1
|
Vukmirovic D, Vo NTK, Seymour C, Rollo D, Mothersill C. Influence of common dietary supplements (curcumin, andrographolide, and d-limonene) on the radiobiological responses of p53-competent colonic cancer epithelial cells. Int J Radiat Biol 2021; 97:341-347. [PMID: 33320772 DOI: 10.1080/09553002.2021.1864499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE The main goal of the research was to determine whether commercially available common dietary phytochemical supplements (curcumin, andrographolide, and d-limonene) have radiomodulatory effects on p53-competent human colonic epithelial cells. METHODS Clonogenic survival assays were used to characterize effects of the phytochemicals on cultured colonic epithelial cells (HCT116 p53+/+) in direct irradiation or upon receipt of irradiated-cell conditioned media (for bystander effects). In direct irradiation, feeding regimen experiments included compound administration pre- and post-irradiation, which was used as a basis to define effects as radioprotective and radiomitigative, respectively. In the bystander effect experiments, either donor or recipient cell cultures were fed with the phytochemicals and bystander-induced clonogenic cell death was quantitatively evaluated. Dose challenge was in the range of 0.5 - 5 Gy using the gamma source (Cs-137). RESULTS Curcumin, andrographolide, and d-limonene appeared to not exhibit radioprotective and radiomitigative properties in HCT116 p53+/+ cells. D-limonene was found to induce radiosensitization in post-irradiation administration. All three compounds appeared not to modulate the radiation-induced bystander signal production and response in HCT116 p53+/+ cells. CONCLUSIONS Curcumin, andrographolide, and d-limonene are known to have many chemoprotective benefits. This work shows that they, however, did not protect colonic epithelial HCT116 p53+/+ cells from radiation killing. As HCT116 p53+/+ cells are tumourigenic in nature, this finding implies that these three dietary compounds would not reduce the killing efficacy of radiation in gastrointestinal tumorigenesis. The post-irradiation radiosensitizing effect of d-limonene was an intriguing observation worth further investigation.
Collapse
Affiliation(s)
- Dusan Vukmirovic
- Radiation Sciences Graduate Program, McMaster University, Hamilton, Canada
| | - Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, Canada.,School of Interdisciplinary Science, McMaster University, Hamilton, Ontario, Canada
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | - Dave Rollo
- Department of Biology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
2
|
Vukmirovic D, Vo NTK, Seymour C, Rollo D, Mothersill C. Characterization of Radioprotective, Radiomitigative and Bystander Signaling Modulating Effects of Endogenous Metabolites - Phenylacetate, Ursodeoxycholate and Tauroursodeoxycholate - on HCT116 Human Colon Carcinoma Cell Line. Radiat Res 2019; 192:28-39. [PMID: 31058578 DOI: 10.1667/rr15323.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposures to ionizing radiation can cause depletion in stem cell reservoirs and lead to chronic injury processes that exacerbate carcinogenic and inflammatory responses. Therefore, radioprotective measures, against both acute and chronic biological effects of radiation, require frequent intake of nontoxic natural products, which have practical oral administration. The goal of this study was to characterize the radioprotective, radiomitigative and radiation-induced bystander effect-inhibiting properties of endogenous metabolites: phenylacetate, ursodeoxycholate and tauroursodeoxycholate. Compounds were administered pre- and postirradiation as well as in donor and recipient bystander flasks to analyze whether these might adequately protect against radiation injury as well as facilitate recovery from the exposures. The clonogenic HCT116 p53 wild-type cancer cell line in this study shares characteristics of stem cells, such as high reproductive viability, which is an effective marker to demonstrate compound effectiveness. Clonogenic assays were therefore used to characterize radioprotective, radiomitigative and bystander inhibiting properties of treatment compounds whereby cellular responses to radiation were quantified with macroscopic colony counts to measure cell survival in flasks. The results were statistically significant for phenylacetate and tauroursodeoxycholate when administered preirradiation, conferring radioprotection up to 2 Gy, whereas administration postirradiation and in bystander experiments did not confer radioprotection in vitro. These findings suggest that phenylacetate and tauroursodeoxycholate might be effective radioprotectors, although they possess no radiomitigative properties.
Collapse
Affiliation(s)
| | - Nguyen T K Vo
- b Department of Biology, McMaster University, West, Hamilton, Ontario, Canada, L8S 4L8
| | - Colin Seymour
- b Department of Biology, McMaster University, West, Hamilton, Ontario, Canada, L8S 4L8
| | | | - Carmel Mothersill
- b Department of Biology, McMaster University, West, Hamilton, Ontario, Canada, L8S 4L8
| |
Collapse
|
3
|
Dong L, Yang Y, Lu Y, Lu C, Lv J, Jiang N, Xu Q, Gao Y, Chang Q, Liu X. Radioprotective effects of dammarane sapogenins against 60 Co-induced myelosuppression in mice. Phytother Res 2018; 32:741-749. [PMID: 29356175 DOI: 10.1002/ptr.6027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 12/15/2022]
Abstract
Radiotherapy frequently induces failure of hematopoietic system and leads to myelosuppression. The objective of this study was to investigate the protective effect of dammarane sapogenins (DS), the hydrolysed product of the constituent ginsenosides of Panax ginseng, which are produced by gut metabolism, on radiation-induced hematopoietic injury. Mice were exposed to 3.5 Gy 60 Co γ-rays of total body radiation at a dose rate of 1.60 Gy per minute and treated with DS or granulocyte colony-stimulating factor immediately after radiation. The general condition of the mice, the peripheral blood cell counts, multiple colony forming unit (CFU) assays of hematopoietic progenitor cells, hematopoietic stem cell counts, bone marrow histology, and spleen colony forming unit counts were then investigated. Our results indicated that administration with DS could ameliorate 60 Co-irradiation induced damage and significantly increase the number of peripheral blood cells (white blood cells and platelets), 5 types of hematopoietic progenitor cells CFU (CFU-GM, CFU-E, BFU-E, CFU-Meg, and CFU-GEMM), hematopoietic stem cell (Lin- c-kit+ Scal-1+ ) numbers, and CFUs in the spleen, as well as improved bone marrow histopathology. All together, these results confirmed the enhancement of DS on hematopoiesis.
Collapse
Affiliation(s)
- Liming Dong
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yanyan Yang
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yan Lu
- Outpatient Department of PLA 306th Hospital, Aerospace Town Branch, Beijing, 100193, China
| | - Cong Lu
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jingwei Lv
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Ning Jiang
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Qiuxia Xu
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yue Gao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Qi Chang
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xinmin Liu
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- China Astronaut Research and Training Center, Beijing, 100094, China
| |
Collapse
|
4
|
Purification and fermentation characteristics of exopolysaccharide from Fomitopsis castaneus Imaz. Int J Biol Macromol 2017; 105:213-218. [DOI: 10.1016/j.ijbiomac.2017.06.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/31/2017] [Accepted: 06/30/2017] [Indexed: 01/06/2023]
|
5
|
Samarth RM, Samarth M, Matsumoto Y. Utilization of cytogenetic biomarkers as a tool for assessment of radiation injury and evaluation of radiomodulatory effects of various medicinal plants - a review. Drug Des Devel Ther 2015; 9:5355-72. [PMID: 26451089 PMCID: PMC4590411 DOI: 10.2147/dddt.s91299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Systematic biological measurement of “cytogenetic endpoints” has helped phenomenally in assessment of risks associated with radiation exposure. There has been a surge in recent times for the usage of radioactive materials in health care, agriculture, industrial, and nuclear power sectors. The likelihood of radiation exposure from accidental or occupational means is always higher in an overburdened ecosystem that is continuously challenged to meet the population demands. Risks associated with radiation exposure in this era of modern industrial growth are minimal as international regulations for maintaining the safety standards are stringent and strictly adhered to, however, a recent disaster like “Fukushima” impels us to think beyond. The major objective of radiobiology is the development of an orally effective radio-modifier that provides protection from radiation exposure. Once available for mass usage, these compounds will not only be useful for providing selective protection against accidental and occupational radiation exposure but also help to permit use of higher doses of radiation during treatment of various malignancies curtailing unwarranted adverse effects imposed on normal tissues. Bio-active compounds isolated from natural sources enriched with antioxidants possess unique immune-modulating properties, thus providing a double edged benefit over synthetic radioprotectors. We aim to provide here a comprehensive overview of the various agents originating from plant sources that portrayed promising radioprotection in various experimental models with special emphasis on studies that used cytogenetic biomarkers. The agents will include crude extracts of various medicinal plants, purified fractions, and herbal preparations.
Collapse
Affiliation(s)
- Ravindra M Samarth
- Department of Research, Bhopal Memorial Hospital and Research Centre (ICMR), Bhopal, India ; National Institute for Research in Environmental Health (NIREH), Indian Council of Medical Research, Bhopal, India
| | - Meenakshi Samarth
- Department of Zoology, Centre for Advanced Studies, University of Rajasthan, Jaipur, India
| | - Yoshihisa Matsumoto
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
6
|
Jang SS, Kim HG, Han JM, Lee JS, Choi MK, Huh GJ, Son CG. Modulation of radiation-induced alterations in oxidative stress and cytokine expression in lung tissue by Panax ginseng extract. Phytother Res 2014; 29:201-9. [PMID: 25219493 DOI: 10.1002/ptr.5223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
Abstract
We investigated the modulating effect of Panax ginseng extract (PGE) on radiation-induced lung injury (RILI) by measuring early changes in oxidative stress levels, cytokine expression, and the histopathology of mouse lung tissue treated with high dose of X-ray radiation. The mice were pretreated with 25, 50, and 100-mg/kg doses of PGE orally for four consecutive days, and their thoraces were then exposed to 15-Gy X-ray radiation 1 h after the last administration of PGE on day 4. The pretreatments with 50 and 100 mg/kg PGE led to significant reductions in the elevation of lipid peroxidation levels at 2 and 10 days, respectively, after irradiation. The mice pretreated with PGE exhibited dose-dependent reductions in the irradiation-induced production of tumor necrosis factor α and transforming growth factor β1 cytokines 10 days after irradiation, with these reductions nearly reaching the control levels after the 100-mg/kg dose. Furthermore, together with providing significant protection against reductions in catalase activity and glutathione content, pretreatment with 100 mg/kg PGE resulted in a marked attenuation of the severity of inflammatory changes in lung tissue 10 days after irradiation. A high pretreatment dose of PGE may be a useful pharmacological approach for protection against RILI.
Collapse
Affiliation(s)
- Seong Soon Jang
- Department of Radiation Oncology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Antioxidant and immunoregulatory activity of alkali-extractable polysaccharides from North American ginseng. Int J Biol Macromol 2014; 65:357-61. [DOI: 10.1016/j.ijbiomac.2014.01.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/18/2013] [Accepted: 01/18/2014] [Indexed: 02/07/2023]
|
8
|
Hazra B, Ghosh S, Kumar A, Pandey BN. The prospective role of plant products in radiotherapy of cancer: a current overview. Front Pharmacol 2012; 2:94. [PMID: 22291649 PMCID: PMC3253585 DOI: 10.3389/fphar.2011.00094] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/22/2011] [Indexed: 01/06/2023] Open
Abstract
Treatment of cancer often requires exposure to radiation, which has several limitations involving non-specific toxicity toward normal cells, reducing the efficacy of treatment. Efforts are going on to find chemical compounds which would effectively offer protection to the normal tissues after radiation exposure during radiotherapy of cancer. In this regard, plant-derived compounds might serve as “leads” to design ideal radioprotectors/radiosensitizers. This article reviews some of the recent findings on prospective medicinal plants, phytochemicals, and their analogs, based on both in vitro and in vivo tumor models especially focused with relevance to cancer radiotherapy. Also, pertinent discussion has been presented on the molecular mechanism of apoptotic death in relation to the oxidative stress in cancer cells induced by some of these plant samples and their active constituents.
Collapse
Affiliation(s)
- Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University Kolkata, India.
| | | | | | | |
Collapse
|
9
|
Qi LW, Wang CZ, Yuan CS. Ginsenosides from American ginseng: chemical and pharmacological diversity. PHYTOCHEMISTRY 2011; 72:689-99. [PMID: 21396670 PMCID: PMC3103855 DOI: 10.1016/j.phytochem.2011.02.012] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 01/11/2011] [Accepted: 02/14/2011] [Indexed: 05/19/2023]
Abstract
Ginseng occupies a prominent position in the list of best-selling natural products in the world. Compared to the long history of use and widespread research on Asian ginseng, the study of American ginseng is relatively limited. In the past decade, some promising advances have been achieved in understanding the chemistry, pharmacology and structure-function relationship of American ginseng. To date, there is no systematic review of American ginseng. In this review, the different structures of the ginsenosides in American ginseng are described, including naturally occurring compounds and those resulting from steaming or biotransformation. Preclinical and clinical studies published in the past decade are also discussed. Highlighted are the chemical and pharmacological diversity and potential structural-activity relationship of ginsenosides. The goal is that this article is a useful reference to chemists and biologists researching American ginseng, and will open the door to agents in drug discovery.
Collapse
Affiliation(s)
- Lian-Wen Qi
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, The Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
10
|
Sagar SM. Can the therapeutic gain of radiotherapy be increased by concurrent administration of Asian botanicals? Integr Cancer Ther 2009; 9:5-13. [PMID: 20042406 DOI: 10.1177/1534735409356981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Therapeutic gain by radiotherapy can be achieved through improved targeting, selectively sensitizing malignant cells, or protecting normal tissue. The majority of synthetic chemical radiation sensitizers and normal tissue protectors have proved to be too toxic at effective clinical doses. However, Asian botanicals (from both Chinese and Ayurvedic medicine) are being evaluated for their ability to improve therapeutic gain through the modulation of reactive oxygen species. An increase in the efficacy of radiotherapy on tumor tissue allows a reduction in the dose applied to normal tissues. In addition, some botanicals may selectively protect normal tissue or increase its repair following radiation therapy. The results are promising enough to consider clinical trials.
Collapse
Affiliation(s)
- Stephen M Sagar
- McMaster University and Juravinski Cancer Centre, Hamilton, ON, Canada.
| |
Collapse
|
11
|
Lee TK, O'Brien KF, Wang W, Sheng C, Wang T, Johnke RM, Allison RR. American Ginseng Modifies Cs-Induced DNA Damage and Oxidative Stress in Human Lymphocytes. ACTA ACUST UNITED AC 2009; 1:1-8. [PMID: 19946576 DOI: 10.2174/1876388x00901010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The multifold bioactive medicinal properties of ginseng have been closely linked to its antioxidative ability, which is related to its ginsenoside content. Since the key mechanism of radiation-induced cell death and tissue damage is the generation of reactive oxygen species (ROS) that attack cellular DNA, this study focuses on the impact of a standardized North American ginseng extract (NAGE) on (137)Cs-induced oxidative stress in human peripheral lymphocytes (PBL) obtained from 10 healthy individuals (6M/4F), 42.7 +/- 4.6 years of age. At two different time points (0 h and 24 h before irradiation), we applied NAGE (250 - 1000 microg ml(-1)) to mononuclear cell cultures for cytokinesis-block micronuclei (MN) assay and determination of the state of oxidative stress in PBL. We found that at both time points, NAGE significantly reduced the MN yields in PBL after irradiation (1 and 2 Gy) in a concentration-dependent manner (P<0.001). Compared with radiation alone, the maximum reduction rate of MN yield were 51.1% and 49.1% after 1 Gy and 2 Gy exposures, respectively. We also found that before irradiation the presence of NAGE in the culture medium resulted in a significant increased intracellular total antioxidant capacity (TAC) in PBL. At both time points, the increment of (137)Cs-induced MN yields in PBL was positively correlated with the increment of intracellular ROS production (R = 0.6 - 0.7, P = 0.002), but negatively correlated with the reduction of TAC levels (R = -0.4 -0.5, P = 0.02 - 0.004). However, the presence of NAGE in the culture medium significantly increased the TAC levels, while concomitantly decreasing both ROS production and MN yields in PBL (P<0.001). Our findings that NAGE is effective in protecting human PBL against radiation-induced oxidative stress should encourage further in vivo study of dietary supplementation with NAGE as an effective natural radiation countermeasure.
Collapse
Affiliation(s)
- Tung-Kwang Lee
- Department of Radiation Oncology, Leo W. Jenkins Cancer Center, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | | | | | | | | | | | | |
Collapse
|