1
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
2
|
Sultana S, Munir N, Mahmood Z, Riaz M, Akram M, Rebezov M, Kuderinova N, Moldabayeva Z, Shariati MA, Rauf A, Rengasamy KRR. Molecular targets for the management of cancer using Curcuma longa Linn. phytoconstituents: A Review. Biomed Pharmacother 2021; 135:111078. [PMID: 33433356 DOI: 10.1016/j.biopha.2020.111078] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
Medicinal plants are being used for therapeutic purposes since the dawn of human civilization. The therapeutic efficacy of medicinal plants is due to the presence of wide range phytochemical constituents or secondary metabolites. The medicinal plants are traditionally used for several types of ailments. Even in those pathological conditions where other methods of treatment fail to work. Curcuma longa Linn is very common ingredient used as spice in foods as preservative and coloring material in different part of the world. It has been used as a home remedy for a variety of diseases. Curcuma longa and its isolated constituent curcumin are widely evaluated for anticancer activity. Curcumin possesses broad remedial potential due to its multi-targeting effect against many different carcinoma including leukemia, genitourinary cancers, gastrointestinal cancers and breast cancer etc. Hence, Curcumin has potential for the development of new medicine for the treatment of several diseases.
Collapse
Affiliation(s)
- Sabira Sultana
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Naveed Munir
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Zahed Mahmood
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of RussianAcademy of Sciences, Moscow, Russian Federation; Prokhorov General Physics Institute, Russian Academy of Sciences,Moscow, Russian Federation; K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | | | | | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation; Shakarim State University of Semey, Semey, Kazakhstan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK, Pakistan
| | - Kannan R R Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam; Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, North West Province, South Africa.
| |
Collapse
|
3
|
Zhao Q, Peng C, Zheng C, He XH, Huang W, Han B. Recent Advances in Characterizing Natural Products that Regulate Autophagy. Anticancer Agents Med Chem 2020; 19:2177-2196. [PMID: 31749434 DOI: 10.2174/1871520619666191015104458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/16/2018] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
Autophagy, an intricate response to nutrient deprivation, pathogen infection, Endoplasmic Reticulum (ER)-stress and drugs, is crucial for the homeostatic maintenance in living cells. This highly regulated, multistep process has been involved in several diseases including cardiovascular and neurodegenerative diseases, especially in cancer. It can function as either a promoter or a suppressor in cancer, which underlines the potential utility as a therapeutic target. In recent years, increasing evidence has suggested that many natural products could modulate autophagy through diverse signaling pathways, either inducing or inhibiting. In this review, we briefly introduce autophagy and systematically describe several classes of natural products that implicated autophagy modulation. These compounds are of great interest for their potential activity against many types of cancer, such as ovarian, breast, cervical, pancreatic, and so on, hoping to provide valuable information for the development of cancer treatments based on autophagy.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China.,The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, United States
| |
Collapse
|
4
|
Agarwal S, Maekawa T. Nano delivery of natural substances as prospective autophagy modulators in glioblastoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102270. [PMID: 32702467 DOI: 10.1016/j.nano.2020.102270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
Glioblastoma is the most destructive type of malignant brain tumor in humans due to cancer relapse. Latest studies have indicated that cancer cells are more reliant on autophagy for survival than non-cancer cells. Autophagy is entitled as programmed cell death type II and studies imply that it is a comeback of cancer cells to innumerable anti-cancer therapies. To diminish the adverse consequences of chemotherapeutics, numerous herbs of natural origin have been retained in cancer treatments. Additionally, autophagy induction occurs via their tumor suppressive actions that could cause cell senescence and increase apoptosis-independent cell death. However, most of the drugs have poor solubility and thus nano drug delivery systems possess excessive potential to improve the aqueous solubility and bioavailability of encapsulated drugs. There is a pronounced need for more therapies for glioblastoma treatment and hereby, the fundamental mechanisms of natural autophagy modulators in glioblastoma are prudently reviewed in this article.
Collapse
Affiliation(s)
- Srishti Agarwal
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan.
| | - Toru Maekawa
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
| |
Collapse
|
5
|
Curcumin as an Anticancer Agent in Malignant Mesothelioma: A Review. Int J Mol Sci 2020; 21:ijms21051839. [PMID: 32155978 PMCID: PMC7084180 DOI: 10.3390/ijms21051839] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Malignant mesothelioma is an infrequent tumor that initiates from the mesothelial cells lining of body cavities. The great majority of mesotheliomas originate in the pleural cavity, while the remaining cases initiate in the peritoneal cavity, in the pericardial cavity or on the tunica vaginalis. Usually, mesotheliomas grow in a diffuse pattern and tend to enclose and compress the organs in the various body cavities. Mesothelioma incidence is increasing worldwide and still today, the prognosis is very poor, with a reported median survival of approximately one year from presentation. Thus, the development of alternative and more effective therapies is currently an urgent requirement. The aim of this review article was to describe recent findings about the anti-cancer activity of curcumin and some of its derivatives on mesotheliomas. The potential clinical implications of these findings are discussed.
Collapse
|
6
|
Giordano A, Tommonaro G. Curcumin and Cancer. Nutrients 2019; 11:nu11102376. [PMID: 31590362 PMCID: PMC6835707 DOI: 10.3390/nu11102376] [Citation(s) in RCA: 511] [Impact Index Per Article: 102.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Curcumin, a polyphenol extracted from Curcuma longa in 1815, has gained attention from scientists worldwide for its biological activities (e.g., antioxidant, anti-inflammatory, antimicrobial, antiviral), among which its anticancer potential has been the most described and still remains under investigation. The present review focuses on the cell signaling pathways involved in cancer development and proliferation, and which are targeted by curcumin. Curcumin has been reported to modulate growth factors, enzymes, transcription factors, kinase, inflammatory cytokines, and proapoptotic (by upregulation) and antiapoptotic (by downregulation) proteins. This polyphenol compound, alone or combined with other agents, could represent an effective drug for cancer therapy.
Collapse
Affiliation(s)
- Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, BioLife Science Bldg, Suite 431-1900 N 12th Street, Philadelphia, PA 19122, USA.
| | - Giuseppina Tommonaro
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei, 34-80078 Pozzuoli, Italy.
| |
Collapse
|
7
|
Zhang C, Hao Y, Wu L, Dong X, Jiang N, Cong B, Liu J, Zhang W, Tang D, De Perrot M, Zhao X. Curcumin induces apoptosis and inhibits angiogenesis in murine malignant mesothelioma. Int J Oncol 2018; 53:2531-2541. [PMID: 30272283 PMCID: PMC6203149 DOI: 10.3892/ijo.2018.4569] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/21/2018] [Indexed: 01/08/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare form of cancer that is associated with asbestos exposure. Unfortunately, current therapies have limited efficacy. Previous studies have indicated that curcumin exerts antiproliferative and antitumor effects, and has low toxicity. The present study aimed to evaluate the anticancer effects of curcumin on the RN5 MPM cell line. The inhibitory effects of curcumin on cell viability were determined using the sulforhodamine B assay. In addition, cell cycle progression was analyzed by propidium iodide (PI) staining and flow cytometry, and curcumin‑induced apoptosis was measured by Annexin V/PI double staining. The translocation of apoptosis-inducing factor (AIF) was assessed by western blotting and immunofluorescence, and the expression levels of the phosphoinositide 3-kinase (PI3K)-AKT serine/threonine kinase (Akt)‑mammalian target of rapamycin (mTOR) signaling pathway proteins and mitochondria-associated proteins were evaluated by western blotting. In vivo antitumor effects were evaluated in a subcutaneous murine model. Briefly, tumors were harvested from the mice, and immunohistochemistry was conducted to evaluate cell proliferation, apoptosis and angiogenesis. The results indicated that curcumin inhibited RN5 cell viability and induced apoptotic cell death. In addition the findings suggested that curcumin-induced cell apoptosis occurred via the mitochondrial pathway, and caspase‑independent and AIF-dependent pathways. Further analysis revealed that curcumin may act as a PI3K-Akt-mTOR signaling pathway inhibitor by downregulating PI3K, p-Akt, p-mTOR and p-p70 ribosomal protein S6 kinase. Furthermore, curcumin inhibited tumor angiogenesis in vivo. In conclusion, curcumin may be potent enough to be developed as a novel therapeutic agent for the treatment of MPM.
Collapse
Affiliation(s)
- Chengke Zhang
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yingtao Hao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Licun Wu
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaopeng Dong
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ning Jiang
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Bo Cong
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jiang Liu
- Gene and Immunotherapy Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Wen Zhang
- Gene and Immunotherapy Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Dongqi Tang
- Gene and Immunotherapy Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Marc De Perrot
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
8
|
Shakeri A, Cicero AFG, Panahi Y, Mohajeri M, Sahebkar A. Curcumin: A naturally occurring autophagy modulator. J Cell Physiol 2018; 234:5643-5654. [PMID: 30239005 DOI: 10.1002/jcp.27404] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
Abstract
Autophagy is a self-degradative process that plays a pivotal role in several medical conditions associated with infection, cancer, neurodegeneration, aging, and metabolic disorders. Its interplay with cancer development and treatment resistance is complicated and paramount for drug design since an autophagic response can lead to tumor suppression by enhancing cellular integrity and tumorigenesis by improving tumor cell survival. In addition, autophagy denotes the cellular ability of adapting to stress though it may end up in apoptosis activation when cells are exposed to a very powerful stress. Induction of autophagy is a therapeutic option in cancer and many anticancer drugs have been developed to this aim. Curcumin as a hydrophobic polyphenol compound extracted from the known spice turmeric has different pharmacological effects in both in vitro and in vivo models. Many reports exist reporting that curcumin is capable of triggering autophagy in several cancer cells. In this review, we will focus on how curcumin can target autophagy in different cellular settings that may extend our understanding of new pharmacological agents to overcome relevant diseases.
Collapse
Affiliation(s)
- Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Yunes Panahi
- Chemical Injuries Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Masuelli L, Benvenuto M, Di Stefano E, Mattera R, Fantini M, De Feudis G, De Smaele E, Tresoldi I, Giganti MG, Modesti A, Bei R. Curcumin blocks autophagy and activates apoptosis of malignant mesothelioma cell lines and increases the survival of mice intraperitoneally transplanted with a malignant mesothelioma cell line. Oncotarget 2018; 8:34405-34422. [PMID: 28159921 PMCID: PMC5470978 DOI: 10.18632/oncotarget.14907] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022] Open
Abstract
Malignant mesothelioma (MM) is a primary tumor arising from the serous membranes. The resistance of MM patients to conventional therapies, and the poor patients’ survival, encouraged the identification of molecular targets for MM treatment. Curcumin (CUR) is a “multifunctional drug”. We explored the in vitro effects of CUR on cell proliferation, cell cycle regulation, pro-survival signaling pathways, apoptosis, autophagy of human (MM-B1, H-Meso-1, MM-F1), and mouse (#40a) MM cells. In addition, we evaluated the in vivo anti-tumor activities of CUR in C57BL/6 mice intraperitoneally transplanted with #40a cells forming ascites. CUR in vitro inhibited MM cells survival in a dose- and time-dependent manner and increased reactive oxygen species’intracellular production and induced DNA damage. CUR triggered autophagic flux, but the process was then blocked and was coincident with caspase 8 activation which activates apoptosis. CUR-mediated apoptosis was supported by the increase of Bax/Bcl-2 ratio, increase of p53 expression, activation of caspase 9, cleavage of PARP-1, increase of the percentage of cells in the sub G1 phase which was reduced (MM-F1 and #40a) or abolished (MM-B1 and H-Meso-1) after MM cells incubation with the apoptosis inhibitor Z-VAD-FMK. CUR treatment stimulated the phosphorylation of ERK1/2 and p38 MAPK, inhibited that of p54 JNK and AKT, increased c-Jun expression and phosphorylation and prevented NF-κB nuclear translocation. Intraperitoneal administration of CUR increased the median survival of C57BL/6 mice intraperitoneally transplanted with #40a cells and reduced the risk of developing tumors. Our findings may have important implications for the design of MM treatment using CUR.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Enrica Di Stefano
- Department of Experimental Medicine, University of Rome "Sapienza", Rome, Italy
| | - Rosanna Mattera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Massimo Fantini
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Enrico De Smaele
- Department of Experimental Medicine, University of Rome "Sapienza", Rome, Italy
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.,Center for Regenerative Medicine, (CIMER), University of Rome "Tor Vergata", Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.,Center for Regenerative Medicine, (CIMER), University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
10
|
Autophagy is a major mechanism for the dual effects of curcumin on renal cell carcinoma cells. Eur J Pharmacol 2018; 826:24-30. [PMID: 29501864 DOI: 10.1016/j.ejphar.2018.02.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 11/27/2022]
Abstract
The aim of this study was to explore the effects of curcumin on renal cell carcinoma(RCC) through regulating autophagy. Cell viabilities were determined by MTT assay in RCC cells after treatment with curcumin at different concentrations for various durations. ATG7 silencing RCC cells were established to test the role of autophagy. The levels of key proteins on autophagy pathway were analyzed by Western blot. We found out that following 24 h curcumin treatment, the viability of RCC cells had an increase at 5 μM and no significant change at 20 μM but a decrease at 80 μM. These effects were affected by the inhibition of autophagy. When pre-incubated with inhibitors of the AMPK and ER stress pathways, the LC3II levels of RCC cells at 5 μM and 20 μM of curcumin were significantly decreased; however, when treated with the inhibitor of the oxidative stress pathway, the LC3II levels of RCC cells at 80 μM were significantly decreased. In conclusion, the present study indicated Curcumin protected cells from death at low concentration but promotes cell death at high concentration. Autophagy played a dual role in curcumin's effects on RCC. The AMPK and ER stress pathways might be involved at low concentrations of curcumin to protect cells, while the oxidative stress pathway might take part in toxicity at high curcumin concentration.
Collapse
|
11
|
Sayeed MA, Bracci M, Lucarini G, Lazzarini R, Di Primio R, Santarelli L. Regulation of microRNA using promising dietary phytochemicals: Possible preventive and treatment option of malignant mesothelioma. Biomed Pharmacother 2017; 94:1197-1224. [PMID: 28841784 DOI: 10.1016/j.biopha.2017.07.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
Malignant mesothelioma (MM) is a very aggressive, lethal cancer, and its incidence is increasing worldwide. Development of multi-drug resistance, therapy related side-effects, and disease recurrence after therapy are the major problems for the successful treatment of MM. Emerging evidence indicates that dietary phytochemicals can exert anti-cancer activities by regulating microRNA expression. Until now, only one dietary phytochemical (ursolic acid) has been reported to have MM microRNA regulatory ability. A large number of dietary phytochemicals still remain to be tested. In this paper, we have introduced some dietary phytochemicals (curcumin, epigallocatechin gallate, quercetin, genistein, pterostilbene, resveratrol, capsaicin, ellagic acid, benzyl isothiocyanate, phenethyl isothiocyanate, sulforaphane, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid) which have shown microRNA regulatory activities in various cancers and could regulate MM microRNAs. In addition to microRNA regulatory activities, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, phenethyl isothiocyanate, and sulforaphane have anti-mesothelioma potentials, and pterostilbene, capsaicin, ellagic acid, benzyl isothiocyanate, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid have potentials to inhibit cancer by regulating the expression of various genes which are also known to be aberrant in MM.
Collapse
Affiliation(s)
- Md Abu Sayeed
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy.
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Guendalina Lucarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Raffaella Lazzarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Roberto Di Primio
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| |
Collapse
|
12
|
Pouliquen DL, Nawrocki-Raby B, Nader J, Blandin S, Robard M, Birembaut P, Grégoire M. Evaluation of intracavitary administration of curcumin for the treatment of sarcomatoid mesothelioma. Oncotarget 2017; 8:57552-57573. [PMID: 28915695 PMCID: PMC5593667 DOI: 10.18632/oncotarget.15744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 02/06/2017] [Indexed: 12/15/2022] Open
Abstract
A rat model of sarcomatoid mesothelioma, mimicking some of the worst clinical conditions encountered, was established to evaluate the therapeutic potential of intracavitary curcumin administration. The M5-T1 cell line, selected from a collection established from F344 rats induced with asbestos, produces tumors within three weeks, with extended metastasis in normal tissues, after intraperitoneal inoculation in syngeneic rats. The optimal concentration/time conditions for killing M5-T1 cells with curcumin were first determined in vitro. Secondly, the potential of intraperitoneal curcumin administration to kill tumor cells in vivo was evaluated in tumor-bearing rats, in comparison with a reference epigenetic drug, SAHA. Both agents administered at days 21 and 26 after tumor challenge produced necrosis within the solid tumors at day 28. However, tumor tissue necrosis induced with curcumin was much more extensive than with SAHA, and was characterized by infiltration with mononuclear phagocytic cells. In contrast, tumor tissue treated with SAHA contained foci of resistant cells and was infiltrated by many isolated CD8+ cells. The treatment of tumor-bearing rats with 1.5 mg/kg curcumin on days 7, 9, 11 and 14 after tumor challenge dramatically reduced the mean total tumor mass at day 16. Clusters of CD8+ T lymphocytes were observed at the periphery of small residual tumor masses in the peritoneal cavity, which presented a significant reduction in mitotic index, IL6 and vimentin expression compared with tumors in untreated rats. These data open up interesting new prospects for the therapy of sarcomatoid mesothelioma with curcumin and its derivatives.
Collapse
Affiliation(s)
- Daniel L Pouliquen
- INSERM, UMR 1232, Nantes, France.,Université de Nantes, Nantes, France.,CNRS ERL, Nantes, France
| | - Béatrice Nawrocki-Raby
- INSERM, UMR-S 903, Reims, France.,Université de Reims Champagne-Ardenne, Reims, France.,SFR CAP-Santé, Reims, France
| | - Joëlle Nader
- INSERM, UMR 1232, Nantes, France.,Université de Nantes, Nantes, France.,CNRS ERL, Nantes, France
| | - Stéphanie Blandin
- Université de Nantes, Nantes, France.,Plate-forme MicroPICell, SFR François Bonamy, Nantes, France
| | - Myriam Robard
- Université de Nantes, Nantes, France.,Plate-forme MicroPICell, SFR François Bonamy, Nantes, France
| | - Philippe Birembaut
- INSERM, UMR-S 903, Reims, France.,Université de Reims Champagne-Ardenne, Reims, France.,SFR CAP-Santé, Reims, France.,Laboratory of Biopathology, CHU Reims, Reims, France
| | - Marc Grégoire
- INSERM, UMR 1232, Nantes, France.,Université de Nantes, Nantes, France.,CNRS ERL, Nantes, France
| |
Collapse
|
13
|
Guamán-Ortiz LM, Orellana MIR, Ratovitski EA. Natural Compounds As Modulators of Non-apoptotic Cell Death in Cancer Cells. Curr Genomics 2017; 18:132-155. [PMID: 28367073 PMCID: PMC5345338 DOI: 10.2174/1389202917666160803150639] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/24/2015] [Accepted: 11/28/2015] [Indexed: 02/07/2023] Open
Abstract
Cell death is an innate capability of cells to be removed from microenvironment, if and when they are damaged by multiple stresses. Cell death is often regulated by multiple molecular pathways and mechanism, including apoptosis, autophagy, and necroptosis. The molecular network underlying these processes is often intertwined and one pathway can dynamically shift to another one acquiring certain protein components, in particular upon treatment with various drugs. The strategy to treat human cancer ultimately relies on the ability of anticancer therapeutics to induce tumor-specific cell death, while leaving normal adjacent cells undamaged. However, tumor cells often develop the resistance to the drug-induced cell death, thus representing a great challenge for the anticancer approaches. Numerous compounds originated from the natural sources and biopharmaceutical industries are applied today in clinics showing advantageous results. However, some exhibit serious toxic side effects. Thus, novel effective therapeutic approaches in treating cancers are continued to be developed. Natural compounds with anticancer activity have gained a great interest among researchers and clinicians alike since they have shown more favorable safety and efficacy then the synthetic marketed drugs. Numerous studies in vitro and in vivo have found that several natural compounds display promising anticancer potentials. This review underlines certain information regarding the role of natural compounds from plants, microorganisms and sea life forms, which are able to induce non-apoptotic cell death in tumor cells, namely autophagy and necroptosis.
Collapse
Affiliation(s)
- Luis Miguel Guamán-Ortiz
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Isabel Ramirez Orellana
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward A Ratovitski
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Zenkov NK, Chechushkov AV, Kozhin PM, Kandalintseva NV, Martinovich GG, Menshchikova EB. Plant Phenols and Autophagy. BIOCHEMISTRY (MOSCOW) 2017; 81:297-314. [PMID: 27293088 DOI: 10.1134/s0006297916040015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many plant phenols (stilbenes, curcumins, catechins, flavonoids, etc.) are effective antioxidants and protect cells during oxidative stress. Extensive clinical studies on the potential of phenolic compounds for treatment of cardiovascular, neurodegenerative, oncological, and inflammatory diseases are now being conducted. In addition to direct antioxidant effect, plant phenols may provide a protective effect via activation of the Keap1/Nrf2/ARE redox-sensitive signaling system and regulation of autophagy. In this review, mechanisms of effects of the most common plant phenols on autophagy are presented.
Collapse
Affiliation(s)
- N K Zenkov
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, 630117, Russia.
| | | | | | | | | | | |
Collapse
|
15
|
Zhang D, Zhang Y, Ye M, Ding Y, Tang Z, Li M, Zhou Y, Wang C. Interference with Akt signaling pathway contributes curcumin-induced adipocyte insulin resistance. Mol Cell Endocrinol 2016; 429:1-9. [PMID: 27113027 DOI: 10.1016/j.mce.2016.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/28/2016] [Accepted: 04/21/2016] [Indexed: 11/16/2022]
Abstract
Previous study has shown that curcumin directly or indirectly suppresses insulin signaling in 3T3-L1 adipocytes. However, the underlying mechanism remains unclear. Here we experimentally demonstrate that curcumin inhibited the ubiquitin-proteasome system (UPS) function, activated autophagy, and reduced protein levels of protein kinase B (Akt) in a dose- and time-dependent manner in 3T3-L1 adipocytes, accompanied with attenuation of insulin-stimulated Akt phosphorylation, plasma membrane translocation of glucose transporter type 4 (GLUT4), and glucose uptake. These in vitro inhibitory effects of curcumin on Akt protein expression and insulin action were reversed by pharmacological and genetic inhibition of autophagy but not by inhibition of the UPS and caspases. In addition, Akt reduction in adipose tissues of mice treated with curcumin could be recovered by administration of autophagy inhibitor bafilomycin A1 (BFA). This new finding provides a novel mechanism by which curcumin induces insulin resistance in adipocytes.
Collapse
Affiliation(s)
- Deling Zhang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yemin Zhang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Mao Ye
- Department of Endocrinology, The Central Hospital of Enshi Autonomous Prefecture, Enshi 445000, China
| | - Youming Ding
- Department of Hepatobiliary & Laparascopic Surgery, Wuhan University Renmin Hospital, Wuhan 430060, China
| | - Zhao Tang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Mingxin Li
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yu Zhou
- Department of Hepatobiliary & Laparascopic Surgery, Wuhan University Renmin Hospital, Wuhan 430060, China
| | - Changhua Wang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
16
|
Benedetti S, Nuvoli B, Catalani S, Galati R. Reactive oxygen species a double-edged sword for mesothelioma. Oncotarget 2016; 6:16848-65. [PMID: 26078352 PMCID: PMC4627278 DOI: 10.18632/oncotarget.4253] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/29/2015] [Indexed: 12/13/2022] Open
Abstract
It is well known that oxidative stress can lead to chronic inflammation which, in turn, could mediate most chronic diseases including cancer. Oxidants have been implicated in the activity of crocidolite and amosite, the most powerful types of asbestos associated to the occurrence of mesothelioma. Currently rates of mesothelioma are rising and estimates indicate that the incidence of mesothelioma will peak within the next 10-15 years in the western world, while in Japan the peak is predicted not to occur until 40 years from now. Although the use of asbestos has been banned in many countries around the world, production of and the potentially hazardous exposure to asbestos is still present with locally high incidences of mesothelioma. Today a new man-made material, carbon nanotubes, has arisen as a concern; carbon nanotubes may display 'asbestos-like' pathogenicity with mesothelioma induction potential. Carbon nanotubes resulted in the greatest reactive oxygen species generation. How oxidative stress activates inflammatory pathways leading to the transformation of a normal cell to a tumor cell, to tumor cell survival, proliferation, invasion, angiogenesis, chemoresistance, and radioresistance, is the aim of this review.
Collapse
Affiliation(s)
- Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Barbara Nuvoli
- Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Simona Catalani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Rossella Galati
- Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
17
|
Wang J, Zhang J, Zhang CJ, Wong YK, Lim TK, Hua ZC, Liu B, Tannenbaum SR, Shen HM, Lin Q. In situ Proteomic Profiling of Curcumin Targets in HCT116 Colon Cancer Cell Line. Sci Rep 2016; 6:22146. [PMID: 26915414 PMCID: PMC4768257 DOI: 10.1038/srep22146] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/08/2016] [Indexed: 01/02/2023] Open
Abstract
To date, the exact targets and mechanism of action of curcumin, a natural product with anti-inflammatory and anti-cancer properties, remain elusive. Here we synthesized a cell permeable curcumin probe (Cur-P) with an alkyne moiety, which can be tagged with biotin for affinity enrichment, or with a fluorescent dye for visualization of the direct-binding protein targets of curcumin in situ. iTRAQTM quantitative proteomics approach was applied to distinguish the specific binding targets from the non-specific ones. In total, 197 proteins were confidently identified as curcumin binding targets from HCT116 colon cancer cell line. Gene Ontology analysis showed that the targets are broadly distributed and enriched in the nucleus, mitochondria and plasma membrane, and they are involved in various biological functions including metabolic process, regulation, response to stimulus and cellular process. Ingenuity Pathway AnalysisTM (IPA) suggested that curcumin may exert its anticancer effects over multiple critical biological pathways including the EIF2, eIF4/p70S6K, mTOR signaling and mitochondrial dysfunction pathways. Functional validations confirmed that curcumin downregulates cellular protein synthesis, and induces autophagy, lysosomal activation and increased ROS production, thus leading to cell death.
Collapse
Affiliation(s)
- Jigang Wang
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research &Technology (SMART), 138602, Singapore.,Department of Biological Sciences, National University of Singapore, 117543, Singapore.,The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jianbin Zhang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Chong-Jing Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Yin Kwan Wong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Steven R Tannenbaum
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research &Technology (SMART), 138602, Singapore.,Departments of Biological Engineering &Chemistry, Massachusetts Institute of Technology, 02139, United States of America
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| |
Collapse
|
18
|
Kumar G, Mittal S, Sak K, Tuli HS. Molecular mechanisms underlying chemopreventive potential of curcumin: Current challenges and future perspectives. Life Sci 2016; 148:313-28. [PMID: 26876915 DOI: 10.1016/j.lfs.2016.02.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/25/2016] [Accepted: 02/07/2016] [Indexed: 12/11/2022]
Abstract
In recent years, natural compounds have received considerable attention in preventing and curing most dreadful diseases including cancer. The reason behind the use of natural compounds in chemoprevention is associated with fewer numbers of side effects than conventional chemotherapeutics. Curcumin (diferuloylmethane, PubMed CID: 969516), a naturally occurring polyphenol, is derived from turmeric, which is used as a common Indian spice. It governs numerous intracellular targets, including proteins involved in antioxidant response, immune response, apoptosis, cell cycle regulation and tumor progression. A huge mass of available studies strongly supports the use of Curcumin as a chemopreventive drug. However, the main challenge encountered is the low bioavailability of Curcumin. This extensive review covers various therapeutic interactions of Curcumin with its recognized cellular targets involved in cancer treatment, strategies to overcome the bioavailability issue and adverse effects associated with Curcumin consumption.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Biochemistry, Delhi University, South Campus, New Delhi, India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Katrin Sak
- Department of Hematology and Oncology, University of Tartu, Estonia
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mulana-Ambala, India.
| |
Collapse
|
19
|
|
20
|
Casasampere M, Ordoñez YF, Pou A, Casas J. Inhibitors of dihydroceramide desaturase 1: Therapeutic agents and pharmacological tools to decipher the role of dihydroceramides in cell biology. Chem Phys Lipids 2015; 197:33-44. [PMID: 26248324 DOI: 10.1016/j.chemphyslip.2015.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
Dihydroceramide desaturase (Des1) is the last enzyme in the de novo synthesis of ceramides (Cer). It catalyzes the insertion of a double bond into dihydroceramides (dhCer) to convert them to Cer, both of which are further metabolized to more complex (dihydro) sphingolipids. For many years dhCer have received poor attention, mainly due to their supposed lack of biological activity. It was not until about ten years ago that the concept that dhCer might have regulatory roles in biology emerged for the first time. Since then, multiple publications have established that dhCer are implicated in a wide spectrum of biological processes. Physiological and pathophysiological functions of dhCer have been recently reviewed. In this review we will focus on the biochemical features of Des1 and on its inhibition by different compounds with presumably different modes of action.
Collapse
Affiliation(s)
- Mireia Casasampere
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Yadira F Ordoñez
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ana Pou
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
21
|
Jiang A, Wang X, Shan X, Li Y, Wang P, Jiang P, Feng Q. Curcumin Reactivates Silenced Tumor Suppressor Gene RARβ by Reducing DNA Methylation. Phytother Res 2015; 29:1237-45. [PMID: 25981383 DOI: 10.1002/ptr.5373] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/28/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022]
Abstract
Reactivation of tumor suppressor genes by nontoxic bioactive food component represents a promising strategy for cancer chemoprevention. Retinoic acid receptor β (RARβ), one member of the RAR receptor family, is considered as a tumor suppressor. Reduced expression of RARβ has been reported in lung cancer and other solid tumors. DNA hypermethylation of the promoter region of RARβ is a major mechanism for its silencing in tumors. Recently, curcumin has been considered as a potential DNA methyltransferase inhibitor. Herein, we demonstrated that curcumin significantly elevate RARβ expression at the mRNA and protein levels in tested cancer cells. Additionally, curcumin decreased RARβ promoter methylation in lung cancer A549 and H460 cells. Mechanistic study demonstrated that curcumin was able to downregulate the mRNA levels of DNMT3b. In a lung cancer xenograft node mice model, curcumin exhibited protective effect against weight loss because of tumor burden. Tumor growth was strongly repressed by curcumin treatment. As the results from in vitro, RARβ mRNA were increased and DNMT3b mRNA were decreased by curcumin treatment compared with the mice in control group. Altogether, this study reveals a novel molecular mechanism of curcumin as a chemo-preventive agent for lung cancer through reactivation of RARβ.
Collapse
Affiliation(s)
- Apei Jiang
- College of Basic Medical Science, Zhejiang Chinese Medical School, Hangzhou, Zhejiang, 310053, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xuemin Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiaoyun Shan
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yuan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Pengqi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Pan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| |
Collapse
|
22
|
Fumonisin B1 induces autophagic cell death via activation of ERN1-MAPK8/9/10 pathway in monkey kidney MARC-145 cells. Arch Toxicol 2015; 90:985-96. [DOI: 10.1007/s00204-015-1514-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
|
23
|
Hao C, Yang Z, Gao B, Lu M, Meng X, Qiao X, Xue D, Zhang W. Database screening of herbal monomers regulating autophagy by constructing a "disease-gene-drug" network. Altern Ther Health Med 2014; 14:466. [PMID: 25475428 PMCID: PMC4295301 DOI: 10.1186/1472-6882-14-466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 11/27/2014] [Indexed: 12/01/2022]
Abstract
Background Studies suggest an important role of autophagy as a target for cancer therapy. We constructed a "disease-gene-drug" network using the modular approach of bioinformatics and screened herbal monomers demonstrating functions related to autophagy regulation. Methods Based on the microarray results of the gene expression omnibus (GEO) database (GSE2435 and GSE31040, starvation-induced autophagy model), we used the human protein reference database (HPRD) to obtain the protein-protein interaction (PPI) network. In addition, we used the CFinder software to identify several functional modules, performed gene ontology-biological process (GO-BP) functional enrichment analysis using the DAVID software, constructed a herbal monomer-module gene regulatory network using literature search and the Cytoscape software, and then analyzed the relationships between autophagy, genes, and herbal monomers. Results We screened 544 differentially expressed genes related to autophagy, 375 pairs of differentially expressed genes, and 7 gene modules, wherein the functions of module 3 (composed of 7 genes) were enriched in "cell death". Using the constructed herbal monomer-module gene regulatory network, we found that 30 herbal monomers can simultaneously regulate these 7 genes, indicating a potential regulatory role in autophagy. Conclusions Database screening using the disease-gene-drug network can provide new strategies and ideas for the application of herbal medicines in cancer therapy.
Collapse
|
24
|
Hasima N, Ozpolat B. Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell Death Dis 2014; 5:e1509. [PMID: 25375374 PMCID: PMC4260725 DOI: 10.1038/cddis.2014.467] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/26/2022]
Abstract
Autophagy, a lysosomal degradation pathway for cellular constituents and organelles, is an adaptive and essential process required for cellular homeostasis. Although autophagy functions as a survival mechanism in response to cellular stressors such as nutrient or growth factor deprivation, it can also lead to a non-apoptotic form of programmed cell death (PCD) called autophagy-induced cell death or autophagy-associated cell death (type II PCD). Current evidence suggests that cell death through autophagy can be induced as an alternative to apoptosis (type I PCD), with therapeutic purpose in cancer cells that are resistant to apoptosis. Thus, modulating autophagy is of great interest in cancer research and therapy. Natural polyphenolic compounds that are present in our diet, such as rottlerin, genistein, quercetin, curcumin, and resveratrol, can trigger type II PCD via various mechanisms through the canonical (Beclin-1 dependent) and non-canonical (Beclin-1 independent) routes of autophagy. The capacity of these compounds to provide a means of cancer cell death that enhances the effects of standard therapies should be taken into consideration for designing novel therapeutic strategies. This review focuses on the autophagy- and cell death-inducing effects of these polyphenolic compounds in cancer.
Collapse
Affiliation(s)
- N Hasima
- 1] Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA [2] Institute Science Biology, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia [3] Center for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - B Ozpolat
- 1] Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA [2] Center for RNA Interference and Non-Coding RNAs - Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, USA
| |
Collapse
|
25
|
Onen HI, Yilmaz A, Alp E, Celik A, Demiroz SM, Konac E, Kurul IC, Menevse ES. EF24 and RAD001 potentiates the anticancer effect of platinum-based agents in human malignant pleural mesothelioma (MSTO-211H) cells and protects nonmalignant mesothelial (MET-5A) cells. Hum Exp Toxicol 2014; 34:117-26. [PMID: 25028262 DOI: 10.1177/0960327114542965] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The most widespread neoplasm of the pleura is malignant pleural mesothelioma (MPM) with low prevalence rate. The mechanistic target of rapamycin signaling pathway, inhibited by RAD001, was shown to be deregulated in MPM development and considered a novel target for the MPM therapy. The EF24, a curcumin analog, also affects several signaling pathways and kills cancer cells as a single agent or in combination with classical drugs. We aimed to evaluate possible effects of RAD001, EF24, cisplatin, and oxaliplatin treatments on both malignant pleural mesothelioma (MSTO-211H) and nonmalignant mesothelial (Met-5A) cell lines. The effects of the agents on MSTO-211H and Met-5A cells were evaluated in terms of cell viability, cytotoxicity, DNA synthesis rate, quantitation of apoptotic DNA fragmentation, and cleaved caspase 3 levels. Moreover, quantitative messenger RNA (mRNA) analysis of apoptotic (CASP9) and antiapoptotic (BCL2L1 and BCL2) genes were also performed. We found that both EF24 and RAD001 alone treatments decreased only MSTO-211H cell viability, but cisplatin and oxaliplatin affected both cell lines. Pretreatment with EF24 or RAD001 followed by cisplatin increased the effects of cisplatin alone application. EF24 and RAD001 pretreatment decreased DNA fragmentation rate when compared with cisplatin alone treatment in Met-5A cells. Sequential treatments resulted in a significant increase of CASP9 mRNA expression in MSTO-211H cells but not in Met-5A cells. Our preliminary results suggest that pretreatment with EF24 or RAD001 may reduce cytotoxic effect of cisplatin on nonmalignant mesothelial cells and increase cell death response of MPM cells. Further analyses using animal models are needed to confirm these findings in vivo.
Collapse
Affiliation(s)
- H I Onen
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - A Yilmaz
- Department of Bioengineering, Faculty of Engineering and Architecture, Mehmet Akif Ersoy University, Burdur, Turkey
| | - E Alp
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun, Turkey
| | - A Celik
- Department of Thoracic Surgery, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - S M Demiroz
- Department of Thoracic Surgery, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - E Konac
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - I C Kurul
- Department of Thoracic Surgery, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - E S Menevse
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| |
Collapse
|
26
|
Miller JM, Thompson JK, MacPherson MB, Beuschel SL, Westbom CM, Sayan M, Shukla A. Curcumin: a double hit on malignant mesothelioma. Cancer Prev Res (Phila) 2014; 7:330-40. [PMID: 24431405 DOI: 10.1158/1940-6207.capr-13-0259] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inflammation is a key mediator in the development of malignant mesothelioma, which has a dismal prognosis and poor therapeutic strategies. Curcumin, a naturally occurring polyphenol in turmeric, has been shown to possess anticarcinogenic properties through its anti-inflammatory effects. Inflammasomes, a component of inflammation, control the activation of caspase-1 leading to pyroptosis and processing of proinflammatory cytokines, interleukin (IL)-1β and IL-18. In the present study, we investigate the role of curcumin in pyroptotic cell death of malignant mesothelioma cells. Using in vitro models with mouse and human malignant mesothelioma cells, curcumin is shown to induce pyroptosis through activation of caspase-1 and increased release of high-mobility group box 1 (HMGB1) without processing of IL-1β and IL-18. Absence of IL-1β processing in response to curcumin-mediated caspase-1 activation is attributed to blockade of pro-IL-1β priming through inhibition of the NF-κB pathway. Furthermore, curcumin's cytotoxicity in malignant mesothelioma cells is demonstrated to be dependent on pyroptosis as inhibition of caspase-1 resulted in protection against curcumin-induced cell death. We also demonstrate that curcumin-mediated caspase-1 activation is oxidant dependent by using N-acetyl-L-cysteine (NAC) to inhibit pyroptosis. PCR array analysis using the human inflammasome template revealed that curcumin significantly downregulated levels of inflammasome-related gene expression involved in inflammation, e.g., NF-κB, toll-like receptors (TLR), and IL-1β. Our data indicate that curcumin has a double effect on malignant mesothelioma cells through induction of pyroptosis while subsequently protecting against inflammation.
Collapse
Affiliation(s)
- Jill M Miller
- Department of Pathology, University of Vermont College of Medicine, 89 Beaumont Avenue, HSRF 216, Burlington, VT 05405-0068.
| | | | | | | | | | | | | |
Collapse
|
27
|
Salem M, Rohani S, Gillies ER. Curcumin, a promising anti-cancer therapeutic: a review of its chemical properties, bioactivity and approaches to cancer cell delivery. RSC Adv 2014. [DOI: 10.1039/c3ra46396f] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
28
|
Romero-Hernández MA, Eguía-Aguilar P, Perézpeña-DiazConti M, Rodríguez-Leviz A, Sadowinski-Pine S, Velasco-Rodríguez LA, Cáceres-Cortés JR, Arenas-Huertero F. Toxic effects induced by curcumin in human astrocytoma cell lines. Toxicol Mech Methods 2013; 23:650-9. [PMID: 23889520 DOI: 10.3109/15376516.2013.826768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The objective of this study was to describe the toxicity induced by curcumin in human astrocytoma cell lines. METHODS The effects induced by curcumin, at 100 µM for 24 h, were evaluated in four astrocytoma cell lines using crystal violet assay and through the evaluation of morphological and ultrastructural changes by electron microscopy. Also, the results of vital staining with acridine orange and propidium iodide for acidic vesicles and apoptotic bodies were analyzed and the expression of the Beclin1 gene was assessed by RT-PCR. RESULTS The cells treated with curcumin at 100 µM induced an inhibitory concentration50 of viability with morphological changes characterized by a progressive increase in large, non-acidic vesicles devoid of cytoplasmic components and organelles, but that conserved the cell nuclei. No DNA breakage was observed. The astrocytoma cells showed no apoptosis, necrosis or autophagy. Expression of BECLIN1 was not induced (p < 0.05) by curcumin in the astrocytoma cells. CONCLUSIONS Curcumin at 100 µm induced a new type of death cell in astrocytoma cell lines.
Collapse
Affiliation(s)
- Mirna A Romero-Hernández
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo , México D.F. , México
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Vandermeers F, Neelature Sriramareddy S, Costa C, Hubaux R, Cosse JP, Willems L. The role of epigenetics in malignant pleural mesothelioma. Lung Cancer 2013; 81:311-318. [PMID: 23790315 DOI: 10.1016/j.lungcan.2013.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/18/2013] [Accepted: 05/22/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Fabian Vandermeers
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Sathya Neelature Sriramareddy
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Chrisostome Costa
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Roland Hubaux
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Jean-Philippe Cosse
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Luc Willems
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium.
| |
Collapse
|
30
|
Belcaro G, Hosoi M, Pellegrini L, Appendino G, Ippolito E, Ricci A, Ledda A, Dugall M, Cesarone MR, Maione C, Ciammaichella G, Genovesi D, Togni S. A Controlled Study of a Lecithinized Delivery System of Curcumin (Meriva®) to Alleviate the Adverse Effects of Cancer Treatment. Phytother Res 2013; 28:444-50. [DOI: 10.1002/ptr.5014] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Gianni Belcaro
- Chieti Pescara University Biomedical Sciences Corso Umberto I, 18 San Valentino Pescara 65020 Italy
| | - Morio Hosoi
- Chieti Pescara University Biomedical Sciences Corso Umberto I, 18 San Valentino Pescara 65020 Italy
| | | | | | | | - Andrea Ricci
- Chieti Pescara University Biomedical Sciences Chieti Italy
| | - Andrea Ledda
- Chieti Pescara University Biomedical Sciences Corso Umberto I, 18 San Valentino Pescara 65020 Italy
| | - Mark Dugall
- Chieti Pescara University Biomedical Sciences Corso Umberto I, 18 San Valentino Pescara 65020 Italy
| | | | - Claudia Maione
- Chieti Pescara University Biomedical Sciences Corso Umberto I, 18 San Valentino Pescara 65020 Italy
| | - Giovanna Ciammaichella
- Chieti Pescara University Biomedical Sciences Corso Umberto I, 18 San Valentino Pescara 65020 Italy
| | - Domenico Genovesi
- University of Chieti Pescara Department of Radiotherapy Chieti Italy
| | - Stefano Togni
- Indena SpA ‐ BD&L Viale Ortles, 12 Milan 20139 Italy
| |
Collapse
|
31
|
Vinod BS, Maliekal TT, Anto RJ. Phytochemicals as chemosensitizers: from molecular mechanism to clinical significance. Antioxid Redox Signal 2013; 18:1307-48. [PMID: 22871022 DOI: 10.1089/ars.2012.4573] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review provides an overview of the clinical relevance of chemosensitization, giving special reference to the phenolic phytochemicals, curcumin, genistein, epigallocatechin gallate, quercetin, emodin, and resveratrol, which are potential candidates due to their ability to regulate multiple survival pathways without inducing toxicity. We also give a brief summary of all the clinical trials related to the important phytochemicals that emerge as chemosensitizers. The mode of action of these phytochemicals in regulating the key players of the death receptor pathway and multidrug resistance proteins is also abridged. Rigorous efforts in identifying novel chemosensitizers and unraveling their molecular mechanism have resulted in some of the promising candidates such as curcumin, genistein, and polyphenon E, which have gone into clinical trials. Even though considerable research has been conducted in identifying the salient molecular players either contributing to drug efflux or inhibiting DNA repair and apoptosis, both of which ultimately lead to the development of chemoresistance, the interdependence of the molecular pathways leading to chemoresistance is still the impeding factor in the success of chemotherapy. Even though clinical trials are going on to evaluate the chemosensitizing efficacy of phytochemicals such as curcumin, genistein, and polyphenon E, recent results indicate that more intense study is required to confirm their clinical efficacy. Current reports also warrant intense investigation about the use of more phytochemicals such as quercetin, emodin, and resveratrol as chemosensitizers, as all of them have been shown to modulate one or more of the key regulators of chemoresistance.
Collapse
Affiliation(s)
- Balachandran S Vinod
- Cancer Research Program, Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | |
Collapse
|
32
|
Zhou M, Wang R. Small-molecule regulators of autophagy and their potential therapeutic applications. ChemMedChem 2013; 8:694-707. [PMID: 23568434 DOI: 10.1002/cmdc.201200560] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/11/2013] [Indexed: 12/15/2022]
Abstract
Autophagy is a highly conserved process in which damaged proteins and organelles are sequestered in double-membrane autophagosomes and delivered to lysosomes for degradation and recycling. As an efficient response to cellular stress, autophagy is essential for the maintenance of cellular homeostasis. Defective autophagy is associated with a variety of diseases, including cancer. This article summarizes current knowledge about the molecular mechanism of autophagy and its role in tumorigenesis. Particular focus is placed on the development of small-molecule regulators of autophagy and their potential application as anticancer therapeutic agents.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P.R. China
| | | |
Collapse
|
33
|
Gupta SC, Kismali G, Aggarwal BB. Curcumin, a component of turmeric: from farm to pharmacy. Biofactors 2013; 39:2-13. [PMID: 23339055 DOI: 10.1002/biof.1079] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 12/04/2012] [Indexed: 12/16/2022]
Abstract
Curcumin, an active polyphenol of the golden spice turmeric, is a highly pleiotropic molecule with the potential to modulate the biological activity of a number of signaling molecules. Traditionally, this polyphenol has been used in Asian countries to treat such human ailments as acne, psoriasis, dermatitis, and rash. Recent studies have indicated that curcumin can target newly identified signaling pathways including those associated with microRNA, cancer stem cells, and autophagy. Extensive research from preclinical and clinical studies has delineated the molecular basis for the pharmaceutical uses of this polyphenol against cancer, pulmonary diseases, neurological diseases, liver diseases, metabolic diseases, autoimmune diseases, cardiovascular diseases, and numerous other chronic diseases. Multiple studies have indicated the safety and efficacy of curcumin in numerous animals including rodents, monkeys, horses, rabbits, and cats and have provided a solid basis for evaluating its safety and efficacy in humans. To date, more than 65 human clinical trials of curcumin, which included more than 1000 patients, have been completed, and as many as 35 clinical trials are underway. Curcumin is now used as a supplement in several countries including the United States, India, Japan, Korea, Thailand, China, Turkey, South Africa, Nepal, and Pakistan. In this review, we provide evidence for the pharmaceutical uses of curcumin for various diseases.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|