1
|
Wiraswati HL, Ma'ruf IF, Sharifi-Rad J, Calina D. Piperine: an emerging biofactor with anticancer efficacy and therapeutic potential. Biofactors 2024. [PMID: 39467259 DOI: 10.1002/biof.2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Anticancer drug discovery needs serious attention to overcome the high mortality rate caused by cancer. There are still many obstacles to treating this disease, such as the high cost of chemotherapeutic drugs, the resulting side effects from the drug, and the occurrence of multidrug resistance. Herbaceous plants are a reservoir of natural compounds that can be anticancer drugs with novel mechanisms of action. Piperine, a bioactive compound derived from Piper species, is gaining attention due to its unique dual role in directly inhibiting tumor growth and enhancing the bioavailability of chemotherapeutic drugs. Unlike conventional treatments, Piperine exhibits a novel mechanism of action by modulating multiple signaling pathways, including apoptosis and autophagy, with low toxicity. Additionally, Piperine acts as a bioenhancer by improving the absorption and effectiveness of other anticancer agents, reducing the required dosage, and minimizing side effects. Therefore, this review aims to visualize a summary of Piperine sources, phytochemistry, chemical structure-anticancer activity relationship, anticancer activities of semi-synthetic derivatives, pharmacokinetic and bioavailability, in vitro and in vivo preclinical studies, mechanism of antitumor action, human clinical trials, toxicity, side effects, and safety of Piperine. References were collected from the Pubmed/MedLine database (https://pubmed.ncbi.nlm.nih.gov/) with the following keywords: "Piperine anticancer," "Piperine derivatives," "Piperine antitumor mechanism" and "Piperine pharmacokinetic and bioavailability," after filter process by inclusion and exclusion criteria, 101 were selected from 444 articles. From 2013 to 2023, there were numerous studies regarding preclinical studies of Piperine of various cell lines, including breast cancer, prostate cancer, lung cancer, melanoma, cervical cancer, gastric cancer, osteosarcoma, colon cancer, hepatocellular carcinoma, ovarian cancer, leukemia, colorectal cancer, and hypopharyngeal carcinoma. In vivo, the anticancer study has also been conducted on some animal models, such as Ehrlich carcinoma-bearing mice, Ehrlich ascites carcinoma cells-bearing Balbc mice, hepatocellular carcinoma-bearing Wistar rat, A375SM cells-bearing mice, A375P cells-bearing mice, SNU-16 cells-bearing BalbC mice, and HGC-27-bearing baby mice. Treatment with this compound leads to cell proliferation inhibition and induction of apoptosis. Piperine has been used for clinical trials of diseases, but no cancer patient report exists. Various semi-synthetic derivatives of Piperine show efficacy as an anticancer drug across multiple cell lines. Piperine shows promise for use in cancer clinical trials, either as a standalone treatment or as a bioenhancer. Its bioenhancer properties may enhance the efficacy of existing chemotherapeutic agents, providing a valuable foundation for developing new anticancer therapies.
Collapse
Affiliation(s)
- Hesti Lina Wiraswati
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ilma Fauziah Ma'ruf
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
2
|
Hadidi M, Liñán-Atero R, Tarahi M, Christodoulou MC, Aghababaei F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants (Basel) 2024; 13:1001. [PMID: 39199245 PMCID: PMC11352096 DOI: 10.3390/antiox13081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Gallic acid (GA), a phenolic acid found in fruits and vegetables, has been consumed by humans for centuries. Its extensive health benefits, such as antimicrobial, antioxidant, anticancer, anti-inflammatory, and antiviral properties, have been well-documented. GA's potent antioxidant capabilities enable it to neutralize free radicals, reduce oxidative stress, and protect cells from damage. Additionally, GA exerts anti-inflammatory effects by inhibiting inflammatory cytokines and enzymes, making it a potential therapeutic agent for inflammatory diseases. It also demonstrates anticancer properties by inhibiting cancer cell growth and promoting apoptosis. Furthermore, GA offers cardiovascular benefits, such as lowering blood pressure, decreasing cholesterol, and enhancing endothelial function, which may aid in the prevention and management of cardiovascular diseases. This review covers the chemical structure, sources, identification and quantification methods, and biological and therapeutic properties of GA, along with its applications in food. As research progresses, the future for GA appears promising, with potential uses in functional foods, pharmaceuticals, and nutraceuticals aimed at improving overall health and preventing disease. However, ongoing research and innovation are necessary to fully understand its functional benefits, address current challenges, and establish GA as a mainstay in therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | | | | |
Collapse
|
3
|
Xiang Z, Guan H, Zhao X, Xie Q, Xie Z, Cai F, Dang R, Li M, Wang C. Dietary gallic acid as an antioxidant: A review of its food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions. Food Res Int 2024; 180:114068. [PMID: 38395544 DOI: 10.1016/j.foodres.2024.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Gallic acid (GA), a dietary phenolic acid with potent antioxidant activity, is widely distributed in edible plants. GA has been applied in the food industry as an antimicrobial agent, food fresh-keeping agent, oil stabilizer, active food wrap material, and food processing stabilizer. GA is a potential dietary supplement due to its health benefits on various functional disorders associated with oxidative stress, including renal, neurological, hepatic, pulmonary, reproductive, and cardiovascular diseases. GA is rapidly absorbed and metabolized after oral administration, resulting in low bioavailability, which is susceptible to various factors, such as intestinal microbiota, transporters, and metabolism of galloyl derivatives. GA exhibits a tendency to distribute primarily to the kidney, liver, heart, and brain. A total of 37 metabolites of GA has been identified, and decarboxylation and dihydroxylation in phase I metabolism and sulfation, glucuronidation, and methylation in phase Ⅱ metabolism are considered the main in vivo biotransformation pathways of GA. Different types of nanocarriers, such as polymeric nanoparticles, dendrimers, and nanodots, have been successfully developed to enhance the health-promoting function of GA by increasing bioavailability. GA may induce drug interactions with conventional drugs, such as hydroxyurea, linagliptin, and diltiazem, due to its inhibitory effects on metabolic enzymes, including cytochrome P450 3A4 and 2D6, and transporters, including P-glycoprotein, breast cancer resistance protein, and organic anion-transporting polypeptide 1B3. In conclusion, in-depth studies of GA on food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions have laid the foundation for its comprehensive application as a food additive and dietary supplement.
Collapse
Affiliation(s)
- Zedong Xiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Xiang Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Zhejun Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Fujie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Rui Dang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Manlin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China.
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China.
| |
Collapse
|
4
|
Sun Q, Li L, Zhou Q. Effects of Ethanolic Extract of Schisandra sphenanthera on the Pharmacokinetics of Rosuvastatin in Rats. Drug Des Devel Ther 2022; 16:1473-1481. [PMID: 35607596 PMCID: PMC9123906 DOI: 10.2147/dddt.s364234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Wuzhi capsule (WZ) is a proprietary Chinese medicine prepared from the ethanolic extract of Schisandra sphenanthera that is commonly used to treat liver injury. Statins are widely used in patients with hyperlipidemia, coronary heart disease, metabolic syndrome, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. Co-administration of statins with WZ is possible in clinical practice. WZ has obvious inhibitory effects on the bioavailability of atorvastatin and simvastatin; however, the drug–herb interactions between WZ and rosuvastatin have not been addressed. We explored the effects of WZ on the pharmacokinetics of rosuvastatin in Sprague-Dawley rats to promote a rational use of statins. Methods Eighteen male rats were randomly and evenly divided into three groups: control group (gavage feeding of rosuvastatin 10 mg·kg−1), single dose group (gavage feeding of a single dose of WZ 150 mg·kg−1 followed by rosuvastatin 10 mg·kg−1) and multiple doses group (gavage feeding of WZ 150 mg·kg−1 for 7 days followed by rosuvastatin 10 mg·kg−1 on the seventh day). Plasma samples were collected at different times before and after rosuvastatin administration. The other 18 female rats were tested the same way as the male rats. All samples were analyzed by a validated LC-MS/MS method, and the pharmacokinetic parameters were calculated using a non-compartmental model. Results In both male and female rats, there were no statistically significant differences in rosuvastatin pharmacokinetic parameters between the control group, the single dose group, and the multi-dose group. Conclusion Acute or long-term intake of WZ had no obvious effect on the pharmacokinetics of rosuvastatin, and therefore rosuvastatin could be used as an alternative to atorvastatin and simvastatin when WZ is clinically required in conjunction with statins. An appropriate pharmacodynamic study is needed to encourage the safe use of this combination.
Collapse
Affiliation(s)
- Qing Sun
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, People’s Republic of China
| | - Li Li
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, People’s Republic of China
- Li Li, Department of Pharmacy, Zhejiang Hospital, No. 12 Lingyin Road, Hangzhou, 310013, Zhejiang Province, People’s Republic of China, Email
| | - Quan Zhou
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Correspondence: Quan Zhou, Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road No. 88, Shangcheng District, Hangzhou, 310009, Zhejiang Province, People’s Republic of China, Tel +86 571 89713473, Email
| |
Collapse
|
5
|
Ziegenhagen R, Heimberg K, Lampen A, Hirsch-Ernst KI. Safety Aspects of the Use of Isolated Piperine Ingested as a Bolus. Foods 2021; 10:foods10092121. [PMID: 34574230 PMCID: PMC8467119 DOI: 10.3390/foods10092121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Piperine is a natural ingredient of Piper nigrum (black pepper) and some other Piper species. Compared to the use of pepper for food seasoning, piperine is used in food supplements in an isolated, concentrated form and ingested as a bolus. The present review focuses on the assessment of the possible critical health effects regarding the use of isolated piperine as a single ingredient in food supplements. In human and animal studies with single or short-term bolus application of isolated piperine, interactions with several drugs, in most cases resulting in increased drug bioavailability, were observed. Depending on the drug and extent of the interaction, such interactions may carry the risk of unintended deleteriously increased or adverse drug effects. Animal studies with higher daily piperine bolus doses than in human interaction studies provide indications of disturbance of spermatogenesis and of maternal reproductive and embryotoxic effects. Although the available human studies rarely reported effects that were regarded as being adverse, their suitability for detailed risk assessment is limited due to an insufficient focus on safety parameters apart from drug interactions, as well as due to the lack of investigation of the potentially adverse effects observed in animal studies and/or combined administration of piperine with other substances. Taken together, it appears advisable to consider the potential health risks related to intake of isolated piperine in bolus form, e.g., when using certain food supplements.
Collapse
|
6
|
Gour A, Dogra A, Kour D, Singh G, Kumar A, Nandi U. Effect of Concomitant Hydroxyurea Therapy with Rutin and Gallic Acid: Integration of Pharmacokinetic and Pharmacodynamic Approaches. ACS OMEGA 2021; 6:14542-14550. [PMID: 34124477 PMCID: PMC8190911 DOI: 10.1021/acsomega.1c01518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/13/2021] [Indexed: 05/28/2023]
Abstract
Hydroxyurea (HU) is the first-ever approved drug by USFDA for sickle cell anemia (SCA). However, its treatment is associated with severe side effects like myelosuppression. Current studies are focused on the supplementation therapy for symptomatic management of SCA. In the present study, we aimed to explore rutin's and gallic acid's potential individually, for concomitant therapy with HU using pharmacokinetic and pharmacodynamic approaches since there is no such precedent till date. In vivo pharmacokinetic studies of HU in rats showed that rutin could be safely co-administered with HU, while gallic acid significantly raised the plasma concentration of HU. Both the phytochemicals did not have any marked inhibitory effect on urease but have considerable effects on horseradish peroxidase enzyme. The experimental phytoconstituents displayed a very low propensity to cause in vitro hemolysis. Gallic acid markedly enhanced the HU-induced decrease in lymphocyte proliferation. A substantial improvement by rutin or gallic acid was observed in HU-induced reduction of the main hematological parameters in rats. Combined treatment of HU with rutin and gallic acid reduced serum levels of both IL-6 and IL-17A. Overall, both rutin and gallic acid are found to have promising phytotherapy potential with HU. Further exploration needs to be done on both candidates for use as phytotherapeutics for SCA.
Collapse
Affiliation(s)
- Abhishek Gour
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Ashish Dogra
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Dilpreet Kour
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Gurdarshan Singh
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Ajay Kumar
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Utpal Nandi
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
7
|
Sharifi-Rad J, Dey A, Koirala N, Shaheen S, El Omari N, Salehi B, Goloshvili T, Cirone Silva NC, Bouyahya A, Vitalini S, Varoni EM, Martorell M, Abdolshahi A, Docea AO, Iriti M, Calina D, Les F, López V, Caruntu C. Cinnamomum Species: Bridging Phytochemistry Knowledge, Pharmacological Properties and Toxicological Safety for Health Benefits. Front Pharmacol 2021; 12:600139. [PMID: 34045956 PMCID: PMC8144503 DOI: 10.3389/fphar.2021.600139] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
The genus Cinnamomum includes a number of plant species largely used as food, food additives and spices for a long time. Different traditional healing systems have used these plants as herbal remedies to cure diverse ailments. The aim of this comprehensive and updated review is to summarize the biodiversity of the genus Cinnamomum, its bioactive compounds, the mechanisms that underlie the pharmacological activities and molecular targets and toxicological safety. All the data in this review have been collected from databases and recent scientific literature including Web of Science, PubMed, ScienceDirect etc. The results showed that the bioactive compounds of Cinnamomum species possess antimicrobial, antidiabetic, antioxidant, anti-inflammatory, anticancer and neuroprotective effects. The preclinical (in vitro/in vivo) studies provided the possible molecular mechanisms of these action. As a novelty, recent clinical studies and toxicological data described in this paper support and confirm the pharmacological importance of the genus Cinnamomum. In conclusion, the obtained results from preclinical studies and clinical trials, as well as reduced side effects provide insights into future research of new drugs based on extracts and bioactive compounds from Cinnamomum plants.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Niranjan Koirala
- Department of Natural Products Drugs Discovery, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu, Nepal
| | - Shabnum Shaheen
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tamar Goloshvili
- Institute of Botany, Plant Physiology and Genetic Resources, Ilia State University, Tbilisi, Georgia
| | | | - Abdelhakim Bouyahya
- Laboratory of Human Pathology Biology, Faculty of Sciences, Genomic Center of Human Pathology, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Rabat, Morocco
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Elena M Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile.,Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepcion, Chile
| | - Anna Abdolshahi
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Constantin Caruntu
- Department of Physiology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania
| |
Collapse
|
8
|
Liu J, Guo Y, Liu K, Ye X, Wang F, Xu Y, Xia C. Scutellarin inhibition of the rosuvastatin uptake in rat hepatocytes and the competition for organic anion transporting polypeptide 1B1 in HEK293T cells. Sci Rep 2020; 10:1308. [PMID: 31992796 PMCID: PMC6987161 DOI: 10.1038/s41598-020-58303-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/13/2020] [Indexed: 11/09/2022] Open
Abstract
In this report, we investigated the hepatocytic uptake of rosuvastatin when administered with scutellarin (a Chinese herbal medicine) in rats and the role of organic anion transporting polypeptide 1B1 (OATP1B1) plays in the uptake. Forty-eight rats were randomly divided into two groups according to the medicine administered: rosuvastatin alone and rosuvastatin in combination with a series concentration of scutellarin. Rosuvastatin concentrations in blood and liver were measured using the liquid chromatography–tandem mass spectrometry (LC-MS) method. The uptake was also measured in rat primary hepatocytes and OATP1B1 transfected human embryonic kidney 293 T (HEK293T) cells. The uptake was investigated under the optimal intake conditions. The rosuvastatin Cmax and AUC0−∞ in rat plasma increased 55% and 61%, respectively in the combination treatment group; and the liver scutellarin concentrations decreased 32%, 34%, and 33% at 1 h, 2 h, and 6 h, respectively. All scutellarin dosages (20, 50, and 100 μM) inhibited the uptake of rosuvastatin in rat primary hepatocytes (4.71%, 22.73%, and 45.89%). Scutellarin of 10 μM significantly inhibited the in vitro uptake of rosuvastatin in OATP1B1-HEK293T cells (P < 0.05), with an IC50 of 60.53 ± 5.74 μM. Scutellarin increases the plasma concentration of rosuvastatin and inhibits the uptake in rat primary hepatocytes and OATP1B1-HEK293T cells, suggesting a drug interaction between scutellarin and rosuvastatin and OATP1B1 as a potential mechanism.
Collapse
Affiliation(s)
- Jianming Liu
- Clinical Pharmacology Institute, Nanchang University, Nanchang, Jiangxi, 330031, China. .,School of Pharmacy, JiangXi Medical College, Shangrao, Jiangxi, 334000, China.
| | - Yongmei Guo
- School of Pharmacy, JiangXi Medical College, Shangrao, Jiangxi, 334000, China
| | - Keqi Liu
- School of Pharmacy, JiangXi Medical College, Shangrao, Jiangxi, 334000, China
| | - Xiyong Ye
- School of Pharmacy, JiangXi Medical College, Shangrao, Jiangxi, 334000, China
| | - Fang Wang
- School of Pharmacy, JiangXi Medical College, Shangrao, Jiangxi, 334000, China
| | - Yanqi Xu
- School of Pharmacy, JiangXi Medical College, Shangrao, Jiangxi, 334000, China
| | - Chunhua Xia
- Clinical Pharmacology Institute, Nanchang University, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
9
|
Piperine-A Major Principle of Black Pepper: A Review of Its Bioactivity and Studies. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204270] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Piperine is the main compound present in black pepper, and is the carrier of its specific pungent taste, which is responsible for centuries of human dietary utilization and worldwide popularity as a food ingredient. Along with the application as a food ingredient and food preservative, it is used in traditional medicine for many purposes, which has in most cases been justified by modern scientific studies on its biological effects. It has been confirmed that piperine has many bioactive effects, such as antimicrobial action, as well as many physiological effects that can contribute to general human health, including immunomodulatory, hepatoprotective, antioxidant, antimetastatic, antitumor, and many other activities. Clinical studies demonstrated remarkable antioxidant, antitumor, and drug availability-enhancing characteristics of this compound, together with immunomodulatory potential. All these facts point to the therapeutic potential of piperine and the need to incorporate this compound into general health-enhancing medical formulations, as well as into those that would be used as adjunctive therapy in order to enhance the bioavailability of various (chemo)therapeutic drugs.
Collapse
|
10
|
Li C, Wang Z, Wang Q, Ka Yan Ho RL, Huang Y, Chow MSS, Kei Lam CW, Zuo Z. Enhanced anti-tumor efficacy and mechanisms associated with docetaxel-piperine combination- in vitro and in vivo investigation using a taxane-resistant prostate cancer model. Oncotarget 2017; 9:3338-3352. [PMID: 29423050 PMCID: PMC5790467 DOI: 10.18632/oncotarget.23235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Abstract
Docetaxel (DTX) is widely used for metastatic castrated resistant prostate cancer, but its efficacy is often compromised by drug resistance associated with low intracellular concentrations. Piperine (PIP) could enhance the bioavailability of other drugs via the inhibition of CYPs and P-gp activities. Thus, we hypothesize a positive effect with the DTX-PIP combination on the anti-tumor efficacy and intra-tumor DTX concentrations in taxane-resistant prostate cancer. ICR-NOD/SCID mice implanted with taxane-resistant human prostate cancer cells were administrated with saline as well as PIP and DTX separately or in combination. The tumor growth was monitored together with intra-tumor concentrations of DTX. The inhibitory effects on CYPs and P-gp were further assessed in mouse liver microsome and MDCK-MDR1 cells. Compared with DTX alone, DTX-PIP combination significantly inhibited the tumor growth (114% vs. 217%, p = 0.002) with corresponding significantly higher intra-tumor DTX concentrations (5.854 ± 5.510 ng/ml vs. 1.312 ± 0.754 ng/mg, p = 0.037). The percentage of DTX metabolism was significantly decreased from 28.94 ± 1.06% to 18.14 ± 2.22% in mouse liver microsome after administration of PIP for two weeks. DTX accumulation in MDCK-MDR1 cell was significantly enhanced in the presence of PIP. Further microarray analysis revealed that PIP inhibited P-gp as well as CYP1B1 gene expression and induced a significant gene expression change relating to inflammatory response, angiogenesis, cell proliferation, or cell migration. In conclusion, DTX-PIP combination significantly induces activity against taxane-resistant prostate tumor. Such effect appeared to be attributed to the inhibitory effect of PIP on CYPs and P-gp activity as well as gene expression changes relating to tumorigenesis and cellular responses.
Collapse
Affiliation(s)
- Chenrui Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR.,Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Zhijun Wang
- Center for Advanced Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Marshall B. Ketchum University, Fullerton, CA, USA
| | - Qian Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Rebecca Lucinda Ka Yan Ho
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Ying Huang
- Center for Advanced Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Moses S S Chow
- Center for Advanced Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|