1
|
Chen Y, Lin W, Zhong L, Fang Z, Ye B, Wang Z, Chattipakorn N, Huang W, Liang G, Wu G. Bicyclol Attenuates Obesity-Induced Cardiomyopathy via Inhibiting NF-κB and MAPK Signaling Pathways. Cardiovasc Drugs Ther 2023; 37:1131-1141. [PMID: 35750941 DOI: 10.1007/s10557-022-07356-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Schisandra is a well-known traditional Chinese medicine in East Asia. As a traditional Chinese medicine derivative with Schisandra chinensis as raw material, bicyclol is well known for its significant anti-inflammatory effect. Chronic inflammation plays a significant part in obesity-induced cardiomyopathy. Our purpose was to explore the effect and mechanism of bicyclol on obesity-induced cardiomyopathy. METHODS Mice fed with a high-fat diet (HFD) and cardiomyocytes stimulated by palmitic acid (PA) were used as models of obesity-related cardiomyopathy in vivo and in vitro, respectively. The therapeutic effect of bicyclol on pathological changes such as myocardial hypertrophy and fibrosis was evaluated by staining cardiac tissue sections. PCR was used to detect inflammatory factors in H9c2 cells and animal heart tissue after bicyclol treatment. Then, we used western blotting to detect the expression levels of the myocardial hypertrophy related protein, myocardial fibrosis related protein, NF-κB and MAPK pathways. RESULTS Our results indicated that bicyclol treatment significantly alleviates HFD-induced myocardial inflammation, fibrosis, and hypertrophy by inhibiting the MAPK and NF-κB pathways. Similar to animal level results, bicyclol could significantly inhibit PA-induced inflammation and prevent NF-κB and MAPK pathways from being activated. CONCLUSION Our results showed that bicyclol has potential as a drug to treat obesity-induced cardiomyopathy.
Collapse
Affiliation(s)
- Yanghao Chen
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Wante Lin
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Lingfeng Zhong
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Zimin Fang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Bozhi Ye
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Zhe Wang
- Department of Pharmacy, the Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, Wenzhou, China
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Weijian Huang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China.
| | - Guang Liang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, 311399, Hangzhou, China.
| | - Gaojun Wu
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China.
| |
Collapse
|
2
|
Lu R, Hu J, Liu X, Yu L, Hu J, Jiang H, Liu S, Li M, He J, Yang X, Liang X. Mogroside-rich extract from Siraitia grosvenorii fruits protects against heat stress-induced intestinal damage by ameliorating oxidative stress and inflammation in mice. Food Funct 2023; 14:1238-1247. [PMID: 36625098 DOI: 10.1039/d2fo02179j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Global warming makes humans and animals more vulnerable to heat stress. Heat stress can cause multiorgan dysfunction, especially in the intestine, primarily via oxidative stress and inflammation. Mogroside-rich extract (MGE) is the active ingredient of Siraitia grosvenorii and has significant antioxidant and anti-inflammatory activity. However, whether MGE can alleviate the intestinal damage caused by heat stress has not been explored. In this study, mice were given 600 mg kg-1 MGE followed by exposure to high temperature (40 °C for 2 h per day), and the structures and molecular changes in the ileum were examined. Our findings showed that body weight was decreased by heat stress, while the activity of serum superoxide dismutase (SOD) was increased. We further found that heat stress impaired the intestinal barrier by reducing the number of goblet cells and mRNA levels of the tight junction proteins zona occludens protein 1 (ZO-1), Occludin (OCLD) and recombinant mucin 2 (MUC2 mucin), but it increased the mRNA level of trefoil factor 3 (TFF3). Interestingly, MGE treatment reversed these changes. Furthermore, heat stress increased the activity of SOD in the intestine, downregulated the expression of the oxidative stress-related genes glutathione peroxidase 1 (GPX1), SOD2 and nuclear factor erythroid 2-related factor 2 (NRF2), and upregulated the expression of catalase (CAT). Moreover, heat stress increased tumor necrosis factor-α (TNF-α) levels in the intestine and upregulated the expression of the inflammation-related genes interleukin 10 (IL-10), TNF-α, Interferon-γ (IFN-γ), toll like receptor 4 (TLR4) and nuclear factor-kappa B (NF-kB). However, MGE treatment effectively reduced TNF-α levels and restored the normal activity of SOD and normal mRNA levels for both oxidative stress-related and inflammation-related genes. In summary, our results showed that MGE can protect against heat stress-induced intestinal damage by ameliorating inflammation and oxidative stress.
Collapse
Affiliation(s)
- Renhong Lu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiahao Hu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Xinxin Liu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Lijiang Yu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Junjie Hu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Huimin Jiang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Shaoyuan Liu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Mengqi Li
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiakang He
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Xiaogan Yang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Xingwei Liang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
3
|
Zhang G, Wang Y, Li R, Peng J, Zhang J, Hu R, Zhang L, Wu Y, Sun Q, Liu C. Sex difference in effects of intermittent heat exposure on hepatic lipid and glucose metabolisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158704. [PMID: 36108838 DOI: 10.1016/j.scitotenv.2022.158704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/18/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Global climate warming has drawn worldwide attention. However, the health impact of heat exposure is still controversial. This study aimed to explore the exact effects and sex differential vulnerability under intermittent heat exposure (IHE) patterns and tried to elucidate the potential mechanisms by which IHE modulated hepatic lipid and glucose homeostasis. Both female and male C57BL/6 N mice were randomly allocated to control group (22 ± 1 °C) or intermittent heat group (37 ± 1 °C for 6 h) for 9 consecutive days followed by 4-day recovery at 22 ± 1 °C in a whole-body exposure chamber. Male mice, but not female, being influenced by IHE with decreased body weight, improved insulin sensitivity and glucose tolerance. Next, the levels of hepatic triglyceride (TG) were decreased and free fatty acid (FFA) increased in male mice exposed to intermittent heat, accompanied with upregulated expression of anti-oxidative enzymes in the liver. In addition, IHE led to enhanced lipid catabolism in male mice by inducing fatty acid uptake, lipid lipolysis, mitochondrial/peroxisomal fatty acid oxidation and lipid export. And glycolysis and glucose utilization were induced by IHE in male mice as well. Mechanically, heat shock protein 70 (HSP70)/insulin receptor substrate 1 (IRS1)/AMPKα pathways were activated in response to IHE. These findings provide new evidence that IHE sex-dependently enhanced the metabolism of lipid and glucose in male mice through HSP70/IRS1/AMPKα signaling.
Collapse
Affiliation(s)
- Guoqing Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Yindan Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Jing Peng
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Jinna Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Renjie Hu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Yunlu Wu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Ajeigbe KO, Oladokun OO, Owonikoko MW, Adegoke GA. Effect of coconut water and milk on heat stress-induced gastrointestinal tract dysmotility in rats: Role of oxidative stress and inflammatory response. J Food Biochem 2022; 46:e14129. [PMID: 35298033 DOI: 10.1111/jfbc.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 10/18/2022]
Abstract
The potential effects of coconut water (CCW) and milk (CCM) on gastrointestinal motility {intestinal transit (IT), intestinal fluid accumulation (IFA) and colonic motility}, tissue oxidative, and inflammatory responses in heat-stressed rats were investigated. There were four (4) temperature exposure groups; (i) Control at 30°C, (CON), (ii) heat-stressed (HS) group exposed to the ambiance of 40°C, (iii) heat-stressed pre-treated with coconut water (HS+ CCW), and (iv) coconut milk (HS + CCM). Skin temperatures (ST) and rectal temperatures (RT) were taken daily, before and after 2 hr heat exposure. GE, IT, and IFA were assessed using standard methods while colonic motility was assessed by colonic bead expulsion (CBE) time after the 14-day exposure. Serum cortisol and lipid peroxidation, antioxidant enzyme activities, inflammatory cytokines in intestinal samples were assessed. Stomach and intestinal morphology were equally examined on histomorphometry. Increased GE, IT, IFA, and colonic motility were observed in HS. CCW and CCM reversed the increases in GE, IT, IFA, and colonic motility in the heat-stressed rats (p < .05). Elevated serum cortisol level and intestinal MDA were significantly reduced in the CCW and CCM treated. Tissue GPx, T-AOC, and T-SOD were all enhanced in HS + CCW and HS + CCM. While tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were suppressed in the HS group, interleukin-4 (IL-4) and interleukin-10 (IL-10) were enhanced with CCW and CCM. Altered intestinal morphology in the HS was also significantly mitigated by CCW and CCM. We showed that coconut water and milk could ameliorate intestinal dysmotility associated with heat stress via oxidative stress reduction and suppression of inflammatory responses. PRACTICAL APPLICATIONS: Heat stress impacts negatively on intestinal health and integrity in both humans and animals via oxidative stress and inflammation. Conversely, coconut has demonstrated anti-oxidative and anti-inflammatory properties in health and medicinal applications. From the findings of this study, coconut water and milk display beneficial potentials against the untoward heat stress effect on gastrointestinal health.
Collapse
Affiliation(s)
| | - Olayemi Olutobi Oladokun
- Department of Physiology, Faculty of Basic Medical Sciences, Igbinedion University, Okada, Nigeria
| | - Mathew Wasiu Owonikoko
- Department of Physiology, Faculty of Basic Medical Sciences, Igbinedion University, Okada, Nigeria
| | - Gbemisola Adeoti Adegoke
- Department of Physiology, Faculty of Basic Medical Sciences, Igbinedion University, Okada, Nigeria
| |
Collapse
|
5
|
Gupta A, Sharma D, Gupta H, Singh A, Chowdhury D, Meena RC, Ganju L, Kumar B. Heat precondition is a potential strategy to combat hepatic injury triggered by severe heat stress. Life Sci 2021; 269:119094. [PMID: 33482193 DOI: 10.1016/j.lfs.2021.119094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022]
Abstract
AIM Environmental heat stress alters physiological and biochemical functions which leads to multiorgan dysfunction including severe hepatic injury in animals. We hypothesize that heat preconditioning can be potential intervention in combating heat illnesses. MAIN METHODS Sprague Dawley rats were exposed to moderate heat stress, severe heat stress and heat preconditioning in heat simulation chamber. Mean arterial pressure, heart rate, skin and core temperature were monitored in pre and post heat exposed animals. After stress exposure, blood for hemodynamic and liver tissue for liver function tests, oxidative stress, inflammatory variables and structural studies were collected from rats. Hepatic mitochondria were isolated to study the key structural alterations and functional changes by transmission electron microscopy. KEY FINDINGS The effect of heat precondition shows improvement in time to attain the core temperature, weight loss, blood pressure and heart rate in rats. Results exhibited decreased levels of liver function tests, elevated levels of free radicals and inflammatory cytokines in heat exposed liver as compared with heat preconditioned animals. Expression levels of mitochondrial heat shock protein 60, superoxide dismutase 1 and uncoupling protein 1 along with activity of electron transport chain complexes I-V were examined and found to be increased in heat preconditioned as compared to heat stressed animals. Morphological studies of liver parenchyma demonstrated reduction in structural deterioration of hepatic lobules and restoration of mitochondrial structural integrity in heat preconditioned rats. SIGNIFICANCE Present study suggests that heat preconditioning intervention plays a crucial role in protection against heat induced hepatic injury in animals.
Collapse
Affiliation(s)
- Avinash Gupta
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| | - Dolly Sharma
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| | - Harshita Gupta
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| | - Ajeet Singh
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| | - Daipayan Chowdhury
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| | - Ramesh Chand Meena
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Lilly Ganju
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| | - Bhuvnesh Kumar
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| |
Collapse
|
6
|
Wu ZQ, Li K, Tian X, Zhou MX, Li ZJ. Schisandra chinensis water extract protects ethanol-induced neurotoxicity in Caenorhabditis elegans. J Food Biochem 2020; 44:e13249. [PMID: 32524635 DOI: 10.1111/jfbc.13249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
The protective effect of Schisandra chinensis water extract (SWE) on ethanol-induced neurotoxicity in Caenorhabditis elegans and the underlying mechanism were investigated. Young worms were exposed to ethanol or a mixture of ethanol and SWE for 24 hr. Locomotion ability, tissue ethanol concentration, free radical content, antioxidant enzyme activity, lifespan, and expression of key dopaminergic nervous system-related genes were evaluated. Ethanol affected the motion ability of worms and shortened their lifespan. Ethanol intake increased the tissue ethanol concentration, resulting in redox imbalance, and dopamine release and accumulation. SWE alleviated motility loss of C. elegans and extended their lifespan. It reduced the tissue ethanol concentration and free radical content, likely because it alleviated oxidative stress. Finally, SWE inhibited continuous dopamine excitement. These results suggest that SWE plays a protective role in dopaminergic neurons. It can be used to treat ethanol-induced neurotoxicity, and to investigate its potential mechanism. PRACTICAL APPLICATIONS: Schisandra chinensis is a traditional functional food that has protective effects on the liver and brain. Although S. chinensis is found in some anti-alcohol products, the effects of S. chinensis on neurological and behavioral disorders caused by alcohol are rarely reported. The manuscript explored the protective effect of SWE on ethanol-induced nerve injury in Caenorhabditis elegans, and we preliminarily discussed the underlying mechanism. The results suggested that SWE can alleviate ethanol-induced neurotoxicity. Meanwhile, the results provide a theoretical basis for better use of S. chinensis to develop products to antagonize the side effects of alcohol. In addition, the method of using C. elegans model to evaluate the protective effect of S. chinensis on ethanol-induced nerve injury can provide practical reference for the screening and utilization of other plant functional components.
Collapse
Affiliation(s)
- Zhong-Qin Wu
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, PR China
| | - Ke Li
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, PR China
| | - Xing Tian
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, PR China.,Department of Food and Drug Engineering, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, PR China
| | - Ming-Xi Zhou
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, PR China
| | - Zong-Jun Li
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, PR China
| |
Collapse
|
7
|
Effects of resveratrol on intestinal oxidative status and inflammation in heat-stressed rats. J Therm Biol 2019; 85:102415. [PMID: 31657756 DOI: 10.1016/j.jtherbio.2019.102415] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/07/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Heat stress, experienced by humans and animals under high ambient temperatures, is known to induce oxidative stress and inflammation, which endangers human health as well as animal welfare and production. The gastrointestinal tract is predominantly responsive to heat stress and compromised intestinal functions can contribute to multi-organ injury under heat environment. Resveratrol (RSV) has significant antioxidant and anti-inflammatory activities. The aim of this study was to investigate the potential effects of RSV on intestinal function (digestion and barrier), oxidative stress and inflammation in heat-stressed rats. Male Sprague-Dawley rats were orally fed with 100 mg RSV/kg body weight/day prior to daily heat stress (40 °C per day for 1.5 h) exposure for 3 consecutive days. The results showed that RSV reversed the increased serum cortisol level and diamine oxidase activity, the altered jejunal morphology, the decreased jejunal disaccharidase activities, the elevated malondialdehyde and tumor necrosis factor alpha concentrations and antioxidant enzymes activities in the jejunum, as well as the increased jejunal mRNA expression of toll-like receptor 4, cytokines, antioxidant enzymes and tight junction proteins in heat-stressed rats, to various degrees. In conclusion, RSV could alleviate intestinal injury and dysfunctions by improving oxidative status and suppressing inflammation in heat-stressed rats.
Collapse
|
8
|
Cheng K, Yan E, Song Z, Li S, Zhang H, Zhang L, Wang C, Wang T. Protective effect of resveratrol against hepatic damage induced by heat stress in a rat model is associated with the regulation of oxidative stress and inflammation. J Therm Biol 2019; 82:70-75. [PMID: 31128661 DOI: 10.1016/j.jtherbio.2019.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/09/2019] [Accepted: 03/18/2019] [Indexed: 01/07/2023]
Abstract
Heat stress jeopardizes humans and animals health, and results in enormous economic loss in public health care and livestock production. The aim of this study was to investigate the effects of resveratrol on hepatic oxidative stress and inflammation in heat-stressed rats. Male Sprague-Dawley rats were orally fed with 100 mg resveratrol/kg body weight/day prior to heat stress (40 ∘C per day for 1.5 h) exposure for 3 consecutive days. Serum and liver samples were collected for the analysis of hepatic injury, redox status and immune response. The results showed that the heat-stress-induced increased aspartate aminotransferase activities in the serum, aberrant hepatic histology, excessive hepatic malondialdehyde and tumor necrosis factor alpha concentrations, and up-regulation of heat shock protein 70, superoxide dismutase 1, glutathione peroxidase 1, toll-like receptor 4 and interleukin 10 mRNA expression in the liver were mitigated by oral resveratrol treatment. Collectively, the beneficial effects of resveratrol on hepatic damage induced by heat stress were associated with the regulation of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Kang Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Enfa Yan
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhihua Song
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Simian Li
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Wang C, Zhou YL, Zhu QH, Zhou ZK, Gu WB, Liu ZP, Wang LZ, Shu MA. Effects of heat stress on the liver of the Chinese giant salamander Andrias davidianus: Histopathological changes and expression characterization of Nrf2-mediated antioxidant pathway genes. J Therm Biol 2018; 76:115-125. [DOI: 10.1016/j.jtherbio.2018.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/08/2018] [Accepted: 07/22/2018] [Indexed: 02/06/2023]
|
10
|
Hepatoprotective Effects of a Functional Formula of Three Chinese Medicinal Herbs: Experimental Evidence and Network Pharmacology-Based Identification of Mechanism of Action and Potential Bioactive Components. Molecules 2018; 23:molecules23020352. [PMID: 29414910 PMCID: PMC6017312 DOI: 10.3390/molecules23020352] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/27/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022] Open
Abstract
Various Chinese herbal medicines (CHMs) have shown beneficial liver protection effects. Jian-Gan-Bao (JGB), a functional herbal formula, consists of three famous CHMs, including Coriolus versicolor, Salvia miltiorrhiza and Schisandra chinensis, which has been used as a folk medicine for several chronic liver diseases. In the present study, we aim systemically to evaluate the effects of JGB on acute and chronic alcoholic liver diseases (ALD) as well as non-alcoholic fatty liver disease (NAFLD) in mouse models, and identify its potential bioactive components and mechanism of action. JGB showed preventive effects for acute and chronic ALD as well as NAFLD, while post-treatment of JGB showed no significant effect, suggesting the nature of JGB as a health supplement rather than a drug. Furthermore, a compound-target network was constructed to identify the potential bioactive compounds and pathways that regulate its hepatoprotective effects. There are 40 bioactive compounds and 15 related targets that have been identified via this network pharmacology study. Among them are miltirone, neocryptotanshinone II and deoxyshikonin, with desirable pharmaceutical properties. Pathways relating to inflammation, fatty acid oxidation, tumor necrosis factor (TNF) production and cell proliferation were predicted as bioactive compounds and potential underlying mechanisms, which should be the focus of study in this field in the future.
Collapse
|
11
|
Prieto AKC, Gomes-Filho JE, Azuma MM, Sivieri-Araújo G, Narciso LG, Souza JC, Ciarlini PC, Cintra LTA. Influence of Apical Periodontitis on Stress Oxidative Parameters in Diabetic Rats. J Endod 2017; 43:1651-1656. [DOI: 10.1016/j.joen.2017.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 05/04/2017] [Accepted: 05/25/2017] [Indexed: 12/12/2022]
|
12
|
Hou Y, Wang X, Ping J, Lei Z, Gao Y, Ma Z, Jia C, Zhang Z, Li X, Jin M, Li X, Suo C, Zhang Y, Su J. Metabonomics Approach to Assessing the Modulatory Effects of Kisspeptin-10 on Liver Injury Induced by Heat Stress in Rats. Sci Rep 2017; 7:7020. [PMID: 28765538 PMCID: PMC5539146 DOI: 10.1038/s41598-017-06017-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 06/07/2017] [Indexed: 01/19/2023] Open
Abstract
The protective effects of Kisspeptin on heat-induced oxidative stress in rats were investigated by using a combination of biochemical parameters and metabonomics. Metabonomic analyses were performed using gas chromatography/mass spectrometry in conjunction with multivariate and univariate statistical analyses. At the end point of the heat stress experiment, histological observation, ultrastructural analysis and biochemical parameters were measured. Metabonomic analysis of liver tissue revealed that Kisspeptin mainly attenuated the alteration of purine metabolism and fatty acid metabolism pathways. Futhermore, Kisspeptin also increased the levels of GSH, T-AOC as well as SOD activities, and upregulated MDA levels. These results provide important mechanistic insights into the protective effects of Kisspeptin against heat-induced oxidative stress.
Collapse
Affiliation(s)
- Yuanlong Hou
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Xiaoyan Wang
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jihui Ping
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Zhihai Lei
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Yingdong Gao
- Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 320100, China
| | - Zhiyu Ma
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Cuicui Jia
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Zheng Zhang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Xiang Li
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Mengmeng Jin
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Xiaoliang Li
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Chuan Suo
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Ying Zhang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Juan Su
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China.
| |
Collapse
|
13
|
Bama miniature pigs’ liver possess great heat tolerance through upregulation of Nrf2-mediated antioxidative enzymes. J Therm Biol 2017; 67:15-21. [DOI: 10.1016/j.jtherbio.2017.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/07/2017] [Accepted: 04/28/2017] [Indexed: 01/26/2023]
|
14
|
Role of the Red Ginseng in Defense against the Environmental Heat Stress in Sprague Dawley Rats. Molecules 2015; 20:20240-53. [PMID: 26569207 PMCID: PMC6331845 DOI: 10.3390/molecules201119692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 01/21/2023] Open
Abstract
Global temperature change causes heat stress related disorders in humans. A constituent of red ginseng has been known the beneficial effect on the resistance to many diseases. However, the mechanism of red ginseng (RG) against heat stress still remains unclear. To determine the effect of RG on heat stress, we examined the effect of the RG on the gene expression profiles in rats subjected to environmental heat stress. We evaluated the transcripts associated with hepatic lipid accumulation and oxidative stress in rats subjected to heat stress. We also analyzed the reactive oxygen species (ROS) contents. Our results suggested RG inhibited heat stress mediated altering mRNA expressions include HSPA1, DEAF1, HMGCR, and FMO1. We also determined RG attenuated fat accumulation in the liver by altering C/EBPβ expression. RG promoted to repress the heat stress mediated hepatic cell death by inhibiting of Bcl-2 expression in rats subjected to heat stress. Moreover, RG administered group during heat stress dramatically decreased the malondialdehyde (MDA) contents and ROS associated genes compared with the control group. Thus, we suggest that RG might influence inhibitory effect on environmental heat stress induced abnormal conditions in humans.
Collapse
|
15
|
Wang F, Li Y, Cao Y, Li C. Zinc might prevent heat-induced hepatic injury by activating the Nrf2-antioxidant in mice. Biol Trace Elem Res 2015; 165:86-95. [PMID: 25586622 DOI: 10.1007/s12011-015-0228-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
Abstract
Zinc (Zn) is generally known to be an essential trace element with growth-promoting and antioxidant activities. The present study was performed to clarify the role of Zn in the livers of heat-treated mice. Eight-week-old male mice were divided into control (Con), heat treatment (HT) and heat treatment plus zinc groups (HT + Zn) and were fed diets containing 60, 60, or 300 mg/kg Zn (zinc sulfate), respectively. After 30 days of feeding on their respective diets, the control group was maintained at a controlled temperature (25 °C), whereas the HT and HT + Zn groups were exposed to an elevated ambient temperature (40-42 °C) for 2 h each day. After heat exposure for seven consecutive days, sera and liver tissues were collected. The mice in the HT group exhibited reduced liver weights and lower hepatosomatic indices. Histological findings revealed that the hepatocytes of the HT group were subjected to serious damage and exhibited irregular arrangements and nuclear pyknosis. Moreover, in the HT group, the hepatic malondialdehyde levels were significantly increased, while the serum alkaline phosphatase levels, hepatic copper/zinc-superoxide dismutase (CuZn-SOD) and glutathione peroxidase activities were significantly reduced compared to those of the control group. However, in the HT + Zn group, the histomorphology of the liver was restored, the serum aspartate aminotransferase (AST) level was significantly decreased, and the hepatic CuZn-SOD activity was significantly increased compared to the HT group. Furthermore, expressions of the hepatic Nrf2 protein and Nrf2, Keap1, and NQO1 genes in the HT + Zn group were not only higher than the HT group but also higher than the control group. Zn might alleviate heat-induced hepatic injury as revealed by restored histomorphology and AST level. Our results further suggest that Zn might exert its protective effects via the activation of the Nrf2-antioxidant pathway.
Collapse
Affiliation(s)
- F Wang
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | | | | | | |
Collapse
|
16
|
He JL, Zhou ZW, Yin JJ, He CQ, Zhou SF, Yu Y. Schisandra chinensis regulates drug metabolizing enzymes and drug transporters via activation of Nrf2-mediated signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 9:127-46. [PMID: 25552902 PMCID: PMC4277124 DOI: 10.2147/dddt.s68501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug metabolizing enzymes (DMEs) and drug transporters are regulated via epigenetic, transcriptional, posttranscriptional, and translational and posttranslational modifications. Phase I and II DMEs and drug transporters play an important role in the disposition and detoxification of a large number of endogenous and exogenous compounds. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a critical regulator of a variety of important cytoprotective genes that are involved in disposition and detoxification of xenobiotics. Schisandra chinensis (SC) is a commonly used traditional Chinese herbal medicine that has been primarily used to protect the liver because of its potent antioxidative and anti-inflammatory activities. SC can modulate some DMEs and drug transporters, but the underlying mechanisms are unclear. In this study, we aimed to explore the role of Nrf2 in the regulatory effect of SC extract (SCE) on selected DMEs and drug transporters in human hepatocellular liver carcinoma cell line (HepG2) cells. The results showed that SCE, schisandrin A, and schisandrin B significantly increased the expression of NAD(P)H: Nicotinamide Adenine Dinucleotide Phosphate-oxidase or:quinone oxidoreductase 1, heme oxygenase-1, glutamate–cysteine ligase, and glutathione S-transferase A4 at both transcriptional and posttranscriptional levels. Incubation of HepG2 cells with SCE resulted in a significant increase in the intracellular level of glutathione and total glutathione S-transferase content. SCE significantly elevated the messenger ribonucleic acid and protein levels of P-glycoprotein and multidrug resistance-associated protein 2 and 4, whereas the expression of organic anion transporting peptide 1A2 and 1B1 was significantly downregulated by SCE. Knockdown of Nrf2 by small interfering ribonucleic acid attenuated the regulatory effect of SCE on these DMEs and drug transporters. SCE significantly upregulated Nrf2 and promoted the translocation of Nrf2 from cytoplasm to the nuclei. Additionally, SCE significantly suppressed the expression of cytosolic Kelch-like ECH-associated protein 1 (the repressor of Nrf2) and remarkably increased Nrf2 stability in HepG2 cells. Taken together, our findings suggest that the hepatoprotective effects of SCE may be partially ascribed to the modulation of DMEs and drug transporters via Nrf2-mediated signaling pathway. SCE may alter the pharmacokinetics of other coadministered drugs that are substrates of these DMEs and transporters and thus cause unfavorable herb–drug interactions.
Collapse
Affiliation(s)
- Jin-Lian He
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Juan-Juan Yin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Chang-Qiang He
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yang Yu
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
17
|
Li B, Zhu L, Wu T, Zhang J, Jiao X, Liu X, Wang Y, Meng X. Effects of Triterpenoid From Schisandra chinensis on Oxidative Stress in Alcohol-Induced Liver Injury in Rats. Cell Biochem Biophys 2014; 71:803-11. [DOI: 10.1007/s12013-014-0266-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Pan SY, Jia ZH, Zhang Y, Yu Q, Wang XY, Sun N, Zhu PL, Yu ZL, Ko KM. Novel mouse model of combined hyperlipidemia associated with steatosis and liver injury by a single-dose intragastric administration of schisandrin B/cholesterol/bile salts mixture. J Pharmacol Sci 2013; 123:110-9. [PMID: 24096833 DOI: 10.1254/jphs.13087fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Hyperlipidemia is referred to as hypercholesterolemia, hypertriglyceridemia, or both in combined hyperlipidemia. Here, a novel mouse model of combined hyperlipidemia is described. Mice were orally given a single dose of a modeling agent (MA) made of a mixture of schisandrin B/cholesterol/bile salts (1/2/0.5 g/kg) suspended in olive oil. MA treatment increased serum triglycerides (TG) and total cholesterol (TC) (up to 422% and 100% at 12 - 96 h post-treatment, respectively) and hepatic TG and TC (up to 220% and 26%, respectively) in a time- and dose-dependent manner, associated with elevation of high-density lipoprotein and low-density lipoprotein levels. Serum alanine/aspartate aminotransferase activities, indicators of liver cell damage, were also elevated (up to 198%) at 48 and 72 h post-MA treatment. Fenofibrate blocks MA-induced hyperlipidemia, lipid accumulation in the liver, as well as liver injury. Oral administration of a mixture of schisandrin B, cholesterol, and bile salt could generate an interesting mouse model of combined hyperlipidemia associated with hepatic steatosis and steatohepatitis.
Collapse
Affiliation(s)
- Si-Yuan Pan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | | | | | | | | | | | | | | | | |
Collapse
|