1
|
Feng S, Li T, Wei X, Zheng Y, Zhang Y, Li G, Zhao Y. The Antioxidant and Anti-Fatigue Effects of Rare Ginsenosides and γ-Aminobutyric Acid in Fermented Ginseng and Germinated Brown Rice Puree. Int J Mol Sci 2024; 25:10359. [PMID: 39408689 PMCID: PMC11476846 DOI: 10.3390/ijms251910359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
γ-aminobutyric acid (GABA) and rare ginsenosides are good antioxidant and anti-fatigue active components that can be enriched via probiotic fermentation. In this study, ginseng and germinated brown rice were used as raw materials to produce six fermented purees using fermentation and non-fermentation technology. We tested the chemical composition of the purees and found that the content of GABA and rare ginsenoside (Rh4, Rg3, and CK) in the puree made of ginseng and germinated brown rice (FGB) increased significantly after fermentation. The antioxidant activity of the six purees was determined using cell-free experiments, and it was found that FGB had better ferric-ion-reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging rates, exhibiting better antioxidant effects. We then evaluated the antioxidant effect of FGB in HepG2 cells induced by H2O2 and found that FGB can reduce the generation of reactive oxygen species (ROS) in HepG2 cells and increase the membrane potential level, thereby improving oxidative damage in these cells. In vivo experiments also showed that FGB has good antioxidant and anti-fatigue activities, which can prolong the exhaustive swimming time of mice and reduce the accumulation of metabolites, and is accompanied by a corresponding increase in liver glycogen and muscle glycogen levels as well as superoxide dismutase and lactate dehydrogenase activities. Finally, we believe that the substances with good antioxidant and anti-fatigue activity found in FGB are derived from co-fermented enriched GABA and rare ginsenosides.
Collapse
Affiliation(s)
- Shiwen Feng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (S.F.); (T.L.); (Y.Z.)
| | - Tao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (S.F.); (T.L.); (Y.Z.)
| | - Xinrui Wei
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.W.); (Y.Z.)
| | - Yifei Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (S.F.); (T.L.); (Y.Z.)
| | - Yumeng Zhang
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.W.); (Y.Z.)
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (S.F.); (T.L.); (Y.Z.)
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (S.F.); (T.L.); (Y.Z.)
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.W.); (Y.Z.)
| |
Collapse
|
2
|
Kwon DA, Bak SB, Kim YS, Kim SK, Lee HS. Antioxidant and Anti-Fatigue Effects of a Standardized Botanical Extract Fraction (HemoHIM) in Forced-Exercised Aged Mice. J Med Food 2024; 27:502-509. [PMID: 38669056 DOI: 10.1089/jmf.2023.k.0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
HemoHIM is a standardized medicinal herbal preparation consisting of extracts of Angelica gigas Nakai, Cnidium officinale Makino, and Paeonia lactiflora Pallas that possesses immune regulatory activities. This study aimed to research the potential antioxidant effects of HemoHIM and its capacity for reducing fatigue in aged mice subjected to forced exercise. After administering HemoHIM 125 (500 mg/kg orally) for 4 weeks in 8-month-old female C57BL/6 mice (4 groups of 10 mice), various parameters were evaluated. The analyses revealed that HemoHIM enhanced swimming time and grip strength. In addition, it significantly reduced serum lactate levels and increased liver glutathione peroxidase (GPx) levels after exercise challenge. The expression levels of antioxidant enzymes and factors, including nuclear factor erythroid 2-related factor-2 (Nrf-2), heme oxygenase 1, superoxide dismutase, GPx, and glutathione reductase, were significantly higher in liver and muscle tissues of mice treated with HemoHIM. These results indicate that HemoHIM might function as an anti-fatigue and antioxidant agent by modulating the Nrf-2 signaling pathway.
Collapse
Affiliation(s)
- Da-Ae Kwon
- G-Project Team, Food Science R&D Center, Kolmar BNH Co., Ltd., Seoul, Korea
| | - Su-Bin Bak
- G-Project Team, Food Science R&D Center, Kolmar BNH Co., Ltd., Seoul, Korea
| | - Yong Sang Kim
- Food Safety Team, Kolmar BNH Co., Ltd., Sejong-Si, Korea
| | - Seul-Ki Kim
- Center for Nonclinical Development, HK inno.N, Gyeonggi-do, Korea
| | - Hak Sung Lee
- G-Project Team, Food Science R&D Center, Kolmar BNH Co., Ltd., Seoul, Korea
| |
Collapse
|
3
|
Babicola L, Mancini C, Riccelli C, Di Segni M, Passeri A, Municchi D, D'Addario SL, Andolina D, Cifani C, Cabib S, Ventura R. A mouse model of the 3-hit effects of stress: Genotype controls the effects of life adversities in females. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110842. [PMID: 37611651 DOI: 10.1016/j.pnpbp.2023.110842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Helplessness is a dysfunctional coping response to stressors associated with different psychiatric conditions. The present study tested the hypothesis that early and adult adversities cumulate to produce helplessness depending on the genotype (3-hit hypothesis of psychopathology). To this aim, we evaluated whether Chronic Unpredictable Stress (CUS) differently affected coping and mesoaccumbens dopamine (DA) responses to stress challenge by adult mice of the C57BL/6J (B6) and DBA/2J (D2) inbred strains depending on early life experience (Repeated Cross Fostering, RCF). Three weeks of CUS increased the helplessness expressed in the Forced Swimming Test (FST) and the Tail Suspension Test by RCF-exposed female mice of the D2 strain. Moreover, female D2 mice with both RCF and CUS experiences showed inhibition of the stress-induced extracellular DA outflow in the Nucleus Accumbens, as measured by in vivo microdialysis, during and after FST. RCF-exposed B6 mice, instead, showed reduced helplessness and increased mesoaccumbens DA release. The present results support genotype-dependent additive effects of early experiences and adult adversities on behavioral and neural responses to stress by female mice. To our knowledge, this is the first report of a 3-hit effect in an animal model. Finally, the comparative analyses of behavioral and neural phenotypes expressed by B6 and D2 mice suggest some translationally relevant hypotheses of genetic risk factors for psychiatric disorders.
Collapse
Affiliation(s)
- Lucy Babicola
- IRCCS Fondazione Santa Lucia, Rome, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | - Camilla Mancini
- University of Camerino, School of Pharmacy, Pharmacology Unit, Camerino, Italy
| | - Cristina Riccelli
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Rome, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | - Alice Passeri
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | - Diana Municchi
- IRCCS Fondazione Santa Lucia, Rome, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | | | - Diego Andolina
- IRCCS Fondazione Santa Lucia, Rome, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | - Carlo Cifani
- University of Camerino, School of Pharmacy, Pharmacology Unit, Camerino, Italy
| | - Simona Cabib
- IRCCS Fondazione Santa Lucia, Rome, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Rossella Ventura
- IRCCS Fondazione Santa Lucia, Rome, Italy; IRCCS San Raffaele, Rome, Italy.
| |
Collapse
|
4
|
Zhang G, Lu B, Wang E, Wang W, Li Z, Jiao L, Li H, Wu W. Panax ginseng improves physical recovery and energy utilization on chronic fatigue in rats through the PI3K/AKT/mTOR signalling pathway. PHARMACEUTICAL BIOLOGY 2023; 61:316-323. [PMID: 36695132 PMCID: PMC9879180 DOI: 10.1080/13880209.2023.2169719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/21/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
CONTEXT Panax ginseng C. A. Meyer (Araliaceae) is a tonic herb used in ancient Asia. OBJECTIVE This study investigated the antifatigue effect of P. ginseng on chronic fatigue rats. MATERIALS AND METHODS Sprague-Dawley rats were divided into control, model and EEP (ethanol extraction of P. ginseng roots) (50, 100 and 200 mg/kg) groups (n = 8). The rats were subcutaneously handled with loaded swimming once daily for 26 days, except for the control group. The animals were intragastrically treated with EEP from the 15th day. On day 30, serum, liver and muscles were collected, and the PI3K/Akt/mTOR signalling pathway was evaluated. RESULTS The swimming times to exhaust of the rats with EEP were significantly longer than that without it. EEP spared the amount of muscle glycogen, hepatic glycogen and blood sugar under the chronic state. In addition, EEP significantly (p < 0.05) decreased serum triglycerides (1.24 ± 0.17, 1.29 ± 0.04 and 1.20 ± 0.21 vs. 1.58 ± 0.13 mmol/L) and total cholesterol (1.64 ± 0.36, 1.70 ± 0.15 and 1.41 ± 0.19 vs. 2.22 ± 0.19 mmol/L) compared to the model group. Regarding the regulation of energy, EEP had a positive impact on promoting ATPase activities and relative protein expression of the PI3K/Akt/mTOR pathway. CONCLUSIONS Our results suggested that EEP effectively relieved chronic fatigue, providing evidence that P. ginseng could be a potential dietary supplement to accelerate recovery from fatigue.
Collapse
Affiliation(s)
- Guolei Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - BoFan Lu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Enhui Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Zheng Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
5
|
Wang M, Li C, Li J, Hu W, Yu A, Tang H, Li J, Kuang H, Zhang H. Extraction, Purification, Structural Characteristics, Biological Activity and Application of Polysaccharides from Portulaca oleracea L. (Purslane): A Review. Molecules 2023; 28:4813. [PMID: 37375369 DOI: 10.3390/molecules28124813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Portulaca oleracea L. (purslane) is a widely distributed plant with a long history of cultivation and consumption. Notably, polysaccharides obtained from purslane exhibit surprising and satisfactory biological activities, which explain the various benefits of purslane on human health, including anti-inflammatory, antidiabetic, antitumor, antifatigue, antiviral and immunomodulatory effects. This article systematically reviews the extraction and purification methods, chemical structure, chemical modification, biological activity and other aspects of polysaccharides from purslane collected in the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, Baidu Scholar, Google Scholar and CNKI databases in the last 14 years, using the keywords "Portulaca oleracea L. polysaccharides" and "purslane polysaccharides". The application of purslane polysaccharides in different fields is also summarized, and its application prospects are also discussed. This paper provides an updated and deeper understanding of purslane polysaccharides, which will provide useful guidance for the further optimization of polysaccharide structures and the development of purslane polysaccharides as a novel functional material, as well as a theoretical basis for its further research and application in human health and manufacturing development.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Caijiao Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jiaye Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Haipeng Tang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jiayan Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Huijie Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
6
|
Chai X, Pan M, Wang J, Feng M, Wang Y, Zhang Q, Sun Y. Cordycepin exhibits anti-fatigue effect via activating TIGAR/SIRT1/PGC-1α signaling pathway. Biochem Biophys Res Commun 2022; 637:127-135. [DOI: 10.1016/j.bbrc.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
|
7
|
Fatima U, Roy S, Ahmad S, Al-Keridis LA, Alshammari N, Adnan M, Islam A, Hassan MI. Investigating neuroprotective roles of Bacopa monnieri extracts: Mechanistic insights and therapeutic implications. Biomed Pharmacother 2022; 153:113469. [DOI: 10.1016/j.biopha.2022.113469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 12/16/2022] Open
|
8
|
Fang L, Zhang RX, Wei Y, Ling K, Lu L, Wang J, Pan XC, Cai MY. Anti-fatigue effects of fermented soybean protein peptides in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2693-2703. [PMID: 34694006 DOI: 10.1002/jsfa.11609] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bioactive protein hydrolysates and peptides are believed to help counteract and ameliorate physical fatigue. Fermented soybean protein peptides (FSPPs) were prepared by protease hydrolysis and microbial fermentation. The present study aimed to evaluate the anti-fatigue properties of FSPPs. RESULTS The forced swimming time in the FSPP group was 35.78% longer than the control group, the oxygen-resistant survival time of the FSPP group was significantly prolonged and the prolongation rate was 31.00%. In addition, FSPPs decreased the lactic acid (LD), blood urea nitrogen (BUN) and creatine kinase (CK) concentration by 27.47%, 25.93% and 21.70%, respectively, after treatment, while increasing the levels of liver glycogen and muscle glycogen by 93.35% and 67.31%, respectively. FSPPs can significantly increase gut microbiota diversity and regulate the species richness of gut microbiota. The results of real-time polymerase chain reaction (RT-PCR) and western blotting showed that FSPPs activate p-AMPK/PGC1-α and PI3K/Akt/mTOR signaling pathways. CONCLUSION These results indicate that treatment with FSPPs induces anti-fatigue effects, which may be due to the mediating muscle protein synthesis and participation in skeletal muscle hypertrophy, providing energy for muscle cells. FSPPs may have potential applications in the food industry as functional material additives. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Fang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing, People's Republic of China
| | - Rui-Xue Zhang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing, People's Republic of China
| | - Ying Wei
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing, People's Republic of China
| | - Kong Ling
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing, People's Republic of China
| | - Lu Lu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing, People's Republic of China
| | - Jing Wang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing, People's Republic of China
| | - Xing-Chang Pan
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing, People's Republic of China
| | - Mu-Yi Cai
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing, People's Republic of China
| |
Collapse
|
9
|
Li X, Liao A, Dong Y, Hou Y, Pan L, Li C, Zheng S, Yuan Y, Zhang J, Huang J. In vitro dynamic digestion and antifatigue effects of wheat germ albumin. Food Funct 2022; 13:2559-2569. [DOI: 10.1039/d1fo03355g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Wheat germ protein including wheat germ albumin (WGA) demonstrated extensive biological activities. In vitro dynamic digestion of was carried out under simulated gastrointestinal conditions. Antifatigue effects of WGA were evaluated...
Collapse
|
10
|
Peng F, Yin H, Du B, Niu K, Ren X, Yang Y. Anti-fatigue activity of purified flavonoids prepared from chestnut (Castanea mollissima) flower. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
11
|
Natural medicines for the treatment of fatigue: Bioactive components, pharmacology, and mechanisms. Pharmacol Res 2019; 148:104409. [DOI: 10.1016/j.phrs.2019.104409] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
|
12
|
Daneshfard B, Yekta NH, Khoshdel A, Heiran A, Cheraghi R, Yarmohammadi H. The effect of Delphinium denudatum (Jadwar) on fatigue: A randomized double blind placebo-controlled clinical trial. Complement Ther Med 2019; 46:29-35. [PMID: 31519284 DOI: 10.1016/j.ctim.2019.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Fatigue is a common problem in modern-day life. The aim of this study was to evaluate the effect of Delphinium denudatum (Jadwar) on fatigue. METHODS This study was a randomized double-blind placebo-controlled clinical trial between healthy normal university students. In each group, participants were given one capsule of either WEACURE® (containing 500 mg of Jadwar root powder) or placebo for 15 consecutive days. Multidimensional Fatigue Inventory (MFI) questionnaire was used before and after the intervention to evaluate different aspects of fatigue. RESULTS A total number of 64 participants completed the study. Data analysis showed decrease in the scores of all five domains of fatigue in Jadwar group (13.31 ± 3.05-7.75 ± 2.66, 12.31 ± 3.55-7.63 ± 2.62, 12.22 ± 4.26-6.97 ± 2.06, 11.56 ± 4.21 to 7.28 ± 2.37, 12.91 ± 3.09-7.34 ± 2.13 in general fatigue, physical fatigue, reduced activity, reduced motivation, and mental fatigue domains, respectively) which was statistically significant (P value<0.0001). This situation was significantly superior to the placebo group. Prescribed dosage of WEACURE® capsule was well tolerated. CONCLUSION As a complementary tonic agent, Jadwar have a potential to reduce fatigue in normal population. However, objective evaluation of its anti-fatigue effect should be further evaluated.
Collapse
Affiliation(s)
- Babak Daneshfard
- Department of Persian Medicine, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Nafiseh Hosseini Yekta
- Department of Persian Medicine, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| | - Alireza Khoshdel
- Epidemiology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Heiran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roya Cheraghi
- R&D manager, Shefanegar Nazari Pharmaceutical corporation, Qom, Iran
| | - Hassan Yarmohammadi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Sekhar VC, Viswanathan G, Baby S. Insights Into the Molecular Aspects of Neuroprotective Bacoside A and Bacopaside I. Curr Neuropharmacol 2019; 17:438-446. [PMID: 29676230 PMCID: PMC6520587 DOI: 10.2174/1570159x16666180419123022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/19/2018] [Accepted: 04/18/2018] [Indexed: 12/29/2022] Open
Abstract
Bacopa monnieri, commonly known as Brahmi, has been extensively used as a neuromedicine for various disorders such as anxiety, depression and memory loss. Chemical characterization studies revealed the major active constituents of the herb as the triterpenoid saponins, bacosides. Bacoside A, the vital neuroprotective constituent, is composed of four constituents viz., bacoside A3, bacopaside II, jujubogenin isomer of bacopasaponin C (bacopaside X) and bacopasaponin C. B. monnieri extracts as well as bacosides successfully establish a healthy antioxidant environment in various tissues especially in the liver and brain. Free radical scavenging, suppression of lipid peroxidation and activation of antioxidant enzymes by bacosides help to attain a physiological state of minimized oxidative stress. The molecular basis of neuroprotective activity of bacosides is attributed to the regulation of mRNA translation and surface expression of neuroreceptors such as AMPAR, NMDAR and GABAR in the various parts of the brain. Bioavailability as well as binding of neuroprotective agents (such as bacosides) to these receptors is controlled by the Blood Brain Barrier (BBB). However, nano conversion of these drug candidates easily resolves the BBB restriction and carries a promising role in future therapies. This review summarizes the neuroprotective functions of B. monnieri extracts as well as its active compounds (bacoside A, bacopaside I) and the molecular mechanisms responsible for these pharmacological activities.
Collapse
Affiliation(s)
- Vini C Sekhar
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Gayathri Viswanathan
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Sabulal Baby
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| |
Collapse
|
14
|
Xiao G, Peng L, Liu Y, Xiao X. Bacoside a Attenuates Nephrotoxicity and Acute Kidney Injury in Male Albino Rats Induced by Cisplatin. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.257.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Small Molecule Oligopeptides Isolated from Walnut ( Juglans regia L.) and Their Anti-Fatigue Effects in Mice. Molecules 2018; 24:molecules24010045. [PMID: 30583565 PMCID: PMC6337178 DOI: 10.3390/molecules24010045] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/07/2018] [Accepted: 12/19/2018] [Indexed: 12/19/2022] Open
Abstract
Walnut (Juglans regia L.) is unique for its extensive biological activities and pharmaceutical properties. There are few studies on walnut oligopeptides (WOPs), which are small molecule peptides extracted from walnuts. This study aimed to evaluate the anti-fatigue effects of WOPs on ICR mice and explore the possible underlying mechanism. Mice were randomly divided into four experimental sets and each set of mice were then randomly divided into four groups. The vehicle group was administered distilled water, and the three WOP intervention groups were orally administered WOP solution at a dose of 110, 220, and 440 mg/kg of body weight, respectively. After 30 days of WOP intervention, the anti-fatigue activity of WOPs were evaluated using the weight-loaded swimming test and by measuring the change of biochemical parameters, glycogen storage and energy metabolism enzymes, anti-oxidative capacity and mitochondrial function. It was observed that WOPs could significantly prolong the swimming time, decrease the accumulation of lactate dehydrogenase (LDH), creatine kinase (CK), blood urea nitrogen (BUN) and blood lactic acid (BLA), and increased the glycogen storage of liver and gastrocnemius muscle. WOPs also markedly inhibited fatigue induced oxidative stress by increasing the activity of superoxide dismutase (SOD), glutathione peroxidase (GPX) and decreasing the content malondialdehyde (MDA). Notably, WOPs improved the activity of pyruvate kinase (PK), succinate dehydrogenase (SDH), Na+-K+-ATPase, and enhanced the mRNA expression of mitochondrial biogenesis factors and mitochondrial DNA content in skeletal muscles of mice. These results suggest that WOPs have beneficial anti-fatigue effects, which may be attributed to their positive effects on increasing glycogen storage, improving energy metabolism, inhibiting oxidative stress, enhancing mitochondrial function in skeletal muscle, and ameliorating the cell damage and the muscular injury.
Collapse
|
16
|
T MM, Anand T, Khanum F. Attenuation of cytotoxicity induced by tBHP in H9C2 cells by Bacopa monniera and Bacoside A. PATHOPHYSIOLOGY 2018; 25:143-149. [DOI: 10.1016/j.pathophys.2018.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/08/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
|
17
|
Pandareesh MD, Chauhan V, Chauhan A. Walnut Supplementation in the Diet Reduces Oxidative Damage and Improves Antioxidant Status in Transgenic Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2018; 64:1295-1305. [PMID: 30040727 PMCID: PMC6087457 DOI: 10.3233/jad-180361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2018] [Indexed: 01/07/2023]
Abstract
Our previous study has shown beneficial effects of walnuts on memory and learning skills in transgenic mouse model of Alzheimer's disease (AD-tg). To understand underlying mechanism, we studied here whether walnuts can reduce oxidative stress in AD. From 4 months of age, experimental AD-tg mice were fed diets containing 6% (T6) or 9% walnuts (T9) (equivalent to 1 or 1.5 oz, of walnuts per day in humans) for 5, 10, or 15 months. The control groups, i.e., AD-tg (T0) and wild-type (Wt) mice, were fed diets without walnuts. Free radicals, i.e., reactive oxygen species (ROS), lipid peroxidation, protein oxidation, and antioxidant enzymes were assessed in these mice at different ages. AD-tg mice on control diet (T0) showed significant age-dependent increase in ROS levels, lipid peroxidation, and protein oxidation coupled with impaired activities of antioxidant enzymes [superoxide dismutase, catalase, and glutathione peroxidase] compared to Wt mice. Oxidative stress was significantly reduced in AD-tg mice on diets with walnuts (T6, T9), as evidenced by decreased levels of ROS, lipid peroxidation, and protein oxidation, as well as by enhanced activities of antioxidant enzymes compared to T0 mice. Long-term supplementation with walnuts for 10 or 15 months was more effective in reducing oxidative stress in AD-tg mice. Our findings indicate that walnuts can reduce oxidative stress, not only by scavenging free radicals, but also by protecting antioxidant status, thus leading to reduced oxidative damage to lipids and proteins in AD. Therefore, by reducing oxidative stress, a walnut-enriched diet may help reduce the risk or delay the onset and progression of AD.
Collapse
Affiliation(s)
- Mirazkar D. Pandareesh
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Ved Chauhan
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Abha Chauhan
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
18
|
Navya K, Kumar G, Anilakumar K. Ameliorating effect of Curculigo orchoides on chromium(VI) induced oxidative stress via, modulation of cytokines, transcription factors and apoptotic genes. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2017.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Xu M, Liang R, Li Y, Wang J. Anti-fatigue effects of dietary nucleotides in mice. Food Nutr Res 2017; 61:1334485. [PMID: 28659748 PMCID: PMC5475326 DOI: 10.1080/16546628.2017.1334485] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/22/2017] [Indexed: 11/08/2022] Open
Abstract
As the building blocks of nucleic acids, nucleotides are conditionally essential nutrients that exhibit multifaceted activities. The present study aimed to evaluate the anti-fatigue effects of dietary nucleotides (NTs) on mice and explore the possible underlying mechanism. Mice were randomly divided into four experimental sets to detect different indicators. Each set of mice was then divided into four groups: (i) one control group and (ii) three NTs groups, which were fed diets supplemented with NTs at concentrations of 0%, 0.04%, 0.16%, and 0.64% (wt/wt). NTs could significantly increase the forced swimming time, enhance lactate dehydrogenase activity and hepatic glycogen levels, as well as delay the accumulation of blood urea nitrogen and blood lactic acid in mice after 30 days of treatment. NTs also markedly improved fatigue-induced alterations in oxidative stress biomarkers and antioxidant enzymes. Notably, NTs increased the mitochondrial energy metabolic enzyme activities in the skeletal muscles of mice. These results suggest that NTs exert anti-fatigue effects, which may be attributed to the inhibition of oxidative stress and the improvement of mitochondrial function in skeletal muscles. NTs could be used as a novel natural agent for relieving exercise fatigue. Abbreviations: ATP: adenosine triphosphate; BLA: blood lactic acid; GSH-Px: glutathione peroxidase; LDH: lactate dehydrogenase; MDA: malondialdehyde; NTs: dietary nucleotides; SDH: succinate dehydrogenase; SOD: superoxide dismutase; BUN: blood urea nitrogen
Collapse
Affiliation(s)
- Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, PR China
| | - Rui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China.,Department of Nutrition, The First Affiliated hospital of Zhengzhou University, Zhengzhou, PR China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, PR China
| | - Junbo Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, PR China
| |
Collapse
|
20
|
Anti-Fatigue Effects of Small Molecule Oligopeptides Isolated from Panax ginseng C. A. Meyer in Mice. Nutrients 2016; 8:nu8120807. [PMID: 27983571 PMCID: PMC5188462 DOI: 10.3390/nu8120807] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 11/29/2022] Open
Abstract
Panax ginseng C. A. Meyer (ginseng) is an edible and medicinal Chinese herb, which is often used in Asian countries for physical fitness. Ginseng is reported to have a wide range of biological activity and pharmaceutical properties. There were more studies on ginsenosides and polysaccharides, but fewer studies on ginseng oligopeptides (GOP), which are small molecule oligopeptides isolated from ginseng. The present study was designed to evaluate the anti-fatigue effects of GOP in mice and explore the possible underlying mechanism. Mice were randomly divided into four experimental sets for the detection of different indicators. Each set of mice were then divided into four groups. The control group was administered distilled water, and three GOP intervention groups were administered 125, 250, and 500 mg/kg of body weight, respectively, of GOP by gavage each day. After 30 days of GOP treatment, it was observed that GOP could significantly increase the forced swimming time, enhance lactate dehydrogenase (LDH) activity and hepatic glycogen levels, and retard the accumulation of serum urea nitrogen (SUN) and blood lactic acid (BLA) in mice. GOP also markedly ameliorated fatigue-induced alterations of inoxidative stress biomarkers and antioxidant enzymes. Notably, GOP increased the mRNA expression of mitochondrial biogenesis factors and mitochondrial DNA content in skeletal muscles of mice. These results suggest that GOP possess anti-fatigue effects, which may be attributed to the inhibition of oxidative stress and the improvement of mitochondrial function in skeletal muscles. GOP could be a novel natural agent for relieving exercise fatigue.
Collapse
|
21
|
Piyabhan P, Wannasiri S, Naowaboot J. Bacopa monnieri(Brahmi) improved novel object recognition task and increased cerebral vesicular glutamate transporter type 3 in sub-chronic phencyclidine rat model of schizophrenia. Clin Exp Pharmacol Physiol 2016; 43:1234-1242. [DOI: 10.1111/1440-1681.12658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Pritsana Piyabhan
- Division of Physiology; Department of Preclinical Science; Faculty of Medicine; Thammasat University; Klongluang Pathumthani Thailand
| | - Supaporn Wannasiri
- Division of Physiology; Department of Preclinical Science; Faculty of Medicine; Thammasat University; Klongluang Pathumthani Thailand
| | - Jarinyaporn Naowaboot
- Division of Pharmacology; Department of Preclinical Science; Faculty of Medicine; Thammasat University; Klongluang Pathumthani Thailand
| |
Collapse
|
22
|
Bhat PV, Pandareesh, Khanum F, Tamatam A. Cytotoxic Effects of Ochratoxin A in Neuro-2a Cells: Role of Oxidative Stress Evidenced by N-acetylcysteine. Front Microbiol 2016; 7:1142. [PMID: 27531992 PMCID: PMC4969303 DOI: 10.3389/fmicb.2016.01142] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/07/2016] [Indexed: 01/08/2023] Open
Abstract
Ochratoxin-A (OTA), is toxic secondary metabolite and is found to be a source of vast range of toxic effects like hepatotoxicity, nephrotoxicity. However, the information available currently regarding neurotoxic effects exerted by OTA is scanty. Hence, the present study was aimed to evaluate the neurotoxic effects of OTA and the possible mechanisms of toxicity as well as the role of cytotoxic oxidative stress on neuronal (Neuro-2a) cell line was evaluated in vitro. Results of the MTT and LDH assay showed that, OTA induced dose-dependent cell death in Neuro-2a cells and EC50 value was determined as 500 nM. OTA induced high levels of reactive oxygen species (ROS) and elevated levels of malondialdehyde, also loss of mitochondrial membrane potential was observed in a dose depended manner. Effects of OTA on ROS induced chromosomal DNA damage was assessed by Comet assay and plasmid DNA damage assay in which increase in DNA damage was observed in Neuro-2a cells by increasing the OTA concentration. Further western blotting analysis of OTA treated Neuro-2a cells indicated elevated expression levels of c-Jun, JNK3 and cleaved caspase-3 leading to apoptotic cell death. Other hand realtime-Q-PCR analysis clearly indicates the suppressed expression of neuronal biomarker genes including AChE, BDNF, TH and NOS2. Further N-acetylcysteine (NAC) pretreatment to Neuro-2a cells followed by OTA treatment clearly evidenced that, the significant reversal of toxic effects exerted by OTA on Neuro-2a cells. In the present study, results illustrate that ROS a principle event in oxidative stress was elevated by OTA toxicity in Neuro-2a cells. However, further in vivo, animal studies are in need to conclude the present study reports and the use of NAC as a remedy for OTA induced neuronal stress.
Collapse
Affiliation(s)
- Pratiksha V Bhat
- Biochemistry and Nano Sciences Division, Defence Food Research Laboratory Mysore, India
| | - Pandareesh
- Biochemistry and Nano Sciences Division, Defence Food Research Laboratory Mysore, India
| | - Farhath Khanum
- Biochemistry and Nano Sciences Division, Defence Food Research Laboratory Mysore, India
| | - Anand Tamatam
- Biochemistry and Nano Sciences Division, Defence Food Research Laboratory Mysore, India
| |
Collapse
|
23
|
Fatigue-induced Orosomucoid 1 Acts on C-C Chemokine Receptor Type 5 to Enhance Muscle Endurance. Sci Rep 2016; 6:18839. [PMID: 26740279 PMCID: PMC4703980 DOI: 10.1038/srep18839] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 11/26/2015] [Indexed: 01/04/2023] Open
Abstract
Understanding and managing fatigue is a significant challenge in clinic and society. In attempting to explore how the body responds to and regulates fatigue, we found in rodent fatigue models that orosomucoid 1 (ORM1) was significantly increased in multiple tissues, including blood and muscle. Interestingly, administration of exogenous ORM1 increased muscle glycogen and enhanced muscle endurance, whereas ORM1 deficiency resulted in a significant decrease of muscle endurance both in vivo and in vitro, which could largely be restored by exogenous ORM1. Further studies demonstrated that ORM1 can bind to C-C chemokine receptor type 5 (CCR5) on muscle cells and deletion of the receptor abolished the effect of ORM1. Thus, fatigue upregulates the level of ORM1, which in turn functions as an anti-fatigue protein to enhance muscle endurance via the CCR5 pathway. Modulation of the level of ORM1 and CCR5 signaling could be a novel strategy for the management of fatigue.
Collapse
|
24
|
Cognition Enhancing and Neuromodulatory Propensity of Bacopa monniera Extract Against Scopolamine Induced Cognitive Impairments in Rat Hippocampus. Neurochem Res 2015; 41:985-99. [DOI: 10.1007/s11064-015-1780-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/30/2015] [Accepted: 11/17/2015] [Indexed: 12/31/2022]
|
25
|
Zhao XN, Liang JL, Chen HB, Liang YE, Guo HZ, Su ZR, Li YC, Zeng HF, Zhang XJ. Anti-Fatigue and Antioxidant Activity of the Polysaccharides Isolated from Millettiae speciosae Champ. Leguminosae. Nutrients 2015; 7:8657-69. [PMID: 26506375 PMCID: PMC4632442 DOI: 10.3390/nu7105422] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/29/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022] Open
Abstract
Millettiae speciosae Champ. Leguminosae (MSC), is a well-known Chinese herb traditionally used as food material and medicine for enhancing physical strength. Our preliminary study found that the aqueous extract of this herb (MSE) had an anti-fatigue effect. In this paper, we further separated MSE into total polysaccharides (MSP) and supernatant (MSS) by alcohol precipitation, and explored which fraction was active for its anti-fatigue effect. Mice were orally administered with MSP or MSS at the doses of 200, 400, and 800 mg/kg for 20 days and the anti-fatigue effect was assessed by exhaustive swimming exercise (ESE). The biochemical parameters related to fatigue after ESE and the in vitro antioxidant activity of active fraction were determined. Our results showed that MSP, instead of MSS, significantly extended the swimming time to exhaustion (p < 0.05), indicating that MSP is responsible for the anti-fatigue effect of MSE. In addition, MSP treatment increased the levels of glucose (Glu) and muscle glycogen, whereas it decreased the accumulations of blood urea nitrogen (BUN) and lactic acid (Lac). Moreover, ESE increased the levels of creatine phosphokinase (CK), lactic dehydrogenase (LDH), and malondialdehyde (MDA) but reduced superoxide dismutase (SOD) and glutathione (GSH) in plasma. In contrast, MSP inhibited all the above changes relating to fatigue. Furthermore, an in vitro antioxidant test revealed that MSP dose-dependently scavenged ·OH and DPPH free radicals. Taken together, these findings strongly suggested that MSP was able to alleviate physical fatigue by increasing energy resources and decreasing accumulation of detrimental metabolites. The antioxidant activity may crucially contribute to the observed anti-fatigue effect of MSP.
Collapse
Affiliation(s)
- Xiao-Ning Zhao
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.-N.Z.); (H.-B.C.)
- Department of Chinese Materia Medica, Guangdong Xinxing Junior College of the Traditional Chinese Medicine, Xinxing 527400, China
| | - Jia-Li Liang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.-L.L.); (Y.-E.L.); (H.-Z.G.); (Z.-R.S.); (Y.-C.L.)
| | - Han-Bin Chen
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.-N.Z.); (H.-B.C.)
| | - Ye-Er Liang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.-L.L.); (Y.-E.L.); (H.-Z.G.); (Z.-R.S.); (Y.-C.L.)
| | - Hui-Zhen Guo
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.-L.L.); (Y.-E.L.); (H.-Z.G.); (Z.-R.S.); (Y.-C.L.)
| | - Ze-Ren Su
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.-L.L.); (Y.-E.L.); (H.-Z.G.); (Z.-R.S.); (Y.-C.L.)
| | - Yu-Cui Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.-L.L.); (Y.-E.L.); (H.-Z.G.); (Z.-R.S.); (Y.-C.L.)
| | - Hui-Fang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.-N.Z.); (H.-B.C.)
- Correspondence: (H.-F.Z.); (X.-J.Z.); Tel.: +86-20-39358-517 (H.-F.Z. & X.-J.Z.); Fax: +86-20-39358-390 (H.-F.Z. & X.-J.Z.)
| | - Xiao-Jun Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.-L.L.); (Y.-E.L.); (H.-Z.G.); (Z.-R.S.); (Y.-C.L.)
- Correspondence: (H.-F.Z.); (X.-J.Z.); Tel.: +86-20-39358-517 (H.-F.Z. & X.-J.Z.); Fax: +86-20-39358-390 (H.-F.Z. & X.-J.Z.)
| |
Collapse
|
26
|
Molecular and Functional Characterization of Bacopa monniera: A Retrospective Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:945217. [PMID: 26413131 PMCID: PMC4564644 DOI: 10.1155/2015/945217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/24/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022]
Abstract
Over the last 50 years, laboratories around the world analyzed the pharmacological effect of Bacopa monniera extract in different dimensions, especially as a nerve tonic and memory enhancer. Studies in animal model evidenced that Bacopa treatment can attenuate dementia and enhances memory. Further, they demonstrate that Bacopa primarily either acts via antioxidant mechanism (i.e., neuroprotection) or alters different neurotransmitters (serotonin (5-hydroxytryptamine, 5-HT), dopamine (DA), acetylcholine (ACh), γ-aminobutyric acid (GABA)) to execute the pharmacological effect. Among them, 5-HT has been shown to fine tune the neural plasticity, which is a substrate for memory formation. This review focuses on the studies which trace the effect of Bacopa treatment on serotonergic system and 5-HT mediated key molecular changes that are associated with memory formation.
Collapse
|
27
|
Kang DZ, Hong HD, Kim KI, Choi SY. Anti-Fatigue Effects of Fermented Rhodiola rosea Extract in Mice. Prev Nutr Food Sci 2015; 20:38-42. [PMID: 25866748 PMCID: PMC4391539 DOI: 10.3746/pnf.2015.20.1.38] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/24/2015] [Indexed: 12/05/2022] Open
Abstract
Rhodiola rosea is a perennial plant which grows in the alpine regions of Europe and Asia. Although the protective effects of R. rosea extract from fatigue due to exercise stress have been reported, studies on fermented R. rosea extract remain insufficient to date. Therefore, this study was conducted to examine the protective effects of fermented R. rosea extract against fatigue and exercise stress. As a result, fermented R. rosea extract was found to significantly increase swimming time, hepatic superoxide dismutase content, and serum lactate dehydrogenase in mice, while decreasing serum blood urea nitrogen content compared to R. rosea extract. Given the above results, it is considered that fermented R. rosea extract effectively protects against fatigue caused by strenuous exercise.
Collapse
Affiliation(s)
- Dong-Zhou Kang
- College of Pharmacy, Yanbian University, Yanji 133-002, China
| | - Hee-Do Hong
- Korea Food Research Institute, Gyeonggi 463-746, Korea
| | - Kyung-Im Kim
- Department of Hotel Culinary Arts & Food Service, Hyejeon College, Chungnam 350-702, Korea
| | - Sang Yoon Choi
- Korea Food Research Institute, Gyeonggi 463-746, Korea ; Korea University of Science and Technology, Daejeon 305-350, Korea
| |
Collapse
|
28
|
Liu J, DU C, Wang Y, Yu Z. Anti-fatigue activities of polysaccharides extracted from Hericium erinaceus.. Exp Ther Med 2014; 9:483-487. [PMID: 25574220 PMCID: PMC4280918 DOI: 10.3892/etm.2014.2139] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 12/05/2014] [Indexed: 01/10/2023] Open
Abstract
Hericium erinaceus (HEP) is a notable medicinal fungus grown in China and other oriental countries. Polysaccharides from HEP have recently attracted considerable attention due to their numerous physiological activities. The objective of this study was to evaluate the anti-fatigue activity of HEP in a mouse model. After one week of acclimation, mice were randomly divided into four groups: a control group, a low-dose HEP-treated group, a moderate-dose HEP-treated group, and a high-dose HEP-treated group. The treated groups received HEP (50, 100 and 200 mg/kg, ig), while the control group received saline solution. Following treatment for 28 days, the mice performed a forced swimming test until they were exhausted, then the exhaustive swimming time was recorded along with certain biochemical parameters related to fatigue, including blood lactic acid (BLA), serum urea nitrogen (SUN), tissue glycogen, superoxide dismutase (SOD), glutathione peroxidase (GPx) and malondialdehyde (MDA). These results suggested that HEP has significant anti-fatigue activity by decreasing BLA, SUN and MDA content, as well as increasing tissue glycogen content and antioxidant enzyme activity. Based on these results, this study provided theoretical support for the application of HEP in the field of sports nutrition.
Collapse
Affiliation(s)
- Jianqing Liu
- Section of Basketball, Wuhan Institute of Physical Education, Wuhan, Hubei 430079, P.R. China
| | - Congxin DU
- Section of Basketball, Wuhan Institute of Physical Education, Wuhan, Hubei 430079, P.R. China
| | - Yifei Wang
- Section of Basketball, Wuhan Institute of Physical Education, Wuhan, Hubei 430079, P.R. China
| | - Zhihua Yu
- School of Physical Education, South-Central University for Nationalities, Hongshan, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
29
|
Anand T, Prakash KB, Pandareesh MD, Khanum F. Development of bacoside enriched date syrup juice and its evaluation for physical endurance. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2014; 51:4026-32. [PMID: 25477676 PMCID: PMC4252464 DOI: 10.1007/s13197-013-0955-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/09/2013] [Accepted: 02/04/2013] [Indexed: 01/20/2023]
Abstract
Bacoside rich juice (BRJ) was developed using date syrup as base. BRJ was evaluated for physicochemical, sensory attributes and its effect on physical endurance. Overall acceptability of BRJ and date syrup juice (DSJ) was good according to hedonic scale/ratings. Twenty four adult male Wistar rats were divided into 4 groups (n = 6). Sedentary (Group I) and control (Group II) group rats were allowed to drink water whereas DSJ and BRJ group rats were provided free access to drink DSJ (Group III) and BRJ (Group IV) for 14 days and were subjected to weight-loaded forced swim test (WFST) for every alternate day in order to evaluate the physical endurance. Both BRJ and DSJ group rats swimming efficiency was improved by 3 and 2 folds respectively in comparison with control group on day- 15. Improved physical endurance in BRJ group is due to reduced malondialdehyde levels in brain, liver and muscle tissues by 16.50 %, 17.88 % and 30.20 %, respectively, compared to DSJ group (p < 0.01). In addition, administration of BRJ significantly protected the hepatic and muscle glycogen levels and reduced the levels of lactic acid in comparison to DSJ group. Hence, the present study clearly indicates that BRJ is an effective anti-fatigue drink ameliorates the various impairments associated with physical endurance.
Collapse
Affiliation(s)
- T. Anand
- />Biochemistry & Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagar, Mysore, 570011 India
| | - K. Bhanu Prakash
- />Department of Food Science and Technology, GITAM Institute of Science, GITAM University, Vishakapatnam, 530045 Andhra Pradesh India
| | - M. D. Pandareesh
- />Biochemistry & Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagar, Mysore, 570011 India
| | - Farhath Khanum
- />Biochemistry & Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagar, Mysore, 570011 India
| |
Collapse
|
30
|
Moon PD, Kim KY, Rew KH, Kim HM, Jeong HJ. Anti-fatigue effects of porcine placenta and its amino acids in a behavioral test on mice. Can J Physiol Pharmacol 2014; 92:937-44. [PMID: 25347266 DOI: 10.1139/cjpp-2014-0068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Placenta extracts are used for their health benefits; however, the anti-fatigue effects of placenta have not been elucidated. Thus, we investigated the anti-fatigue effects of porcine placenta extract (PE) and the amino acids present in the PE (glycine, Gly; proline, Pro; glutamic acid, GA; and arginine, Arg) using a forced swimming test (FST) and a tail-suspension test (TST) on mice. Whole PE or individual amino acids decreased immobility times in the FST. PE, Pro, and Arg all lowered blood levels of lactic acid and alanine aminotransferase (ALT). PE and Gly improved glycogen content and catalase activity. As determined from the serum after the FST: PE regulated the effects of interferon (IFN)-γ and tumor necrosis factor (TNF)-α; GA regulated the effects of IFN-γ; Gly and Arg regulated the effects of interleukin (IL)-6; and all of the amino acids present in PE regulated the effects of TNF-α. As determined from the spleen after the FST: Gly and Arg regulated the effects of IL-1β; Gly, Pro, and Arg regulated the effects of IL-6; PE and all of the amino acids present in PE regulated the effects of TNF-α. After the TST, PE and all of the amino acids present in PE reduced immobility duration as well as levels of aspartate aminotransferase and ALT. As determined from the serum after the TST: PE and Gly regulated the effects of TNF-α; Gly and Arg regulated the effects of IL-1β; Gly, Pro, and Arg regulated the effects of IL-6; PE and all of the amino acids present in PE regulated the effects of TNF-α. These results suggest that PE should be considered a candidate anti-fatigue agent.
Collapse
Affiliation(s)
- Phil-Dong Moon
- a Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | |
Collapse
|
31
|
Cytoprotective propensity of Bacopa monniera against hydrogen peroxide induced oxidative damage in neuronal and lung epithelial cells. Cytotechnology 2014; 68:157-172. [PMID: 25062987 DOI: 10.1007/s10616-014-9767-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/30/2014] [Indexed: 01/24/2023] Open
Abstract
Hydrogen peroxide (H2O2), a major reactive oxygen species (ROS) produced during oxidative stress, is toxic to the cells. Hence, H2O2 has been extensively used to study the effects of antioxidant and cytoprotective role of phytochemicals. In the present investigation H2O2 was used to induce oxidative stress via ROS production within PC12 and L132 cells. Cytoprotective propensity of Bacopa monniera extract (BME) was confirmed by cell viability assays, ROS estimation, lipid peroxidation, mitochondria membrane potential assay, comet assay followed by gene expression studies of antioxidant enzymes in PC12 and L132 cells treated with H2O2 for 24 h with or without BME pre-treatment. Our results elucidate that BME possesses radical scavenging activity by scavenging 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), superoxide radical, and nitric oxide radicals. The IC50 value of BME against these radicals was found to be 226.19, 15.17, 30.07, and 34.55 µg/ml, respectively). The IC50 of BME against ROS, lipid peroxidation and protein carbonylation was found to be 1296.53, 753.22, and 589.04 µg/ml in brain and 1137.08, 1079.65, and 11101.25 µg/ml in lung tissues, respectively. Further cytoprotective potency of the BME ameliorated the mitochondrial and plasma membrane damage induced by H2O2 as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase leakage assays in both PC12 and L132 cells. H2O2 induced cellular, nuclear and mitochondrial membrane damage was restored by BME pre-treatment. H2O2 induced depleted antioxidant status was also replenished by BME pre-treatment. This was confirmed by spectrophotometric analysis, semi-quantitative RT-PCR and western blot studies. These results justify the traditional usage of BME based on its promising antioxidant and cytoprotective property.
Collapse
|
32
|
Nallamuthu I, Tamatam A, Khanum F. Effect of hydroalcoholic extract of Aegle marmelos fruit on radical scavenging activity and exercise-endurance capacity in mice. PHARMACEUTICAL BIOLOGY 2014; 52:551-559. [PMID: 24707972 DOI: 10.3109/13880209.2013.850518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 09/26/2013] [Indexed: 06/03/2023]
Abstract
CONTEXT Aegle marmelos L. Corr (Rutaceae) is an important Indian Ayurvedic medicinal plant used for the treatment of various ailments. However, little information is available on the anti-fatigue properties of its fruit. OBJECTIVE Evaluation of the physical endurance and exercise-induced oxidative stress modulating properties of A. marmelos fruit in mice. MATERIAL AND METHODS Radical scavenging activity of the fruit hydroalcoholic extract was evaluated using in vitro systems. The extract was further evaluated for its endurance-enhancing properties at three oral doses (100, 200 and 400 mg/kg b.wt) in BALB/c mice for 21 d using a swimming test. RESULTS AND DISCUSSION The extract exhibited significant scavenging activity against DPPH (IC₅₀, 351 ± 37 µg/ml) and ABTS radicals (IC₅₀, 228 ± 25 µg/ml), respectively, with the polyphenol content of 95 µg/mg extract. It also inhibited AAPH radical-induced oxidation of biomolecules such as BSA protein (63%), plasmid DNA (81%) and lipids (80.5%). Administration of extract resulted in an increase in the duration of swimming time to exhaustion by 23.4 and 47.5% for medium and higher doses, respectively. The extract significantly normalized the fatigue-related biochemical parameters and also down-regulated the swim stress-induced over-expression of heat shock protein-70 and up-regulated the skeletal muscle metabolic regulators (GLUT-4 and AMPK1-α) by 2- and 3-fold, respectively, at the higher dose in muscle tissues. CONCLUSION Our study demonstrates the anti-fatigue properties of A. marmelos fruit, most probably manifested by delaying the accumulation of serum lactic acid, increasing the fat utilization and up-regulating the skeletal muscle metabolic regulators.
Collapse
Affiliation(s)
- Ilaiyaraja Nallamuthu
- Division of Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory (DFRL), Defence Research & Development Organization , Siddharthanagar, Mysore , India
| | | | | |
Collapse
|
33
|
Neuroprotective and anti-apoptotic propensity of Bacopa monniera extract against sodium nitroprusside induced activation of iNOS, heat shock proteins and apoptotic markers in PC12 cells. Neurochem Res 2014; 39:800-14. [PMID: 24610528 DOI: 10.1007/s11064-014-1273-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/24/2014] [Accepted: 02/27/2014] [Indexed: 12/11/2022]
Abstract
Sodium nitroprusside (SNP) is a widely used nitric oxide (NO) donor, known to exert nitrative stress by up-regulation of inducible nitric oxide synthase (iNOS). Nω-nitro-L-arginine-methyl esther (L-NAME) is a NO inhibitor, which inhibits iNOS expression, is used as positive control. The present study was designed to assess neuroprotective propensity of Bacopa monniera extract (BME) in SNP-induced neuronal damage and oxido-nitrative stress in PC12 cells via modulation of iNOS, heat shock proteins and apoptotic markers. Our results elucidate that pre-treatment of PC12 cells with BME ameliorates the mitochondrial and plasma membrane damage induced by SNP (200 μM) as evidenced by MTT and LDH assays. BME pre-treatment inhibited NO generation by down regulating iNOS expression. BME replenished the depleted antioxidant status induced by SNP treatment. SNP-induced damage to cellular, nuclear and mitochondrial integrity was also restored by BME, which was confirmed by ROS estimation, comet assay and mitochondrial membrane potential assays respectively. BME pre-treatment efficiently attenuated the SNP-induced apoptotic protein biomarkers such as Bax, Bcl-2, cytochrome-c and caspase-3, which orchestrate the proteolytic damage of the cell. Q-PCR results further elucidated up-regulation of neuronal cell stress markers like HO-1 and iNOS and down-regulation of BDNF upon SNP exposure was attenuated by BME pre-treatment. By considering all these findings, we report that BME protects PC12 cells against SNP-induced toxicity via its free radical scavenging and neuroprotective mechanism.
Collapse
|
34
|
Wang X, Niu C, Lu J, Li N, Li J. Hydrolyzed protein supplementation improves protein content and peroxidation of skeletal muscle by adjusting the plasma amino acid spectrums in rats after exhaustive swimming exercise: a pilot study. J Int Soc Sports Nutr 2014; 11:5. [PMID: 24565110 PMCID: PMC3945952 DOI: 10.1186/1550-2783-11-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 02/19/2014] [Indexed: 01/08/2023] Open
Abstract
Background This study was designed to evaluate the effects of hydrolyzed protein supplementation upon skeletal muscle total protein and peroxidation in rats following exhaustive swimming exercise. Methods Twenty-four rats were randomized to 4 experimental groups (n = 6 per group): control group fed standard diet without exercise (SD), exercise (EX), exercise plus standard diet for 72 hours (EX + SD), and exercise plus standard diet supplemented with hydrolyzed protein (2 g/kg/d) for 72 hours (EX + HP). Immediately following exercise, the EX group was euthanized for collecting plasma and skeletal muscle samples. The EX + SD and EX + HP groups were fed their respective diets for 72 hour still plasma and skeletal muscle collection. Skeletal muscle samples were used to measure levels of total protein (TP), malondialdehyde (MDA), and protein carbonyl (PC). Plasma samples were used to analyze the amino acids spectrum. Results Compared with the EX + SD, EX + HP presented the significantly increased TP (P = 0.02) and decreased MDA and PC levels (P = 0.035). MDA was negatively correlated with the methionine levels. Moreover, EX + HP maintained higher levels of plasmaleucine, isoleucine, and methionine than EX + SD, which may be associated with the increased skeletal muscle TP levels observed (P < 0.05). Conclusions These results collectively suggest that hydrolyzed protein supplementation can improve skeletal muscle TP and ameliorate peroxidation damage in rats subjected to exhaustive exercise stress, which may be, at least in part, related with the maintenance of plasma leucine, isoleucine, and methionine levels.
Collapse
Affiliation(s)
- Xinying Wang
- Research Institute of General Surgery, Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, People's Republic of China
| | - Chenglin Niu
- Department of ICU, Brain Hospital, Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | - Jun Lu
- Department of Orthopedics, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing 210009, Jiangsu Province, China
| | - Ning Li
- Research Institute of General Surgery, Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, People's Republic of China
| | - Jieshou Li
- Research Institute of General Surgery, Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, People's Republic of China
| |
Collapse
|
35
|
Ito T, Maeda T, Goto K, Miura T, Wakame K, Nishioka H, Sato A. Enzyme-treated asparagus extract promotes expression of heat shock protein and exerts antistress effects. J Food Sci 2014; 79:H413-9. [PMID: 24498968 DOI: 10.1111/1750-3841.12371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/03/2014] [Indexed: 11/29/2022]
Abstract
A novel enzyme-treated asparagus extract (ETAS) has been developed as a functional material produced from asparagus stem. Studies were conducted to determine the effect of ETAS on heat shock protein 70 (HSP70) expression and alleviation of stress. HeLa cells were treated with ETAS, and HSP70 mRNA and protein levels were measured using a reverse transcription-polymerase chain reaction (RT-PCR) assay and an enzyme-linked immunosorbent assay (ELISA), respectively. ETAS showed significant increases in HSP70 mRNA at more than 0.125 mg/mL and the protein at more than 1.0 mg/mL. The antistress effect was evaluated in a murine sleep-deprivation model. A sleep-deprivation stress load resulted in elevation of blood corticosterone and lipid peroxide concentrations, while supplementation with ETAS at 200 and 1000 mg/kg body weight was associated with significantly reduced levels of both stress markers, which were in the normal range. The HSP70 protein expression level in mice subjected to sleep-deprivation stress and supplemented with ETAS was significantly enhanced in stomach, liver, and kidney, compared to ETAS-untreated mice. A preliminary and small-sized human study was conducted among healthy volunteers consuming up to 150 mg/d of ETAS daily for 7 d. The mRNA expression of HSP70 in peripheral leukocytes was significantly elevated at intakes of 100 or 150 mg/d, compared to their baseline levels. Since HSP70 is known to be a stress-related protein and its induction leads to cytoprotection, the present results suggest that ETAS might exert antistress effects under stressful conditions, resulting from enhancement of HSP70 expression.
Collapse
Affiliation(s)
- Tomohiro Ito
- Amino Up Chemical Co., Ltd, 363-22 Shin-ei, Kiyota, Sapporo 004-0839, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Effects of dietary extra-virgin olive oil on oxidative stress resulting from exhaustive exercise in rat skeletal muscle: a morphological study. Acta Histochem 2014; 116:61-9. [PMID: 23810034 DOI: 10.1016/j.acthis.2013.05.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/12/2013] [Accepted: 05/16/2013] [Indexed: 12/19/2022]
Abstract
Physical exercise induces oxidative stress through production of reactive oxygen species and can cause damage to muscle tissue. Oxidative stress, resulting from exhaustive exercise is high and improvement of antioxidant defenses of the body may ameliorate damage caused by free radicals. Extra-virgin olive oil is widely considered to possess anti-oxidative properties. The aim of this study was to determine if extra-virgin olive oil improved the adaptive responses in conditions of oxidative stress. Twenty-four 12-week-old male Sprague-Dawley rats were divided in three groups: (1) rats fed with standard chow and not subjected to physical exercise; (2) rats fed with standard chow and subjected to exhaustive exercise; (3) rats fed with a diet rich in oleic acid, the major component of extra-virgin olive oil, and subjected to exhaustive exercise. Exhaustive exercise consisted of forced running in a five-lane 10° inclined treadmill at a speed of 30 m/min for 70-75 min. We studied some biomarkers of oxidative stress and of antioxidant defenses, histology and ultrastructure of the Quadriceps femoris muscle (Rectus femoris). We observed that, in rats of group 3, parameters indicating oxidative stress such as hydroperoxides and thiobarbituric acid-reactive substances decreased, parameters indicating antioxidant defenses of the body such as non-enzymatic antioxidant capacity and Hsp70 expression increased, and R. femoris muscle did not show histological and ultrastructural alterations. Results of this study support the view that extra-virgin olive oil can improve the adaptive response of the body in conditions of oxidative stress.
Collapse
|
37
|
Pandareesh MD, Anand T. Attenuation of smoke induced neuronal and physiological changes by bacoside rich extract in Wistar rats via down regulation of HO-1 and iNOS. Neurotoxicology 2013; 40:33-42. [PMID: 24257033 DOI: 10.1016/j.neuro.2013.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/09/2013] [Accepted: 11/10/2013] [Indexed: 11/27/2022]
Abstract
Bacopa monniera is well known herbal medicine for its neuropharmacological effects. It alleviates variety of disorders including neuronal and physiological changes. Crackers smoke is a potent risk factor that leads to free radical mediated oxidative stress in vivo. The aim of the current study is to evaluate the protective efficacy of B. monniera extract (BME) against crackers smoke induced neuronal and physiological changes via modulating inducible nitric oxide synthase (iNOS) and hemeoxygenase-1 (HO-1) expression in rats. Rats were exposed to smoke for 1h for a period of 3 weeks and consecutively treated with BME at three different dosages (i.e., 10, 20 and 40 mg/kg b.wt.). Our results elucidate that BME treatment ameliorates histopathalogical changes, reactive oxygen species levels, lipid peroxidation, acetylcholine esterase activity and brain neurotransmitter levels to normal. BME supplementation efficiently inhibited HO-1 expression and nitric oxide generation by down-regulating iNOS expression. Smoke induced depletion of antioxidant enzyme status, monoamine oxidase activity was also replenished by BME supplementation. Thus the present study indicates that BME ameliorates various impairments associated with neuronal and physiological changes in rats exposed to crackers smoke by its potent neuromodulatory, antioxidant and adaptogenic propensity.
Collapse
Affiliation(s)
- M D Pandareesh
- Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagar, Mysore 570011, India
| | - T Anand
- Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagar, Mysore 570011, India.
| |
Collapse
|
38
|
Pandareesh MD, Anand T. Neuromodulatory propensity of Bacopa monniera against scopolamine-induced cytotoxicity in PC12 cells via down-regulation of AChE and up-regulation of BDNF and muscarnic-1 receptor expression. Cell Mol Neurobiol 2013; 33:875-84. [PMID: 23824529 DOI: 10.1007/s10571-013-9952-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/14/2013] [Indexed: 12/25/2022]
Abstract
Scopolamine is a competitive antagonist of muscarinic acetylcholine receptors, and thus classified as an anti-muscarinic and anti-cholinergic drug. PC12 cell lines possess muscarinic receptors and mimic the neuronal cells. These cells were treated with different concentrations of scopolamine for 24 h and were protected from the cellular damage by pretreatment with Bacopa monniera extract (BME). In current study, we have explored the molecular mechanism of neuromodulatory and antioxidant propensity of (BME) to attenuate scopolamine-induced cytotoxicity using PC12 cells. Our results elucidate that pretreatment of PC12 cells with BME ameliorates the mitochondrial and plasma membrane damage induced by 3 μg/ml scopolamine to 54.83 and 30.30 % as evidenced by MTT and lactate dehydrogenase assays respectively. BME (100 μg/ml) ameliorated scopolamine effect by down-regulating acetylcholine esterase and up-regulating brain-derived neurotropic factor and muscarinic muscarinic-1 receptor expression. BME pretreated cells also showed significant protection against scopolamine-induced toxicity by restoring the levels of antioxidant enzymes and lipid peroxidation. This result indicates that the scopolamine-induced cytotoxicity and neuromodulatory changes were restored with the pretreatment of BME.
Collapse
Affiliation(s)
- M D Pandareesh
- Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagar, Mysore, 570011, India
| | | |
Collapse
|
39
|
Anti-apoptotic mechanism of Bacoside rich extract against reactive nitrogen species induced activation of iNOS/Bax/caspase 3 mediated apoptosis in L132 cell line. Cytotechnology 2013; 66:823-38. [PMID: 24061554 DOI: 10.1007/s10616-013-9634-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/14/2013] [Indexed: 12/13/2022] Open
Abstract
Nitric oxide is a highly reactive free radical gas that reacts with a wide range of bio-molecules to produce reactive nitrogen species and exerts nitrative stress. Bacopa monniera is a traditional folk and ayurvedic medicine known to alleviate a variety of disorders. Aim of the present study is to evaluate the protective propensity of Bacopa monniera extract (BME) through its oxido-nitrosative and anti-apoptotic mechanism to attenuate sodium nitroprusside (SNP)-induced apoptosis in a human embryonic lung epithelial cell line (L132). Our results elucidate that pre-treatment of L132 cells with BME ameliorates the mitochondrial and plasma membrane damage induced by SNP as evidenced by MTT and LDH leakage assays. BME pre-treatment inhibited NO generation by down-regulating inducible nitric oxide synthase expression. BME exhibited potent antioxidant activity by up-regulating the antioxidant enzymes. SNP-induced damage to cellular, nuclear and mitochondrial integrity was also restored by BME, which was confirmed by ROS estimation, comet assay and mitochondrial membrane potential assays respectively. BME pre-treatment efficiently attenuated the SNP-induced apoptotic biomarkers such as Bax, cytochrome-c and caspase-3, which orchestrate the proteolytic damage of the cell. By considering all these findings, we report that BME protects L132 cells against SNP-induced toxicity via its free radical scavenging and anti-apoptotic mechanism.
Collapse
|
40
|
Ergogenic effect of dietary L-carnitine and fat supplementation against exercise induced physical fatigue in Wistar rats. J Physiol Biochem 2013; 69:799-809. [PMID: 23661316 DOI: 10.1007/s13105-013-0256-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
L-carnitine (LC) plays a central role in fatty acid metabolism and in skeletal muscle bioenergetics. LC supplementation is known to improve physical performance and has become widespread in recent years without any unequivocal support to this practice. A scientific-based knowledge is needed, to understand the implications of LC supplementation on physical fatigue. In current study, we have explored synergistic effects of dietary LC and fat content against physical fatigue in rats. Ninety male Wistar rats were supplemented with different concentrations of LC (0.15, 0.3, and 0.5 %) and fat content (5, 10, and 15 %) through diet in different combinations. Our results elucidated that LC (0.5 %) along with 10 and 15 % fat diet supplemented rats showed significant ergogenic effect. The swimming time until exhaustion was increased by ~2- and ~1.5-fold in rats fed with 10 and 15 % fat diet containing LC (0.5 %). LC supplementation improved the energy charge by increasing the levels of ATP, tissue glycogen, reduced GSH, plasma triglyceride, plasma glucose levels, and enzymatic antioxidant status, i.e., superoxide dismutase, catalase, and glutathione peroxidase. LC supplementation also significantly reduced lipid peroxidation, lactic acid, plasma urea nitrogen, creatinine, creatinekinase, and lactate dehydrogenase levels in various tissues compared to its respective control group. Thus the present study indicates that LC ameliorates the various impairments associated with physical endurance in rats.
Collapse
|
41
|
Evaluation of antioxidant and anti-fatigue properties of Trigonella foenum-graecum L. in rats subjected to weight loaded forced swim test. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.phcgj.2013.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|