-ylidene)-3-methylbenzohydrazide, C23H22N2O4. Z KRIST-NEW CRYST ST 2019. [DOI: 10.1515/ncrs-2019-0249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractC23H22N2O4, monoclinic, P21/c (no. 14), a = 17.7478(4) Å, b = 10.0041(2) Å, c = 24.4749(6) Å, β = 111.111(2)°, V = 4053.88(17) Å3, Z = 8, Rgt(F) = 0.0614, wRref(F2) = 0.1749, T = 290 K.
Collapse
Affiliation(s)
- Xiang Yu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P.R. China
| | - You-Fang Zhao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P.R. China
| | - Yan Qin
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P.R. China
| | - Jing Yan
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P.R. China
| | - Ya-Fang Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P.R. China
| |
Collapse
|
32
|
Yu X, Yang XL, Zhao YF, Qin Y, Yan J, Chen YF. The crystal structure of (1 E,2 E)-2-methyl-4-((7-oxo-7 H-furo[3,2- g]chromen-9-yl)oxy)but-2-enal O-isonicotinoyl oxime–trichloromethane (3/1), C 67H 49Cl 3N 6O 18. Z KRIST-NEW CRYST ST 2019. [DOI: 10.1515/ncrs-2019-0269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C67H49Cl3N6O18, triclinic, P1̄ (no. 2), a = 12.3281(4) Å, b = 15.8887(5) Å, c = 16.9037(6) Å, α = 89.015(2)°, β = 77.885(3)°, γ = 72.021(3)°, V = 3075.20(19) Å3, Z = 2, R
gt(F) = 0.0658, wR
ref(F
2) = 0.1558, T = 291.2(3) K.
Collapse
Affiliation(s)
- Xiang Yu
- Guizhou University of Traditional Chinese Medicine , Guiyang 550025 , People’s Republic of China
| | - Xu-Li Yang
- Guizhou University of Traditional Chinese Medicine , Guiyang 550025 , People’s Republic of China
| | - You-Fang Zhao
- Guizhou University of Traditional Chinese Medicine , Guiyang 550025 , People’s Republic of China
| | - Yan Qin
- Guizhou University of Traditional Chinese Medicine , Guiyang 550025 , People’s Republic of China
| | - Jing Yan
- Guizhou University of Traditional Chinese Medicine , Guiyang 550025 , People’s Republic of China
| | - Ya-Fang Chen
- Guizhou University of Traditional Chinese Medicine , Guiyang 550025 , People’s Republic of China
| |
Collapse
|
33
|
Matusiewicz M, Bączek KB, Kosieradzka I, Niemiec T, Grodzik M, Szczepaniak J, Orlińska S, Węglarz Z. Effect of Juice and Extracts from Saposhnikovia divaricata Root on the Colon Cancer Cells Caco-2. Int J Mol Sci 2019; 20:ijms20184526. [PMID: 31547375 PMCID: PMC6770654 DOI: 10.3390/ijms20184526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer ranks 3rd in terms of cancer incidence. Growth and development of colon cancer cells may be affected by juice and extracts from Saposhnikovia divaricata root. The objective of the research was to analyze the effect of S. divaricata juice and extracts on the viability, membrane integrity and types of cell death of Caco-2 cells. Juice and extracts were analyzed using Ultra-High Performance Liquid Chromatography-Mass Spectrometry (UHPLC-MS) and in respect of the presence of antioxidants, total carbohydrates, protein, fat and polyphenols. The contents of cimifugin β-D-glucopyranoside, cimifugin, 4′-O-glucopyranosyl-5-O-methylvisamminol, imperatorin and protein were the highest in juice. 50% Hydroethanolic extract had the greatest antioxidant potential, concentration of polyphenols and fat. Water extract was characterized by the highest content of glutathione. Juice and 75% hydroethanolic extract contained the most carbohydrates. After the application of juice, 50% extract and the juice fraction containing the molecules with molecular weights >50 kDa, a decrease of the cell viability was noted. Juice and this extract exhibited the protective properties in relation to the cell membranes and they induced apoptosis. The knowledge of further mechanisms of anticancer activity of the examined products will allow to consider their use as part of combination therapy.
Collapse
Affiliation(s)
- Magdalena Matusiewicz
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Katarzyna Barbara Bączek
- Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Iwona Kosieradzka
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Tomasz Niemiec
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Jarosław Szczepaniak
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Sylwia Orlińska
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Zenon Węglarz
- Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
34
|
Chen C, Chen Y, Huang W, Jiang Y, Zhang H, Wu W. Mining of simple sequence repeats (SSRs) loci and development of novel transferability-across EST-SSR markers from de novo transcriptome assembly of Angelica dahurica. PLoS One 2019; 14:e0221040. [PMID: 31437239 PMCID: PMC6706007 DOI: 10.1371/journal.pone.0221040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/29/2019] [Indexed: 11/18/2022] Open
Abstract
Angelica dahurica is a widely grown plant species with multiple uses, especially in the medical field. However, the frequent introduction of A. dahurica to new areas has made it difficult to distinguish between varieties. Simple sequence repeats (SSRs) detected based on transcriptome analyses are very useful for constructing genetic maps and analyzing genetic diversity. They are also relevant for the molecular marker-assisted breeding of A. dahurica. We identified 33,724 genic SSR loci based on transcriptome sequencing data. A total of 114 primer pairs were designed for the SSR loci and were tested for their specificity and diversity. Ten SSR loci in untranslated regions were ultimately selected. Subsequently, 56 A. dahurica ecotypes collected from different regions were analyzed. The SSR loci comprised 2–8 alleles, with a mean of 5.2 alleles per locus. The polymorphic information content value and Shannon’s information index were 0.6274–0.2702 (average of 0.4091) and 1.3040–0.5618 (average of 0.8475), respectively. Thus, the 10 novel SSRs identified in this study were almost in accordance with Harvey-Weinberg equilibrium and will be useful for analyzing A. dahurica genetic relationships. The results of this study confirm the potential value of transcriptome databases for the development of new SSR markers.
Collapse
Affiliation(s)
- Chen Chen
- Agronomy College, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Youjun Chen
- Key Laborary of Superior Forage Germplasm in the Qinghai-Tibetan Plateau (2017-ZJ-Y12), Qinghai University, Xining, Qinghai Province, China
| | - Wenjuan Huang
- Agronomy College, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yijie Jiang
- Agronomy College, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Huihui Zhang
- Agronomy College, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Wei Wu
- Agronomy College, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- * E-mail:
| |
Collapse
|
35
|
Wu C, Chen M, Sun Z, Ye Y, Han X, Qin Y, Liu S. Wenshen Zhuanggu formula mitigates breast cancer bone metastasis through the signaling crosstalk among the Jagged1/Notch, TGF-β and IL-6 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:145-154. [PMID: 30576770 DOI: 10.1016/j.jep.2018.12.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Advanced breast cancer frequently metastasizes to the bone, resulting in patient morbidity and mortality. The interaction of tumor cells with osteoclasts and osteoblasts seriously affects the occurrence and development of bone metastasis in breast cancer. The signaling crosstalk among the Jagged1/Notch, TGF-β and IL-6 signaling pathways plays a significant role in the context of bone metastasis. AIM OF THE STUDY Although Wenshen Zhuanggu (WSZG) formula efficiently decreased the risk of bone metastases in tumor-bearing mice, it remains unclear how WSZG formula regulates the interaction of cancer cells with osteoclasts and osteoblasts in bone metastasis of breast cancer. MATERIALS AND METHODS In this study, we investigated the role of WSZG formula in the progress of bone metastasis in breast cancer and focused on the cell-cell interactions of tumor cells with osteoclasts and osteoblasts. Western blotting and quantitative real-time PCR were utilized to evaluate the inhibitory activities of WSZG formula on Jagged1 expression both in vivo and in vitro. Osteoblast co-culture and osteoclastogenesis co-culture were applied to analyze the effects of WSZG formula on the interaction of tumor cells with osteoclasts and osteoblasts. A breast cancer xenograft model was also used to test the inhibitory effects of WSZG formula on bone metastasis in breast cancer. RESULTS WSZG formula decreased Jagged1 expression in osteolytic lesions in the breast cancer xenograft model. Additionally, WSZG formula decreased Jagged1 expression in tumor cell culture alone or co-culture with pre-osteoclasts and osteoblasts. In addition, WSZG formula decreased Jagged1 expression in Jagged1-overexpressing tumor cells. CONCLUSION The results of this study suggest that WSZG formula mitigates breast cancer bone metastasis through the Jagged1/Notch signaling pathway mediated by TGF-β and IL-6.
Collapse
Affiliation(s)
- Chunyu Wu
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Mingcang Chen
- Shanghai Institute of Material Medica, Chinese Academy of Science, Shanghai 201203, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Zhenping Sun
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Yiyi Ye
- Pharmacology Laboratory of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Xianghui Han
- Pharmacology Laboratory of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Yuenong Qin
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China.
| | - Sheng Liu
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Pharmacology Laboratory of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China.
| |
Collapse
|
36
|
Mottaghipisheh J, Nové M, Spengler G, Kúsz N, Hohmann J, Csupor D. Antiproliferative and cytotoxic activities of furocoumarins of Ducrosia anethifolia. PHARMACEUTICAL BIOLOGY 2018; 56:658-664. [PMID: 31070540 PMCID: PMC6300088 DOI: 10.1080/13880209.2018.1548625] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/12/2018] [Accepted: 11/02/2018] [Indexed: 01/15/2023]
Abstract
CONTEXT Phytochemical and pharmacological data on Ducrosia anethifolia (DC.) Boiss. (Apiaceae), an Iranian medicinal plant, are scarce; however, furocoumarins are characteristic compounds of D. anethifolia. OBJECTIVE Our experiments identify the secondary metabolites of D. anethifolia and assess their antitumor and anti-multidrug resistance activities. MATERIALS AND METHODS Pure compounds were isolated from the extract of aerial parts of the plant by chromatographic methods. Bioactivities were tested on multidrug resistant and sensitive mouse T-lymphoma cell lines. The inhibition of the cancer MDR efflux pump ABCB1 was evaluated by flow cytometry (at 2 and 20 µM). A checkerboard microplate method was applied to study the interactions of furocoumarins and doxorubicin. Toxicity was studied using normal murine NIH/3T3 fibroblasts. RESULTS Thirteen pure compounds were isolated, nine furocoumarins namely, pabulenol (1), (+)-oxypeucedanin hydrate (2), oxypeucedanin (3), oxypeucedanin methanolate (4), (-)-oxypeucedanin hydrate (5), imperatorin (6), isogospherol (7), heraclenin (8), heraclenol (9), along with vanillic aldehyde (10), harmine (11), 3-hydroxy-α-ionone (12) and 2-C-methyl-erythrytol (13). Oxypeucedanin showed the highest in vitro antiproliferative and cytotoxic activity against parent (IC50 = 25.98 ± 1.27, 40.33 ± 0.63 µM) and multidrug resistant cells (IC50 = 28.89 ± 0.73, 66.68 ± 0.00 µM), respectively, and exhibited slight toxicity on normal murine fibroblasts (IC50 = 57.18 ± 3.91 µM). DISCUSSION AND CONCLUSIONS Compounds 2, 3, 5, 7, 10-13 were identified for the first time from the Ducrosia genus. Here, we report a comprehensive in vitro assessment of the antitumor activities of D. anethifolia furocoumarins. Oxypeucedanin is a promising compound for further investigations for its anticancer effects.
Collapse
Affiliation(s)
- Javad Mottaghipisheh
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Márta Nové
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Kúsz
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary
| | - Judit Hohmann
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary
| | - Dezső Csupor
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary
| |
Collapse
|
37
|
Chen W, Li J, Sun Z, Wu C, Ma J, Wang J, Liu S, Han X. Comparative pharmacokinetics of six coumarins in normal and breast cancer bone-metastatic mice after oral administration of Wenshen Zhuanggu Formula. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:36-44. [PMID: 29803570 DOI: 10.1016/j.jep.2018.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/08/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wenshen Zhuanggu Formula (WSZG) is a traditional Chinese medicine (TCM) prescription used in clinics for adjuvant treatment of breast cancer bone metastases in Longhua Hospital in China. WSZG has been reported to decrease the risk of bone metastases and alleviate the severity of bone lesions in a breast cancer xenograft model. AIM OF THE STUDY The present study aimed at investigating the pharmacokinetic behaviors of six coumarins in normal and breast cancer bone-metastatic mice following oral administration of WSZG extract. MATERIALS AND METHODS A bone-metastatic mouse model was established by intracardiac injection of MDA-MB-231BO breast cancer cells, and WSZG extract (1.60 g/kg) was given orally to the model and normal mice for 4 weeks. Then, the blood pharmacokinetic parameters of six bioactive components from WSZG (psoralen, isopsoralen, bergapten, xanthotoxin, osthole, and imperatorin) were analyzed by liquid chromatography tandem mass spectrometry. RESULTS There were significant differences in pharmacokinetic behaviors between normal and pathological states. Compared with normal mice, the model mice showed significantly increased AUC0-t and AUC0-∞ of the bioactive compounds (P < 0.05) and significantly decreased total blood clearance (CLZ/F) (P < 0.05). CONCLUSIONS The different pharmacokinetic behaviors might be partly ascribed to intestinal functional disorders and imbalance of gastrointestinal microbiota under the morbid state. The findings provide some valuable information to evaluate the clinical efficacy and safety of this TCM formula.
Collapse
Affiliation(s)
- Weiling Chen
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jiajia Li
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Zhenping Sun
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Chunyu Wu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jiao Ma
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jianyi Wang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Sheng Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
38
|
Liang WH, Chang TW, Charng YC. Effects of drying methods on contents of bioactive compounds and antioxidant activities of Angelica dahurica. Food Sci Biotechnol 2018; 27:1085-1092. [PMID: 30263838 PMCID: PMC6085254 DOI: 10.1007/s10068-018-0359-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/20/2018] [Accepted: 03/14/2018] [Indexed: 11/28/2022] Open
Abstract
Baizhi (Angelica dahurica) has been widely used as a traditional Chinese herbal medicine, functional food and cosmetic product ingredient, mostly because of the high furanocoumarin compounds in roots. Because the fresh root is perishable, drying techniques are needed to maintain a higher-quality product. Freeze-drying is the best method but energy-consuming and costly. The aim of this study was to analyze the quality (antioxidant and furanocoumarin content) of Baizhi roots after freeze-drying (the control) and in-the-shade, 40 and 70 °C drying. Antioxidant activity was revealed by 2,2-diphenyl-1-picrylhydrazyl and Fe2+ chelating assay, and the content of six furanocoumarin compounds, including xanthotoxin, bergapten, oxypeucedanin, imperatorin, phellopterin and isoimperatorin, was analyzed by liquid chromatography. Antioxidant activity was greater in roots with in-the-shade, 40 and 70 °C drying than freeze-drying. The furanocoumarin content pattern was similar with 70 °C drying and freeze-drying. A. dahurica roots dried at 70 °C may be an alternative method for maintaining high quality.
Collapse
Affiliation(s)
- Wei-Hong Liang
- Department of Agronomy, National Taiwan University, No. 1 Sec. 4 Roosevelt Rd, Taipei, Taiwan, Republic of China
| | - Tung-Wu Chang
- Hualien District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Hualien, Taiwan, Republic of China
| | - Yuh-Chyang Charng
- Department of Agronomy, National Taiwan University, No. 1 Sec. 4 Roosevelt Rd, Taipei, Taiwan, Republic of China
| |
Collapse
|
39
|
Liang WH, Chang TW, Charng YC. Influence of harvest stage on the pharmacological effect of Angelica dahurica. BOTANICAL STUDIES 2018; 59:14. [PMID: 29766316 PMCID: PMC5953908 DOI: 10.1186/s40529-018-0230-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/04/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Baizhi (Angelica dahurica) has been widely used as a traditional Chinese herbal medicine, functional food and cosmetic product ingredient, mostly because of the high furanocoumarin compounds in roots. The cropping system of Baizhi with its unique summer dormancy feature, is easily affected by the transition of its growth stages. The aim of this study was to analyze the quantity (size, form and dry weight [DW]) and quality (antioxidant and furanocoumarin content) of taproot and lateral root from three growth stages of Baizhi; vegetative (V-stage), summer dormancy (S-stage) and bolting stage (B-stage). RESULTS Root length and diameter were lower at V-stage than the other two stages, and S-stage had higher lateral root to total root ratio. However, the highest root DW was observed at S-stage. Antioxidant activity was revealed by 2,2-diphenyl-L-picrylhydrazyl and Fe2+ chelating assay, and the content of six furanocoumarin compounds, including xanthotoxin, bergapten, oxypeucedanin, imperatorin, phellopterin and isoimperatorin, was analyzed by liquid chromatography. Although the antioxidant activity was less at S-stage than the other stages, furanocoumarin contents showed little variation. CONCLUSION Considering the high DW and stable furanocoumarin composition, S-stage is the best harvest stage than the other stages because of its richer total pharmacological content.
Collapse
Affiliation(s)
- Wei-Hong Liang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan Republic of China
| | - Tung-Wu Chang
- Hualien District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Hualien, Taiwan Republic of China
| | - Yuh-Chyang Charng
- Department of Agronomy, National Taiwan University, Taipei, Taiwan Republic of China
| |
Collapse
|
40
|
Yang HB, Gao HR, Ren YJ, Fang FX, Tian HT, Gao ZJ, Song W, Huang SM, Zhao AF. Effects of isoimperatorin on proliferation and apoptosis of human gastric carcinoma cells. Oncol Lett 2018; 15:7993-7998. [PMID: 29731910 DOI: 10.3892/ol.2018.8303] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023] Open
Abstract
Resistance to apoptosis is an characteristic of cancer cells that serves a critical function in tumor development and represents a target for antitumor therapy. Isoimperatorin (ISOIM), a coumarin compound, exhibits antitumor functions in multiple types of tumor cells. However, its antitumor effects and molecular mechanisms with respect to gastric cancer have not been elucidated. The present study assessed the anti-proliferative and apoptotic effects of ISOIM on human BGC-823 gastric cancer cells and elucidated its underlying molecular mechanisms. Cell proliferation was evaluated using MTT assays. Analysis of cell morphology was performed by hematoxylin and eosin, Hoechst 33258 and acridine orange/ethidium bromide staining. In addition, cell cycle and apoptosis was evaluated using flow cytometry analysis; expression of apoptosis-associated proteins was studied by western blotting. The results of the present study revealed that ISOIM significantly inhibited cell proliferation by arresting the cell cycle at the G2/M phase and induced apoptosis by increasing Bcl-2-associated X (Bax) expression with a concomitant decrease in Bcl-2 expression, resulting in a decreased Bcl-2/Bax ratio compared with the control. In addition, ISOIM treatment also resulted in cytochrome c translocating from the mitochondria to the cytosol. Furthermore, caspase-3 was significantly activated in response to treatment with ISOIM, suggesting that apoptosis in BGC-823 cells is induced in the mitochondrial pathway. Taken together, the results of the present study indicate that ISOIM may significantly induce apoptosis in BGC-823 cells and that the pro-apoptotic mechanisms of ISOIM could be associated with the mitochondrial pathway.
Collapse
Affiliation(s)
- Hai-Bo Yang
- Department of Biological Pharmacy, School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, P.R. China
| | - Hui-Ru Gao
- Department of Biological Pharmacy, School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, P.R. China
| | - Yuan-Jing Ren
- Department of Biological Pharmacy, School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, P.R. China
| | - Fei-Xiang Fang
- Department of Biological Pharmacy, School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, P.R. China
| | - Hong-Tao Tian
- Department of Biological Pharmacy, School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, P.R. China
| | - Zhen-Jiang Gao
- Department of Biological Pharmacy, School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, P.R. China
| | - Wei Song
- Department of Biological Pharmacy, School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, P.R. China
| | - Shao-Min Huang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - An-Fang Zhao
- Department of Biological Pharmacy, School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, P.R. China
| |
Collapse
|
41
|
Chen L, Yang H, Yu C, Yuan M, Li H. High hepatic exposure of furanocoumarins in Radix Angelica dahuricae is associated with transporter mediated active uptake. JOURNAL OF ETHNOPHARMACOLOGY 2018; 212:74-85. [PMID: 29055720 DOI: 10.1016/j.jep.2017.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Angelica dahuricae (RAD), the roots of Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav, is a well-known traditional Chinese medicine (TCM) and has been used for centuries to treat headaches, toothaches, nose congestion, abscesses, furunculoses, and acne. This herb is also one of frequently reported TCMs showing the herb-drug interaction potential. Furanocoumarins are main bioactive components of RAD. AIM OF THE STUDY This study is designed to characterize the tissue distribution profiles of furanocoumarins after oral administration of RAD extract in rats and to explore the mechanism underlying the high hepatic exposure of the major furanocoumarins. MATERIALS AND METHODS The tissue distribution of nine furanocoumarins was determined in rats after an oral dose of 0.46g/kg RAD extract using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Unbound fractions (ƒu) of major furanocoumarins, including imperatorin (IM), isoimperatorin (IIM), bergapten (BER) and oxypeucedanin hydrate (OXYH), were measured in rat plasma and selected tissue homogenates (liver, kidney, lung and brain) with Rapid Equilibrium Dialysis (RED) method. The temperature dependent hepatic uptake of IM, IIM, BER and OXYH were evaluated in suspended rat primary hepatocytes at 4°C or 37°C by the oil-spin method. The uptake kinetics was conducted in the cells over a wide concentration range. The furanocoumarins were co-incubated with a panel of transporter inhibitors to investigate the involvement of uptake transporters in the hepatic uptake. The transcellular transport characteristics of IM, IIM, BER and OXYH were further assessed using Caco-2 cell monolayer model. RESULTS IM, IIM, BER and OXYH were found to be the major bioactive furanocoumarins in rat plasma and tissues, representing more than 90% exposure for all the detected furanocoumarins. The most concentrative organ of major furanocoumarins was the liver, with liver-to-plasma exposure ratio (Kp,AUC) of 5.1, 6.5 and 4.7 for IM, IIM and BER, and 2.3 for OXYH, respectively. IM, IIM and BER also showed higher concentrations in the kidney with Kp above 2.2. The higher protein binding of the furanocoumarins partially contributed to their higher tissue exposure. In suspended rat primary hepatocyte, the hepatic uptake of IM, IIM, BER and OXYH was temperature-dependent, with considerably higher uptake at 37°C than at 4°C. Uptake kinetics indicated that the hepatic uptake of IM, IIM, BER and OXYH involved both active transport and passive diffusion processes. For IM, IIM and BER, the contribution of the active transport was greater than the passive process, with the CLactive/CLuptake > 72%. Ritonavir (RTN) and cyclosporine A (CsA), the known inhibitors of organic anion transporting polypeptide (Oatp) significantly inhibited the hepatic uptake of IM and BER, while the inhibitor of the organic anion transporters (Oat) probenecid (PBC) remarkably reduced IIM uptake. In the Caco-2 cell model, the furanocoumarins were highly permeable in the apical to basolateral direction without notable active efflux. CONCLUSION The furanocoumarins rapidly and widely distributed into various tissues after oral dose of the RAD extract. IM, IIM, BER and OXYH were the major components detected in both plasma and tissues. Liver was the most distributed tissue of the total and free furanocoumarins. Non-specific protein binding contributed partially to the higher tissue exposures of these bioactive components. The Oatp and Oat mediated active uptake played the primal role in the high hepatic exposure of the furanocoumarins.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, 100850 Beijing, China; Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China.
| | - Haiying Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, 100850 Beijing, China; Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China.
| | - Chenchen Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, 100850 Beijing, China; Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China.
| | - Mei Yuan
- State Key Laboratory of Toxicology and Medical Countermeasures, 100850 Beijing, China; Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China.
| | - Hua Li
- State Key Laboratory of Toxicology and Medical Countermeasures, 100850 Beijing, China; Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China.
| |
Collapse
|
42
|
Tian Y, Shi R, Gao M, Wang H, Du Y, Zhang L, Wang Q, Zhang M. Differentiation of Furanocoumarin Isomers with Ratio of Relative Abundance of Characteristic Fragment Ions and Application in Angelicae dahuricae Radix. Chromatographia 2017. [DOI: 10.1007/s10337-017-3348-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Wang MH, Jeong SH, Guo H, Park JB. Anti-inflammatory and cytotoxic effects of methanol, ethanol, and water extracts of Angelicae Dahuricae Radix. J Oral Sci 2017; 58:125-31. [PMID: 27021549 DOI: 10.2334/josnusd.58.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Angelicae Dahuricae Radix has been used for the treatment of headaches, rhinitis, and colds in traditional medicine. Methanol, ethanol, and water extracts of Angelicae Dahuricae Radix were collected. A statistically significant reduction in the cellular viability of the mouse leukemic monocyte macrophage cell line was noted after treatment with water extracts of Angelicae Dahuricae Radix. Stimulation with lipopolysaccharides (LPS) for 24 h led to a robust increase in nitric oxide production, but Angelicae Dahuricae Radix at 400 μg/mL concentration significantly suppressed nitric oxide produced by the LPS-stimulated RAW 264.7 cells in 70% ethanol, absolute ethanol, 70% methanol, absolute methanol, and boiling water groups (P < 0.05). Pretreatment with absolute ethanol extract of Angelicae Dahuricae Radix suppressed the LPS-stimulated inducible nitric oxide synthase, interleukin-1β, and cycloxygenase-2 expression. Angelicae Dahuricae Radix showed significant cytotoxic effects on the human adenocarcinoma cell line and keratin-forming cell line. (J Oral Sci 58, 125-131, 2016).
Collapse
Affiliation(s)
- Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University
| | | | | | | |
Collapse
|
44
|
Fu J, Dong X, Yin X, Yang C, Wang W, Du X, Zhang X, Ni J. A new polymorph of isoimperatorin. Pharm Dev Technol 2017; 23:849-856. [PMID: 27808578 DOI: 10.1080/10837450.2016.1257023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Isoimperatorin is a naturally occurring furocoumarin and is being considered as a potential chemoprevention. Only one crystal form of isoimperatorin (Form I) was reported during previous research so that an investigation of polymorphism of isoimperatorin was successfully undertaken. A new polymorph of isoimperatorin was discovered through comprehensive polymorph screening experiments. Their structures were elucidated by single-crystal structure analysis and extensively characterized by XRPD, DSC, FT-IR, and SEM. The results showed that the crystal structure and thermal properties of the new polymorph (Form II) were significantly different from those of Form I. Thermodynamic stability and phase transformation were also discussed in detail.
Collapse
Affiliation(s)
- Jing Fu
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Xiaoxv Dong
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Xinbing Yin
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Chunjing Yang
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Wenping Wang
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Xueying Du
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Xin Zhang
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Jian Ni
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
45
|
Simultaneous Quantification of Nine New Furanocoumarins in Angelicae Dahuricae Radix Using Ultra-Fast Liquid Chromatography with Tandem Mass Spectrometry. Molecules 2017; 22:molecules22020322. [PMID: 28230757 PMCID: PMC6155589 DOI: 10.3390/molecules22020322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/26/2017] [Accepted: 02/13/2017] [Indexed: 02/01/2023] Open
Abstract
A series of new furanocoumarins with long-chain hydrophobic groups, namely andafocoumarins A–H and J, have been isolated from the dried roots of Angelica dahurica cv. Hangbaizhi (Angelicae Dahuricae radix) in our previous study, among which andafocoumarins A and B were demonstrated to have better anti-inflammatory activity than the positive controls. In this work, a sensitive, accurate, and efficient ultra-fast liquid chromatography coupled with triple quadrupole mass spectrometer (UFLC-MS/MS) method was developed and validated for simultaneous quantification of above-mentioned nine compounds in four cultivars of Angelicae Dahuricae Radix. Chromatographic separation was performed on a Kinetex 2.6u C18 100 Å column (100 × 2.1 mm, 2.6 µm). The mobile phases were comprised of acetonitrile and water with a flow rate of 0.5 mL/min. Using the established method, all components could be easily separated within 12 min. With the multiple reaction monitor mode, all components were detected in positive electrospray ionization. The method was validated with injection precision, linearity, lower limit of detection, lower limit of quantification, precision, recovery, and stability, respectively. The final results demonstrated that the method was accurate and efficient, which could be used to simultaneously quantify the nine andafocoumarins in Angelicae Dahuricae Radix. The results also indicated that in different batches of Angelicae Dahuricae Radix, some of the andafocoumarins were significantly different in terms of content.
Collapse
|
46
|
Improvement of Transmembrane Transport Mechanism Study of Imperatorin on P-Glycoprotein-Mediated Drug Transport. Molecules 2016; 21:molecules21121606. [PMID: 27886150 PMCID: PMC6274566 DOI: 10.3390/molecules21121606] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 01/11/2023] Open
Abstract
P-glycoprotein (P-gp) affects the transport of many drugs; including puerarin and vincristine. Our previous study demonstrated that imperatorin increased the intestinal absorption of puerarin and vincristine by inhibiting P-gp-mediated drug efflux. However; the underlying mechanism was not known. The present study investigated the mechanism by which imperatorin promotes P-gp-mediated drug transport. We used molecular docking to predict the binding force between imperatorin and P-gp and the effect of imperatorin on P-gp activity. P-gp efflux activity and P-gp ATPase activity were measured using a rhodamine 123 (Rh-123) accumulation assay and a Pgp-Glo™ assay; respectively. The fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to assess cellular membrane fluidity in MDCK-MDR1 cells. Western blotting was used to analyze the effect of imperatorin on P-gp expression; and P-gp mRNA levels were assessed by qRT-PCR. Molecular docking results demonstrated that the binding force between imperatorin and P-gp was much weaker than the force between P-gp and verapamil (a P-gp substrate). Imperatorin activated P-gp ATPase activity; which had a role in the inhibition of P-gp activity. Imperatorin promoted Rh-123 accumulation in MDCK-MDR1 cells and decreased cellular membrane fluidity. Western blotting demonstrated that imperatorin inhibited P-gp expression; and qRT-PCR revealed that imperatorin down-regulated P-gp (MDR1) gene expression. Imperatorin decreased P-gp-mediated drug efflux by inhibiting P-gp activity and the expression of P-gp mRNA and protein. Our results suggest that imperatorin could down-regulate P-gp expression to overcome multidrug resistance in tumors.
Collapse
|
47
|
Tong K, Xin C, Chen W. Isoimperatorin induces apoptosis of the SGC-7901 human gastric cancer cell line via the mitochondria-mediated pathway. Oncol Lett 2016; 13:518-524. [PMID: 28123591 DOI: 10.3892/ol.2016.5387] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/25/2016] [Indexed: 12/20/2022] Open
Abstract
The present study was designed to investigate the antiproliferative activity of isoimperatorin against SGC-7901 cells and to examine the possible mechanisms. The antiproliferative activity of isoimperatorin against SGC-7901 cells was evaluated using an MTT assay, and the mechanisms were investigated using flow cytometry and western blot assays, which were used to determine the apoptotic rate and expression levels of mitochondria-mediated apoptosis-associated proteins, including Survivin, myeloid leukemia cell-1 (Mcl-1), B cell lymphoma-extra large (Bcl-xl), B cell lymphoma 2 (Bcl-2), second mitochondria-derived activator of caspase (Smac), Bcl-2-associated X factor (Bax), cleaved (c)-caspase-3 and c-caspase-9 in SGC-7901 cells. Additionally, a xenograft assay was used to confirm whether isoimperatorin had an inhibitory effect on SGC-7901 cell-induced tumors in vivo. The results of the MTT assay suggested that isoimperatorin significantly inhibited the proliferation of SGC-7901 cells in a dose- and time-dependent manner, and the half maximal inhibitory concentration was 18.75 µg/ml. The results of the flow cytometric analysis indicated that, following treatment with isoimperatorin, the apoptotic rate of SGC-7901 cells was significantly increased, compared with that of cells in the control group. The results of the western blot analysis indicated that, following treatment with isoimperatorin, the expression levels of the pro-apoptotic proteins, Bax, c-caspase-3 and c-caspase-9, were significantly increased and the expression levels of the anti-apoptotic proteins, Survivin and Bcl-2, were significantly reduced, compared with the control group. No alterations in expression were found in the other apoptosis-associated proteins, including Mcl-1, Bcl-xl and Smac. The results of the xenograft assay indicated that isoimperatorin significantly inhibited the growth of SGC-7901 cell-induced tumor in vivo by increasing the expression levels of pro-apoptotic proteins (Bax, c-caspase-3 and c-caspase-9) and reducing the expression levels of anti-apoptotic proteins (Survivin and Bcl-2) without adverse effects on the increasing body weight of nude mice. In conclusion, the present study revealed that isoimperatorin may be able to induce the apoptosis of SGC-7901 cells in vitro and in vivo by regulating the expression levels of mitochondria-mediated apoptosis-associated proteins.
Collapse
Affiliation(s)
- Kehui Tong
- Department of Oncological Surgery, Yinzhou People's Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Chang Xin
- Department of Hepatobiliary Surgery, Yinzhou People's Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Wenzhong Chen
- Department of General Surgery, Yinzhou People's Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
48
|
Wang C, Huo X, Tian X, Xu M, Dong P, Luan Z, Wang X, Zhang B, Zhang B, Huang S, Deng S, Ma X. Inhibition of melatonin metabolism in humans induced by chemical components from herbs and effective prediction of this risk using a computational model. Br J Pharmacol 2016; 173:3261-3275. [PMID: 27588415 DOI: 10.1111/bph.13612] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/08/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Herbs which are widely used as food and medicine, are involved in many physiopathological processes. Melatonin is a human hormone, synthesized and secreted by the pineal gland, with a range of biological functions. Here, we have evaluated the potential influences of components extracted from common herbs on melatonin metabolism in humans. EXPERIMENTAL APPROACH An in vivo pharmacokinetic study involving 12 healthy subjects, in vitro incubations with human liver microsomes (HLMs) and recombinant human cytochrome P (CYP) isoenzymes and an in silico quantitative structure-activity relationship (QSAR) model analysis using comparative molecular field analysis and comparative molecular similarity indices analysis methods were employed to explore these interactions. KEY RESULTS After systematic screening of 66 common herbs, Angelica dahurica exhibited the most potent inhibition of melatonin metabolism in vitro. The in vivo pharmacokinetic study indicated inhibition of melatonin metabolism, with approximately 12- and 4-fold increases in the AUC and Cmax of melatonin in human subjects. Coumarins from A. dahurica, including imperatorin, isoimperatorin, phellopterin, 5-methoxypsoralen and 8-methoxypsoralen, markedly inhibited melatonin metabolism with Ki values of 14.5 nM, 38.8 nM, 6.34 nM, 5.34 nM and 18 nM respectively, through inhibition of CYP 1A2, 1A1 and 1B1 in HLMs. A QSAR model was established and satisfactorily predicted the potential risk of coumarins for inhibition of melatonin metabolism in vivo. CONCLUSION AND IMPLICATIONS Coumarins from A. dahurica inhibited melatonin metabolism in vivo and in vitro. Our findings provide vital guidance for the clinical use of melatonin.
Collapse
Affiliation(s)
- Chao Wang
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China.,Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaokui Huo
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Xiangge Tian
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Min Xu
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Peipei Dong
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Zhilin Luan
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Xiaobo Wang
- Department of Pharmacy and Traditional Chinese Medicine, Chinese People's Liberation Army 210 Hospital, Dalian, China
| | - Baojing Zhang
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shanshan Huang
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Sa Deng
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Xiaochi Ma
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China. .,Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
49
|
de Oliveira DM, Ferreira Lima RM, Clarencio J, Velozo EDS, de Amorim IA, Andrade da Mota TH, Costa SL, Silva FP, El-Bachá RDS. The classical photoactivated drug 8-methoxypsoralen and related compounds are effective without UV light irradiation against glioma cells. Neurochem Int 2016; 99:33-41. [DOI: 10.1016/j.neuint.2016.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/16/2016] [Accepted: 06/07/2016] [Indexed: 12/21/2022]
|
50
|
Park EY, Kim EH, Kim CY, Kim MH, Choung JS, Oh YS, Moon HS, Jun HS. Angelica dahurica Extracts Improve Glucose Tolerance through the Activation of GPR119. PLoS One 2016; 11:e0158796. [PMID: 27391814 PMCID: PMC4938581 DOI: 10.1371/journal.pone.0158796] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/22/2016] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptor (GPR) 119 is expressed in pancreatic β-cells and intestinal L cells, and is involved in glucose-stimulated insulin secretion and glucagon-like peptide-1 (GLP-1) release, respectively. Therefore, the development of GPR119 agonists is a potential treatment for type 2 diabetes. We screened 1500 natural plant extracts for GPR119 agonistic actions and investigated the most promising extract, that from Angelica dahurica (AD), for hypoglycemic actions in vitro and in vivo. Human GPR119 activation was measured in GeneBLAzer T-Rex GPR119-CRE-bla CHO-K1 cells; intracellular cAMP levels and insulin secretion were measured in INS-1 cells; and GLP-1 release was measured in GLUTag cells. Glucose tolerance tests and serum plasma insulin levels were measured in normal C57BL6 mice and diabetic db/db mice. AD extract-treated cells showed significant increases in GPR119 activation, intracellular cAMP levels, GLP-1 levels and glucose-stimulated insulin secretion as compared with controls. In normal mice, a single treatment with AD extract improved glucose tolerance and increased insulin secretion. Treatment with multiple doses of AD extract or n-hexane fraction improved glucose tolerance in diabetic db/db mice. Imperatorin, phellopterin and isoimperatorin were identified in the active fraction of AD extract. Among these, phellopterin activated GPR119 and increased active GLP-1 and insulin secretion in vitro and enhanced glucose tolerance in normal and db/db mice. We suggest that phellopterin might have a therapeutic potential for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Eun-Young Park
- College of Pharmacy, Mokpo National University, Muan-gun, Jeonnam, 534-729, Republic of Korea
| | - Eung-Hwi Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, South Korea
| | - Chul-Young Kim
- College of Pharmacy, Hanyang University, Ansan, Kyeonggi, 426-791, Republic of Korea
| | - Mi-Hwi Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, South Korea
| | - Jin-Seung Choung
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, South Korea
| | - Yoon-Sin Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, South Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon, South Korea
| | - Hong-Sub Moon
- College of Pharmacy, Mokpo National University, Muan-gun, Jeonnam, 534-729, Republic of Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, South Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon, South Korea
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, South Korea
- * E-mail:
| |
Collapse
|