1
|
Mahmood NMS, Mahmood AMR, Maulood IM. The roles of melatonin and potassium channels in relaxation response to ang 1-7 in diabetic rat isolated aorta. Cytotechnology 2025; 77:55. [PMID: 39927136 PMCID: PMC11799518 DOI: 10.1007/s10616-025-00720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
In a circadian cycle, the pineal gland produces and releases melatonin (MEL) into the bloodstream. By activating distinct melatonin receptors, MEL has been shown to variably change vascular endothelial dysfunction (VED) to various vascular beds. This study investigates the interaction of melatonin (MEL) and potassium ion (K+) on angiotensin 1-7 (Ang 1-7) vasorelaxant in streptozotocin (STZ)-induced diabetes mellitus (DM) and non-diabetes mellitus (non-DM) male albino rat aortic rings. The isometric tension of isolated aortic rings was assessed by generating a dose-response curve (DRC) for Ang 1-7 using a PowerLab data acquisition system. Accordingly, three experimental sets were carried out. In the first set the aortic rings were exposed MEL and MEL agonist ramelteon (RAM) and MEL antagonist luzindole (LUZ). In the second set, the aortic rings were exposed to various non-selective calcium activated potassium channel (KCa) blockers, including tetraethylammonium (TEA), a small and large-conductance calcium-activated K+ [(SKCa) and (BKCa)] channels blocker charybdotoxin (ChTx) and intermediate calcium-activated K+ channel (IKCa) blocker clotrimazole (CLT). In the third set, the aortic rings were exposed to various selective K+ channels blockers, including the selective blocker of KATP channel, glibenclamide (Glib), 4-aminopyridine (4-AP), a selective blocker of Kv channels and BaCl2, delayed inward rectifier K+ channels (Kir) blocker. The results highlight the significant role of MEL in modulating vascular reactivity, particularly in the DM aorta. By enhancing the vasorelaxant effects of Ang 1-7 through mechanisms involving its receptors and antioxidant activities, MEL demonstrates its potential to counteract oxidative stress and VED associated with diabetes. These findings advance the understanding of vascular reactivity in diabetes and suggest MEL as a promising therapeutic agent for improving vascular health in diabetic conditions.
Collapse
Affiliation(s)
- Nazar M. Shareef Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region Iraq
| | - Almas M. R. Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region Iraq
| | - Ismail M. Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region Iraq
| |
Collapse
|
2
|
Histone Deacetylase Inhibitors: Providing New Insights and Therapeutic Avenues for Unlocking Human Birth. Reprod Sci 2021; 29:3134-3146. [PMID: 34713433 DOI: 10.1007/s43032-021-00778-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023]
Abstract
The pregnant uterus remains relaxed throughout fetal gestation before transforming to a contractile phenotype at term to facilitate birth. Despite ongoing progress, the precise mechanisms that regulate this phenotypic transformation are not yet understood. This knowledge gap limits our understanding of how dysregulation of uterine smooth muscle biology contributes to life-threatening obstetric complications, including preterm birth, and hampers our ability to develop effective therapeutic intervention strategies. Protein acetylation plays a vital role in regulating protein structure, function, and subcellular localization, as well as gene transcription availability through regulating chromatin condensation. Histone deacetylase inhibitors (HDACis) are a class of compounds that block the removal of acetyl functional groups from proteins and, as such, have profound effects on important cellular events, including phenotypic transformation. A large body of data now demonstrates that HDACis have profound effects on pregnant human myometrium. Studies to date show that HDACis operate through both genomic and non-genomic mechanisms to affect myometrial function and phenotype. Interestingly, the effects of HDACis on pregnant myometrium are largely "pro-relaxation," including the direct inhibition of contractile machinery as well as repression of pro-labor genes. The "dual action" effects of HDACis make them a powerful tool for unlocking the regulatory processes that underpin myometrial phenotypic transformation and raises prospects of their therapeutic applications. Here, we review the new insights into human myometrial biology that have garnered through the application of HDACis and explore their potential therapeutic application toward the development of novel preterm birth prevention strategies.
Collapse
|
3
|
Menezes-Rodrigues FS, Errante PR, Araújo EA, Fernandes MPP, Silva MMD, Pires-Oliveira M, Scorza CA, Scorza FA, Taha MO, Caricati-Neto A. Cardioprotection stimulated by resveratrol and grape products prevents lethal cardiac arrhythmias in an animal model of ischemia and reperfusion. Acta Cir Bras 2021; 36:e360306. [PMID: 33978062 PMCID: PMC8112107 DOI: 10.1590/acb360306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/07/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To evaluate the preventive cardioprotective effects of resveratrol and grape products, such as grape juice and red wine, in animal model of cardiac ischemia and reperfusion. METHODS Male Wistar rats orally pretreated for 21-days with resveratrol and grape products were anesthetized and placed on mechanical ventilation to surgically induce cardiac ischemia and reperfusion by obstruction (ischemia) followed by liberation (reperfusion) of blood circulation in left descending coronary artery. These rats were submitted to the electrocardiogram (ECG) analysis to evaluate the effects of pretreatment with resveratrol and grape products on the incidence of ventricular arrhythmias (VA), atrioventricular block (AVB) and lethality (LET) resulting from cardiac ischemia and reperfusion. RESULTS It was observed that the incidence of AVB was significantly lower in rats pretreated with resveratrol (25%), grape juice (37.5%) or red wine (12.5%) than in rats treated with saline solution (80%) or ethanol (80%). Similarly, incidence of LET was also significantly lower in rats pretreated with resveratrol (25%), grape juice (25%) or red wine (0%) than in rats treated with saline solution (62.5%) or ethanol (75%). CONCLUSIONS These results indicate that the cardioprotective response stimulated by resveratrol and grape products prevents the lethal cardiac arrhythmias in animal model of ischemia and reperfusion, supporting the idea that this treatment can be beneficial for prevention of severe cardiac arrhythmias in patients with ischemic heart disease.
Collapse
|
4
|
Abstract
Aberrant function or expression of potassium channels can be underlying in pathologies such as cardiac arrhythmia, diabetes mellitus, hypertension, preterm birth, and various types of cancer. The expression of potassium channels is altered in many types of diseases. Also, we have previously shown that natural polyphenols, such as resveratrol, and selective synthetic modulators of potassium channels, like pinacidil, can alter their function and lead to the desired outcome. Therefore, targeting potassium channels with substance, which has an influence on their function, is promising access to cancer, diabetes mellitus, preterm birth, or hypertension therapy. In this chapter, we could discuss strategies for targeting different types of potassium channels as potential targets for synthetic and natural molecules therapy.
Collapse
|
5
|
Gojkovic-Bukarica L, Markovic-Lipkovski J, Heinle H, Cirovic S, Rajkovic J, Djokic V, Zivanovic V, Bukarica A, Novakovic R. The red wine polyphenol resveratrol induced relaxation of the isolated renal artery of diabetic rats: The role of potassium channels. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
6
|
Liu W, Chen P, Deng J, Lv J, Liu J. Resveratrol and polydatin as modulators of Ca 2+ mobilization in the cardiovascular system. Ann N Y Acad Sci 2017; 1403:82-91. [PMID: 28665033 DOI: 10.1111/nyas.13386] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/29/2022]
Abstract
In the cardiovascular system, Ca2+ controls cardiac excitation-contraction coupling and vascular contraction and dilation. Disturbances in intracellular Ca2+ homeostasis induce malfunctions of the cardiovascular system, including cardiac pump dysfunction, arrhythmia, remodeling, and apoptosis, as well as hypertension and impairment of vascular reactivity. Therefore, developing drugs and strategies manipulating Ca2+ handling are highly valued in the treatment of cardiovascular disease. Resveratrol (Res) and polydatin (PD), a Res glucoside, have been well established to have beneficial effects on improving cardiovascular function. Studies from our laboratory and others have demonstrated that they exhibit inotropic effects on normal heart and therapeutic effects on hypertension, cardiac ischemia/reperfusion injury, hypertrophy, and heart failure by manipulating Ca2+ mobilization. The actions of Res and PD on Ca2+ signals delicately manipulated by multiple Ca2+ -handling proteins are pleiotropic and somewhat controversial, depending on cellular species and intracellular oxidative status. Here, we focus on the effects of Res and PD on controlling Ca2+ homeostasis in the heart and vasculature under normal and diseased conditions and highlight the key direct and indirect molecules mediating these effects.
Collapse
Affiliation(s)
- Wenjuan Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Peiya Chen
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jianxin Deng
- Department of Endocrinology, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China.,Department of Endocrinology, Shenzhen No. 2 People's Hospital, Shenzhen, China
| | - Jingzhang Lv
- Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Effect of oil palm phenolics on gastrointestinal transit, contractility and motility in the rat. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
8
|
Novakovi R, Radunovi N, Markovi -Lipkovski J, irovi S, Beleslin- oki B, Ili B, Ivkovi B, Heinle H, ivanovi V, Gojkovi -Bukarica L. Effects of the polyphenol resveratrol on contractility of human term pregnant myometrium. Mol Hum Reprod 2015; 21:545-51. [DOI: 10.1093/molehr/gav011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/02/2015] [Indexed: 12/27/2022] Open
|
9
|
Protić D, Radunović N, Spremović-Rađenović S, Živanović V, Heinle H, Petrović A, Gojković-Bukarica L. The Role of Potassium Channels in the Vasodilatation Induced by Resveratrol and Naringenin in Isolated Human Umbilical Vein. Drug Dev Res 2015; 76:17-23. [PMID: 25619904 DOI: 10.1002/ddr.21236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/01/2014] [Indexed: 01/18/2023]
Abstract
Preclinical Research Potassium (K+ ) channels have a key role in the maintenance of smooth muscle tone; a variety of agonists can modify the tone by altering K+ -channel activity. The aim of this study was assess the effects of the phenols, resveratrol, and naringenin on K+ -channels of the vascular smooth muscle. Segments of human umbilical vein (HUV) without endothelium were precontracted using serotonin (100 μM) or 100 mM K+ to derive cumulative concentration-response curves using increasing concentrations of resveratrol or naringenin. K+ -channel inhibitors were added in the bath before resveratrol (1-100 μM) or naringenin (0.01-1 mM) in assess the role of K+ -channels in their effects on HUV precontracted by serotonin. 4-Aminopiridine (4-AP; 1 mM), a nonselective blocker of voltage-dependent, tetraethylammonium (TEA; 1 mM) and barium chloride (1 mM), a nonselective blocker of Ca2+ -dependent and inward rectifier K+ -channels (respectively) induced significant shifts to the right (P < 0.05) of resveratrol. concentration-response curves. The effect of naringenin was antagonized by 4-AP (1 mM). 4-AP-, TEA-, and barium chloride-sensitive K+ -channels are probably involved in the resveratrol vasodilatatory effect, while naringenin seems to affect 4-AP-sensitive K+ -channels. However, other mechanisms of vasodilation induced by polyphenols could not be excluded. Drug Dev Res, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dragana Protić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
10
|
McCalley AE, Kaja S, Payne AJ, Koulen P. Resveratrol and calcium signaling: molecular mechanisms and clinical relevance. Molecules 2014; 19:7327-40. [PMID: 24905603 PMCID: PMC4160047 DOI: 10.3390/molecules19067327] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 11/16/2022] Open
Abstract
Resveratrol is a naturally occurring compound contributing to cellular defense mechanisms in plants. Its use as a nutritional component and/or supplement in a number of diseases, disorders, and syndromes such as chronic diseases of the central nervous system, cancer, inflammatory diseases, diabetes, and cardiovascular diseases has prompted great interest in the underlying molecular mechanisms of action. The present review focuses on resveratrol, specifically its isomer trans-resveratrol, and its effects on intracellular calcium signaling mechanisms. As resveratrol's mechanisms of action are likely pleiotropic, its effects and interactions with key signaling proteins controlling cellular calcium homeostasis are reviewed and discussed. The clinical relevance of resveratrol's actions on excitable cells, transformed or cancer cells, immune cells and retinal pigment epithelial cells are contrasted with a review of the molecular mechanisms affecting calcium signaling proteins on the plasma membrane, cytoplasm, endoplasmic reticulum, and mitochondria. The present review emphasizes the correlation between molecular mechanisms of action that have recently been identified for resveratrol and their clinical implications.
Collapse
Affiliation(s)
- Audrey E McCalley
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA.
| | - Simon Kaja
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA.
| | - Andrew J Payne
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA.
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA.
| |
Collapse
|
11
|
Protić D, Beleslin-Čokić B, Spremović-Rađenović S, Radunović N, Heinle H, Šćepanović R, Gojković Bukarica L. The Different Effects of Resveratrol and Naringenin on Isolated Human Umbilical Vein: The Role of ATP-Sensitive K+
Channels. Phytother Res 2014; 28:1412-8. [DOI: 10.1002/ptr.5145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Dragana Protić
- Department of Pharmacology; Clinical Pharmacology and Toxicology; Faculty of Medicine; University of Belgrade; 11000 Belgrade Serbia
| | - Bojana Beleslin-Čokić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia; Dr. Subotica 13 11000 Belgrade Serbia
| | - Svetlana Spremović-Rađenović
- Faculty of Medicine; University of Belgrade, Clinic for Gynecology and Obstetrics, Clinical Center of Serbia; 11000 Belgrade Serbia
| | - Nebojša Radunović
- Faculty of Medicine; University of Belgrade, Clinic for Gynecology and Obstetrics, Clinical Center of Serbia; 11000 Belgrade Serbia
| | - Helmut Heinle
- Institute of Physiology; University of Tüebingen; Germany
| | - Radisav Šćepanović
- Faculty of Medicine; University of Belgrade, Clinical Center Dr. Dragisa Misovic; 11000 Belgrade Serbia
| | - Ljiljana Gojković Bukarica
- Department of Pharmacology; Clinical Pharmacology and Toxicology; Faculty of Medicine; University of Belgrade; 11000 Belgrade Serbia
| |
Collapse
|