1
|
Zhang C, Ma J, Wang B, Pu C, Chang K, Zhu J, Zhang B, Li J, Qi Q, Xu R. Sulforaphane modulates some stress parameters in TPT-exposed Cyprinus carpio in relation to liver metabolome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116882. [PMID: 39173223 DOI: 10.1016/j.ecoenv.2024.116882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
This study aimed to investigate the protective effect of sulforaphane (SFN) on liver injury induced by triphenyltin (TPT) in Cyprinus carpio (C. carpio). The fish (average weight of 56.9±0.4 g) were divided into 4 groups with four replicates: the control, TPT, SFN+TPT and SFN groups. Twenty fish were selected from each tank and cultured for 8 weeks. Then, serum and liver samples were collected for physiological, biochemical and metabolomic analyses. In the present study, TPT downregulated the expression of the lysozyme gene, upregulated HSP70 and Hsp90 gene expression, and decreased the activities of serum antioxidant enzymes (SOD, CAT, and GPX). However, dietary SFN alleviated oxidative stress, and prevented changes in immune genes. Metabolomic analysis revealed that TPT exposure changed key metabolites in the main phenylalanine, fatty acid and glycerophosphatide metabolic pathways, which are related to inflammation, oxidative stress and immunity and might also lead to an imbalance of liver energy and lipid metabolism. Dietary SFN promoted amino acid metabolism and increased metabolites related to immunity, anti-inflammation, antioxidation, and protein synthesis in liver of C. carpio. In summary, dietary SFN supplementation reversed TPT-induced decreases in immunity and oxidative stress and regulated amino acid metabolism, lipid metabolism, inflammation and immunity-related metabolic pathways.
Collapse
Affiliation(s)
- Chunnuan Zhang
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Jianshuang Ma
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Bingke Wang
- Henan Academy of Fishery Sciences, Zhengzhou 450044, China
| | - Changchang Pu
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Kuo Chang
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jiaxiang Zhu
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Boyang Zhang
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jiajin Li
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Qian Qi
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ruiyi Xu
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
2
|
Ying-ying G, Yan-fang W, Yan D, Su-ying Z, Dong L, Bin L, Xue W, Miao D, Rui-lin M, Xiao-hui L, Yu-pei J, Ai-jun S. Metabolomic mechanism and pharmacodynamic material basis of Buxue Yimu pills in the treatment of anaemia in women of reproductive age. Front Pharmacol 2023; 13:962850. [PMID: 36703727 PMCID: PMC9871362 DOI: 10.3389/fphar.2022.962850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Objective: To explore the pharmacological basis and mechanism of Buxue Yimu pills (BYP) in the treatment of anaemia in women from the perspective of metabolomics and network analysis. Materials and Methods: Forty-six women of reproductive age with haemoglobin 70-110 g/L were recruited. Blood samples were collected before and after 4 weeks of oral BYP treatment to assess the changes in haemoglobin, coagulation function, and iron metabolism indices. An integrated analysis of metabolomics (liquid chromatography mass spectrometry) and network analysis was performed to identify the potential pharmacodynamic mechanisms of BYP. Results: After BYP treatment, the haemoglobin level of patients significantly increased from 93.67 ± 9.77 g/L to 109.28 ± 12.62 g/L (p < 0.01), while no significant changes were found in iron metabolism and coagulation-related indicators. A total of 22 differential metabolites were identified after metabolomics analysis, which were mainly related to the inhibition of inflammation and oxidative stress. Integrating pharmacodynamics and metabolomics, a network of drug-active components-targets-metabolic pathways-metabolomics was established. Acetylcholinesterase, phospholipase A2 group IIA, and phospholipase A2 group IVA may be the most promising therapeutic targets. Conclusion: BYP can inhibit inflammation and oxidative stress as well as promote haematopoiesis, potentially improving anaemia.
Collapse
Affiliation(s)
- Guo Ying-ying
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wang Yan-fang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Deng Yan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhang Su-ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liu Dong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second Hospital, Sichuan University, Chengdu, China,Ministry of Education, Sichuan University, Chengdu, China
| | - Luo Bin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second Hospital, Sichuan University, Chengdu, China,Ministry of Education, Sichuan University, Chengdu, China
| | - Wang Xue
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Healthcare Hospital), Hangzhou, China
| | - Deng Miao
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Healthcare Hospital), Hangzhou, China
| | - Ma Rui-lin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liu Xiao-hui
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiao Yu-pei
- National Protein Science Technology Center, Tsinghua University, Beijing, China
| | | |
Collapse
|
3
|
Yu H, Liu C, Wang J, Han J, Zhang F, Zhou X, Wen Y, Shen T. miRNA and miRNA target genes in intervention effect of Zhuyu pill on cholestatic rat model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114709. [PMID: 34626777 DOI: 10.1016/j.jep.2021.114709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhuyu pill (ZYP), an effective prescription of traditional Chinese medicine, is composed of Coptis chinensis Franch. and Tetradium ruticarpum (A. Jussieu) T. G. Hartley and has shown potential anticholestatic effects. However, its mechanism of action in treating cholestasis remains unclear. Since post-transcriptional control of mRNA by micro-RNAs (miRNAs) represents an important mechanism of gene regulation, it is promising to explore this in relation to ZYP and cholestasis. AIM OF THE STUDY To confirm the anticholestatic effect of ZYP and to explore its potential biological mechanism. MATERIALS AND METHODS In this study, a cholestasis rat model was induced by α-naphthyl-isothiocyanate (ANIT, 50 mg/kg) and treated with ZYP (low dose: 0.6 g/kg, high dose: 1.2 g/kg). Serum biochemistry indices and liver histopathology were used to evaluate the model and efficacy, and miRNA sequencing was used to measure differences in miRNA expression in the liver between the control, model, low-dose ZYP, and high-dose ZYP groups. To verify the accuracy of sequencing results and explore the potential anti-cholestasis mechanism of ZYP, RT-PCR was used to identify differentially expressed miRNAs and their target genes. RESULTS Both high- and low-dose ZYP exhibited significant anticholestatic effects, with the high-dose showing better effects than low-dose ZYP. Additionally, four differentially expressed miRNAs, rno-miR-147, rno-miR-20b-5p, rno-miR-29b-3p, and rno-miR-3586-3p, were found to be upregulated in cholestasis and downregulated after ZYP intervention. Eight target genes of the above miRNAs, including ABCG8, CLOCK, PLEC, SLC4A2, NEB, ADAMTS12, TTN and FAM174B were inhibited in cholestatic rats, exhibiting up-regulated expression tendencies after ZYP intervention, and the expression tendencies were significant negatively correlated with serum biochemical indices. CONCLUSIONS ZYP can significantly reduce liver biochemical indices and improve liver tissue damage in cholestasis rats through the regulation of miRNA expression in the liver, producing a positive regulatory effect on bile excretion-related genes.
Collapse
Affiliation(s)
- Han Yu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianfei Wang
- Department of Nephrology, South of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Han
- Department of Reader Service and Culture Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fenghua Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
4
|
Yu H, Liu C, Zhang F, Wang J, Han J, Zhou X, Wen Y, Shen T. Efficacy of Zhuyu Pill Intervention in a Cholestasis Rat Model: Mutual Effects on Fecal Metabolism and Microbial Diversity. Front Pharmacol 2021; 12:695035. [PMID: 34539394 PMCID: PMC8443775 DOI: 10.3389/fphar.2021.695035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cholestasis is a clinical condition resulting from impaired bile flow. Currently, patients with cholestasis face several barriers in seeking diagnosis and treatment. Zhuyu Pill (ZYP) is an ancient classic formula of the Coptis-Evodia herb couples (CEHC), and has been used for cholestasis treatment in the clinic, however, its underlying biological activity in cholestasis remain to be clarified. In this study, an α-naphthyl-isothiocyanate (ANIT, 50 mg/kg)-induced rat model of cholestasis was treated with ZYP. Serum biochemical indices and histopathological evaluation was performed, together with the metabolomics analyses of feces and 16S rDNA sequencing of the fecal microbiota. We evaluated the anti-cholestatic activity of ZYP and investigated the mechanisms underlying its correlation with fecal microbiota and fecal metabolite regulation. The relationships between biochemical indices and changes in gene expression associated with liver injury, levels fecal metabolites, and composition of fecal microbiota were analyzed. The results showed that both high (1.2 g/kg) and low (0.6 g/kg) doses of ZYP could effectively improve biochemical parameters in the blood of cholestasis-induced rat models; the intervention effect of high dose ZYP was superior to that that of lower dose ZYP. Based on a metabolomics test of fecal samples, significantly altered metabolites in the ANIT and ZYP treatment group were identified. In total, 734 metabolites were differentially expressed, and whose biological functions were mainly associated with amino acid metabolism, steroid hormone biosynthesis, and bile secretion. In addition, sequencing of the 16S rDNA unit in fecal samples revealed that the ZYP could improve the fecal microbiota dysbiosis that ANIT had induced. Therefore, we conclude that ANIT altering of blood biochemical and metabolic profiles and of fecal microbiota could effectively be alleviated with ZYP treatment. This study contributes to the “TCM wisdom” applied in clinical diagnosis and treatment of cholestasis.
Collapse
Affiliation(s)
- Han Yu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fenghua Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianfei Wang
- Department of Nephrology, South of Guang'anmen Hospital, Beijing, China
| | - Jun Han
- Department of Reader Service and Culture Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Chen L, Zhao X, Wei S, Ma X, Liu H, Li J, Jing M, Wang M, Zhao Y. Mechanism of Paeoniflorin on ANIT-Induced Cholestatic Liver Injury Using Integrated Metabolomics and Network Pharmacology. Front Pharmacol 2021; 12:737630. [PMID: 34526905 PMCID: PMC8435635 DOI: 10.3389/fphar.2021.737630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Paeoniflorin (PF), the major active compound isolated from the roots of Paeonia lactiflora Pall., has been used in the treatment of severe hepatic diseases for several decades and displays bright prospects in liver protective effect. However, its biological mechanism that regulates bile acid metabolism and cholestatic liver injury has not been fully elucidated. Our study aims to investigate the mechanism by which PF in the treatment of cholestatic liver injury using a comprehensive approach combining metabolomics and network pharmacological analysis. Methods: The hepatoprotective effect of PF against cholestasis liver injury, induced by α-naphthylisothiocyanate (ANIT), was evaluated in rats. The serum biochemical indices including ALT, AST, TBA, TBIL, ALP, ALB, and the pathological characteristics of the liver were analyzed. Moreover, UHPLC-Q-TOF was performed to explore the feces of rats with ANIT-induced cholestatic liver injury treated with PF and the potential biomarkers were screened by metabolomics. The targets for the regulation of potential biomarkers by PF were screened by network pharmacology, and then the relevant key targets were verified by immunohistochemical and western blotting methods. Results: PF significantly improved serum indexes and alleviated liver histological damage. Metabolomics analyses showed that the therapeutic effect of PF is mainly associated with the regulation of 13 metabolites involved in 16 metabolic pathways. The “PF-targets-metabolites” interaction network was constructed, and then five key targets including CDC25B, CYP2C9, MAOB, mTOR, and ABCB1 that regulated the potential biomarkers were obtained. The above five targets were further verified by immunohistochemistry and western blotting, and the results showed that PF significantly improved the expression of key proteins regulating these biomarkers. Conclusion: Our study provides direct evidence for the modulatory properties of PF treatment on ANIT-induced cholestatic liver injury using metabolomics and network pharmacology analyses. PF exhibits favorable pharmacological effect by regulating related signal pathways and key targets for biomarkers. Therefore, these findings may help better understand the complex mechanisms and provide a new and effective approach to the treatment of cholestatic liver injury.
Collapse
Affiliation(s)
- Lisheng Chen
- Department of Pharmacy, Hebei North University, Zhangjiakou, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xu Zhao
- Hepotology Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shizhang Wei
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honghong Liu
- Integrated TCM and Western Medicine Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianyu Li
- Integrated TCM and Western Medicine Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Min Wang
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, Hebei North University, Zhangjiakou, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Pieters A, Gijbels E, Cogliati B, Annaert P, Devisscher L, Vinken M. Biomarkers of cholestasis. Biomark Med 2021; 15:437-454. [PMID: 33709780 DOI: 10.2217/bmm-2020-0691] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cholestasis is a major pathological manifestation, often resulting in detrimental liver conditions, which occurs in a variety of indications collectively termed cholestatic liver diseases. The frequent asymptomatic character and complexity of cholestasis, together with the lack of a straightforward biomarker, hampers early detection and treatment of the condition. The 'omics' era, however, has resulted in a plethora of cholestatic indicators, yet a single clinically applicable biomarker for a given cholestatic disease remains missing. The criteria to fulfil as an ideal biomarker as well as the challenging molecular pathways in cholestatic liver diseases advocate for a scenario in which multiple biomarkers, originating from different domains, will be assessed concomitantly. This review gives an overview of classical clinical and novel molecular biomarkers in cholestasis, focusing on their benefits and drawbacks.
Collapse
Affiliation(s)
- Alanah Pieters
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine & Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, SP, 05508-270, Brazil
| | - Pieter Annaert
- Drug Delivery & Disposition, Department of Pharmaceutical & Pharmacological Sciences, Katholieke Universiteit Leuven, ON II Herestraat 49, Box 921, Leuven, 3000, Belgium
| | - Lindsey Devisscher
- Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Faculty of Medicine & Health Sciences, Ghent University, C Heymanslaan 10, Ghent, 9000, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| |
Collapse
|
7
|
Wu J, Fang S, Li W, Li Y, Li Y, Wang T, Yang L, Liu S, Wang Z, Ma Y. Metabolomics research on the hepatoprotective effect of cultured bear bile powder in α-naphthylisothiocyanate-induced cholestatic mice. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1153:122269. [PMID: 32739790 DOI: 10.1016/j.jchromb.2020.122269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/12/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022]
Abstract
Natural bear bile powder (NBBP) is a famous traditional medicine and has been widely used in clinic. However, access to the sources of bear bile is restricted; hence, it is essential to discover new substitutes for NBBP. Cultured bear bile powder (CBBP) is transformed from chicken bile and contains main ingredients as to NBBP. In the present study, the effect and potential mechanism of action of CBBP on cholestatic liver injury in-naphthylisothiocyanate (ANIT)-induced mouse model was explored using metabolomics. CBBP treatment ameliorated impaired hepatic dysfunction and tissue damage that induced by ANIT. Metabolomics showed there were 28 different metabolites induced by ANIT as compared with control mice, and 18 of which was reversed by CBBP. Pathway analysis revealed that those 18 metabolites are mainly involved in bile acid (BA) biosynthesis and D-glutamine and D-glutamate metabolism. Further LC-MS/MS analysis showed that CBBP and NBBP both reduced serum and liver levels of BAs, but increased their biliary levels. Additionally, CBBP and NBBP upregulated expression of BA efflux transporters, Mrp2, Mrp3, and Mrp4, and metabolic enzymes, Cyp2b10 and Ugt1a1 of liver tissue of cholestatic mice, increased the BA excretion and metabolism. Moreover, CBBP and NBBP treatment upregulated GCLc/GCLm expression, and restored glutathione metabolism. In conclusion, the protective effects of CBBP against cholestatic liver injury were similar to those of NBBP. Mechanistically, both CBBP and NBBP reversed the disruption in homeostasis of BAs and glutathione, alleviating damage to hepatocytes.
Collapse
Affiliation(s)
- Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Su Fang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Wenkai Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yifei Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yuanyuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Li Yang
- Research Centre for Traditional Chinese Medicine of Complexity Systems, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoyong Liu
- Shanghai Kai Bao Pharmaceutical CO. Ltd., Shanghai 201401, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 2012013, China.
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
Ma X, Zhang W, Jiang Y, Wen J, Wei S, Zhao Y. Paeoniflorin, a Natural Product With Multiple Targets in Liver Diseases-A Mini Review. Front Pharmacol 2020; 11:531. [PMID: 32410996 PMCID: PMC7198866 DOI: 10.3389/fphar.2020.00531] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Paeoniflorin is derived from Paeonia suffruticosa Andr., Paeonia lactiflora Pall., or Paeonia veitchii Lynch and has been used in traditional medical applications for more than 2,000 years. Paeoniflorin is a monoterpenoid glycoside with various effects on liver diseases. Recent studies have revealed that paeoniflorin demonstrates a wide range of activities, including hepatic protection, cholestasis alleviation, liver fibrosis attenuation, nonalcoholic fatty liver disease prevention, and hepatocellular carcinoma inhibition involved in multiple pathways. Moreover, anti-inflammation, antioxidation, and immune regulation with the regulation of TLR4-NF-κB, ROCK/NF-κB, HO-1, mitochondria-dependent as well as HMGB1‐TLR4 signaling pathways are correlated with hepatic protection in liver injury and nonalcoholic fatty liver disease. Antioxidative mechanisms, anti-inflammation, and hepatic transporter regulation involved in NOX4, PI3K/Akt/Nrf2, NF‐κB, NTCP, BSEP, as well as MRP2 signals are mainly relevant to the anticholestatic effect of paeoniflorin. The inhibition of hepatic stellate cell activation and alleviation of extracellular matrix deposition via vast signals such as mTOR/HIF-1α, TGF-β1/Smads, and JAK2/STAT6 are primarily involved in the antifibrotic effect of paeoniflorin. The regulation of macrophages also contributes to the alleviation effect on liver fibrosis. In addition, the reduction of invasion, metastasis, and adhesion and the induction of apoptosis-related targets, including Bax, Bcl-2, and caspase-3, are related to its effect on hepatocellular carcinoma. The literature indicates that paeoniflorin might have potent efficacy in complex liver diseases and demonstrates the profound medicinal value of paeoniflorin.
Collapse
Affiliation(s)
- Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Ma X, Jiang Y, Zhang W, Wang J, Wang R, Wang L, Wei S, Wen J, Li H, Zhao Y. Natural products for the prevention and treatment of cholestasis: A review. Phytother Res 2020; 34:1291-1309. [PMID: 32026542 DOI: 10.1002/ptr.6621] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
Cholestasis is a common manifestation of decreased bile flow in various liver diseases. It results in fibrosis and even cirrhosis without proper treatment. It is believed that a wide range of factors, including transporter dysfunction, oxidative stress, inflammatory damage, and immune disruption, can cause cholestasis. In recent years, natural products have drawn much attention for specific multiple-target activities in diseases. Many attempts have been made to investigate the anticholestatic effects of natural products with advanced technology. This review summarizes recent studies on the biological activities and mechanisms of recognized compounds for cholestasis treatment. Natural products, including various flavonoids, phenols, acids, quinones, saponins, alkaloids, glycosides, and so on, function as comprehensive regulators via ameliorating oxidative stress, inflammation, and apoptosis, restoring bile acid balance with hepatic transporters, and adjusting immune disruption. Moreover, in this progress, nuclear factor erythroid 2-related factor 2, reactive oxygen species production, heme oxygenase-1, NF-κB, cholesterol 7 alpha-hydroxylase, and farnesoid X receptors are thought as main targets for the activity of natural products. Therefore, this review presents the detailed mechanisms that include multiple targets and diverse signalling pathways. Natural products are the valuable when seeking novel therapeutic agents to treat cholestatic liver diseases.
Collapse
Affiliation(s)
- Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiabo Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruilin Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lifu Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Beyoğlu D, Idle JR. Metabolomic and Lipidomic Biomarkers for Premalignant Liver Disease Diagnosis and Therapy. Metabolites 2020; 10:E50. [PMID: 32012846 PMCID: PMC7074571 DOI: 10.3390/metabo10020050] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been a plethora of attempts to discover biomarkers that are more reliable than α-fetoprotein for the early prediction and prognosis of hepatocellular carcinoma (HCC). Efforts have involved such fields as genomics, transcriptomics, epigenetics, microRNA, exosomes, proteomics, glycoproteomics, and metabolomics. HCC arises against a background of inflammation, steatosis, and cirrhosis, due mainly to hepatic insults caused by alcohol abuse, hepatitis B and C virus infection, adiposity, and diabetes. Metabolomics offers an opportunity, without recourse to liver biopsy, to discover biomarkers for premalignant liver disease, thereby alerting the potential of impending HCC. We have reviewed metabolomic studies in alcoholic liver disease (ALD), cholestasis, fibrosis, cirrhosis, nonalcoholic fatty liver (NAFL), and nonalcoholic steatohepatitis (NASH). Specificity was our major criterion in proposing clinical evaluation of indole-3-lactic acid, phenyllactic acid, N-lauroylglycine, decatrienoate, N-acetyltaurine for ALD, urinary sulfated bile acids for cholestasis, cervonoyl ethanolamide for fibrosis, 16α-hydroxyestrone for cirrhosis, and the pattern of acyl carnitines for NAFL and NASH. These examples derive from a large body of published metabolomic observations in various liver diseases in adults, adolescents, and children, together with animal models. Many other options have been tabulated. Metabolomic biomarkers for premalignant liver disease may help reduce the incidence of HCC.
Collapse
Affiliation(s)
| | - Jeffrey R. Idle
- Arthur G. Zupko’s Division of Systems Pharmacology and Pharmacogenomics, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, USA;
| |
Collapse
|
11
|
Xin Q, Yuan R, Shi W, Zhu Z, Wang Y, Cong W. A review for the anti-inflammatory effects of paeoniflorin in inflammatory disorders. Life Sci 2019; 237:116925. [PMID: 31610201 DOI: 10.1016/j.lfs.2019.116925] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/24/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
Inflammatory disorders result from abnormal immune response and their incidence has increased recently. Thus, there is an urgent need to discover new treatments for inflammatory disorders. In recent years, the natural products contained in Chinese herbs have attracted much attention worldwide owing to their anti-inflammatory effects. Paeoniflorin (PF) is a bioactive compound purified from the Chinese herb Paeonia lactiflora and reports have recently emerged suggesting the great potential of P. lactiflora as an agent to counter inflammatory disorders. The anti-inflammatory effects of PF have been revealed by in vitro studies and in vivo animal experiments of different inflammatory disorders, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, and asthma. This review systematically describes the recent progress of studies on the mechanism of PF and its therapeutic potential in inflammatory disorders.
Collapse
Affiliation(s)
- Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian, 100091, Beijing, China.
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian, 100091, Beijing, China.
| | - Weili Shi
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian, 100091, Beijing, China.
| | - Zhengchuan Zhu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian, 100091, Beijing, China; Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Haidian, 100091, Beijing, China.
| | - Yan Wang
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Chaoyang, 100029, Beijing, China.
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian, 100091, Beijing, China.
| |
Collapse
|
12
|
Yang Y, Li F, Wei S, Liu X, Wang Y, Liu H, Wang J, Li H, Cai H, Zhao Y. Metabolomics profiling in a mouse model reveals protective effect of Sancao granule on Con A-Induced liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111838. [PMID: 30930257 DOI: 10.1016/j.jep.2019.111838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sancao granule (SCG) is a traditional Chinese herb formula, which has been used for autoimmune liver disease for decades. Previous study demonstrated that there was an exactly therapeutic effect of SCG on autoimmune hepatitis (AIH) by improving liver function and alleviating the clinical symptoms. However, studies of the mechanism by which SCG alleviates Con A-induced liver injury (CILI) should be complemented. MATERIALS AND METHODS An ultraperformance liquid chromatography with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS)-based metabolomics approach combined with principle component analysis (PCA) and orthogonal projection to latent structures discriminate analysis (OPLS-DA) were integrated applied to obtain metabolites for clarifying mechanisms of disease. RESULTS In accordance with previously study, the present study demonstrated that SCG could obviously improve the liver injury in mouse induced by Con A via downregulating serum biochemical indexes, alleviating the histological damage and inhibiting the neutrophil infiltration in liver tissues. Different expression of 9 metabolites related to 8 pathways, including fatty acid biosynthesis, arachidonic acid metabolisms, linoleic acid metabolisms, sphingolipid metabolisms, fatty acid elongation in mitochondria, glycerophospholipid metabolism, fatty acid metabolism, pyrimidine metabolism were demonstrated responsible for the efficacy of SCG in treating CILI. CONCLUSION In sum up, SCG has been indicated favorable therapeutic effect on Con A induced liver injury. And metabolomics could be a promising approach, which provide insights into mechanisms of SCG in treating CILI.
Collapse
Affiliation(s)
- Yuxue Yang
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengyi Li
- Center for Diagnosis, Treatment and Research of Infectious Diseases, 302 Military Hospital of China, Beijing, China
| | - Shizhang Wei
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Xiaoyi Liu
- Department of Integrative Medical Center, 302 Military Hospital of China, Beijing, China
| | - Yingying Wang
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honghong Liu
- Department of Integrative Medical Center, 302 Military Hospital of China, Beijing, China
| | - Jiabo Wang
- Department of Integrative Medical Center, 302 Military Hospital of China, Beijing, China
| | - Haotian Li
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Huadan Cai
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China.
| |
Collapse
|
13
|
Zhu G, Feng F. UPLC-MS-based metabonomic analysis of intervention effects of Da-Huang-Xiao-Shi decoction on ANIT-induced cholestasis. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111860. [PMID: 30965080 DOI: 10.1016/j.jep.2019.111860] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestasis, caused by hepatic accumulation of bile acids, is a serious manifestation of liver diseases resulting in liver injury, fibrosis, and liver failure with limited therapies. Da-Huang-Xiao-Shi decoction (DHXSD) is a representative formula for treating jaundice and displays bright prospects in liver protective effect. AIM OF THE STUDY This study was designed to assess the effects and possible mechanisms of DHXSD against alpha-naphthylisothiocyanate-induced liver injury based on ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometry (UHPLC-Q-Orbitrap MS) metabonomic approach. MATERIALS AND METHODS The effects of DHXSD on serum indices (TBIL, DBIL, AST, ALT, ALP, TBA, and γ-GT) and the histopathology of the liver were analyzed. Moreover, UHPLC-Q-Orbitrap MS was performed to identify the possible effect of DHXSD on metabolites. The pathway analysis was conducted to illustrate the pathways and network by which DHXSD treats cholestasis. RESULTS The results demonstrated that DHXSD could significantly regulate serum biochemical indices and alleviate histological damage to the liver. Twelve endogenous components, such as glycocholic acid, taurocholic acid and indoleacetaldehyde, were identified as potential biomarkers of the therapeutic effect of DHXSD. A systematic network analysis of their corresponding pathways indicates that the anti-cholestatic effect of DHXSD on alpha-naphthylisothiocyanate-induced cholestasis rats occurs mainly through regulating primary bile acid biosynthesis, arginine and proline metabolism, and arachidonic acid metabolism. CONCLUSIONS DHXSD has exhibited favorable pharmacological effect on serum biochemical indices and pathological observation on cholestatic model by partially regulating the perturbed pathways. Moreover, these findings may help better understand the mechanisms of disease and provide a potential therapy for cholestasis.
Collapse
Affiliation(s)
- Guoxue Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Fang Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
14
|
Vilas-Boas V, Gijbels E, Cooreman A, Van Campenhout R, Gustafson E, Leroy K, Vinken M. Industrial, Biocide, and Cosmetic Chemical Inducers of Cholestasis. Chem Res Toxicol 2019; 32:1327-1334. [PMID: 31243985 DOI: 10.1021/acs.chemrestox.9b00148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A frequent side effect of many drugs includes the occurrence of cholestatic liver toxicity. Over the past couple of decades, drug-induced cholestasis has gained considerable attention, resulting in a plethora of data regarding its prevalence and mechanistic basis. Likewise, several food additives and dietary supplements have been reported to cause cholestatic liver insults in the past few years. The induction of cholestatic hepatotoxicity by other types of chemicals, in particular synthetic compounds, such as industrial chemicals, biocides, and cosmetic ingredients, has been much less documented. Such information can be found in occasional clinical case reports of accidental intake or suicide attempts as well as in basic and translational study reports on mechanisms or testing of new therapeutics in cholestatic animal models. This paper focuses on such nonpharmaceutical and nondietary synthetic chemical inducers of cholestatic liver injury, in particular alpha-naphthylisocyanate, 3,5-diethoxycarbonyl-1,4-dihydrocollidine, methylenedianiline, paraquat, tartrazine, triclosan, 2-octynoic acid, and 2-nonynoic acid. Most of these cholestatic compounds act by similar mechanisms. This could open perspectives for the prediction of cholestatic potential of chemicals.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Emma Gustafson
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Kaat Leroy
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| |
Collapse
|
15
|
Jin H, Zhu B, Liu X, Jin J, Zou H. Metabolic characterization of diabetic retinopathy: An 1H-NMR-based metabolomic approach using human aqueous humor. J Pharm Biomed Anal 2019; 174:414-421. [PMID: 31212142 DOI: 10.1016/j.jpba.2019.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/02/2019] [Accepted: 06/08/2019] [Indexed: 01/22/2023]
Abstract
Patients with a long duration of diabetes mellitus (DM) usually have accompanied complications such as diabetic retinopathy (DR), which is a leading cause of blindness and visual impairment among working-age persons in developed countries; nevertheless, some patients have no complications. Thus, various studies, including genomic, transcriptomic, and proteomic studies, have been conducted to identify potential biomarkers for predicting DR and to reveal the underlying disease mechanism. Although metabolomics could be a powerful tool for characterizing aqueous eye fluids and revealing the metabolic signatures of common ocular diseases such as DR, studies about its relationship with DR are limited. Moreover, to our knowledge, no previous study has applied a metabolomic approach to investigate the aqueous humor in DR. Therefore, we performed an NMR-based metabolomic study of the aqueous humor of patients with DM and cataract (DM, n = 13), DR and cataract (DR, n = 14), and senile cataract (CON, n = 7) to investigate the metabolic alterations accompanying the development of DR. Principal component analysis, average change analysis, and heatmap analysis revealed that lactate, succinate, 2-hydroxybutyrate, asparagine, dimethylamine, histidine, threonine, and glutamine were the most altered metabolites that potentially play roles in the development and progression of DR. The highly activated alanine, aspartate, and glutamate metabolic pathway was selected using pathway analysis. The phenotypic metabolomic analyses of the aqueous humor indicated an alteration in the metabolic pathways of energy metabolism and amino acids in DR patients which was to some extent suggestive of the pathophysiological process of mitochondrial dysfunction and oxidative stress/endothelial damage. It provides a proof of concept that metabolomic analysis using the aqueous humor of DM patients may be a reliable method to improve the accuracy of predicting the development and progression of DR.
Collapse
Affiliation(s)
- Huiyi Jin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China
| | - Bijun Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China.
| | - Xia Liu
- CAS Key Laboratory of Receptor Research, Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jing Jin
- Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Department of Preventative Ophthalmology, Shanghai Eye Diseases Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China.
| |
Collapse
|
16
|
Wang YK, Yang XN, Liang WQ, Xiao Y, Zhao Q, Xiao XR, Gonzalez FJ, Li F. A metabolomic perspective of pazopanib-induced acute hepatotoxicity in mice. Xenobiotica 2019; 49:655-670. [PMID: 29897827 PMCID: PMC6628935 DOI: 10.1080/00498254.2018.1489167] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
To elucidate the metabolism of pazopanib, a metabolomics approach was performed based on ultra-performance liquid chromatography coupled with electrospray ionization quadrupole mass spectrometry. A total of 22 pazopanib metabolites were identified in vitro and in vivo. Among these metabolites, 17 were novel, including several cysteine adducts and aldehyde derivatives. By screening using recombinant CYPs, CYP3A4 and CYP1A2 were found to be the main forms involved in the pazopanib hydroxylation. Formation of a cysteine conjugate (M3), an aldehyde derivative (M15) and two N-oxide metabolites (M18 and M20) from pazopanib could induce the oxidative stress that may be responsible in part for pazopanib-induced hepatotoxicity. Morphological observation of the liver suggested that pazopanib (300 mg/kg) could cause liver injury. The aspartate transaminase and alanine aminotransferase in serum significantly increased after pazopanib (150, 300 mg/kg) treatment; this liver injury could be partially reversed by the broad-spectrum CYP inhibitor 1-aminobenzotriazole (ABT). Metabolomics analysis revealed that pazopanib could significantly change the levels of L-carnitine, proline and lysophosphatidylcholine 18:1 in liver. Additionally, drug metabolism-related gene expression analysis revealed that hepatic Cyp2d22 and Abcb1a (P-gp) mRNAs were significantly lowered by pazopanib treatment. In conclusion, this study provides a global view of pazopanib metabolism and clues to its influence on hepatic function.
Collapse
Affiliation(s)
- Yi-Kun Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Nan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei-Qing Liang
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Yao Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
17
|
Xie T, Li K, Gong X, Jiang R, Huang W, Chen X, Tie H, Zhou Q, Wu S, Wan J, Wang B. Paeoniflorin protects against liver ischemia/reperfusion injury in mice via inhibiting HMGB1-TLR4 signaling pathway. Phytother Res 2018; 32:2247-2255. [PMID: 30047580 DOI: 10.1002/ptr.6161] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/02/2018] [Accepted: 06/25/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Tianjun Xie
- Department of Anesthesiology; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology; Chongqing Medical University; Chongqing China
| | - Ke Li
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Xia Gong
- Department of Anatomy; Chongqing Medical University; Chongqing China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering; Chongqing Medical University; Chongqing China
| | - Wenya Huang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology; Chongqing Medical University; Chongqing China
| | - Xiahong Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology; Chongqing Medical University; Chongqing China
| | - Hongtao Tie
- Cardiothoracic Surgery; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Qin Zhou
- Department of Anesthesiology; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Shengwang Wu
- Department of Anatomy; Chongqing Medical University; Chongqing China
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology; Chongqing Medical University; Chongqing China
| | - Bin Wang
- Department of Anesthesiology; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
| |
Collapse
|
18
|
Liu Z, Zhang Z, Huang M, Sun X, Liu B, Guo Q, Chang Q, Duan Z. Taurocholic acid is an active promoting factor, not just a biomarker of progression of liver cirrhosis: evidence from a human metabolomic study and in vitro experiments. BMC Gastroenterol 2018; 18:112. [PMID: 29996772 PMCID: PMC6042259 DOI: 10.1186/s12876-018-0842-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previous studies have indicated that bile acid is associated with progression of liver cirrhosis. However, the particular role of specific bile acid in the development of liver cirrhosis is not definite. The present study aims to identify the specific bile acid and explore its possible mechanisms in promoting liver cirrhosis. METHODS Thirty two cirrhotic patients and 27 healthy volunteers were enrolled. Age, gender, Child-Pugh classification and serum of patients and volunteers were collected. Liquid chromatography tandem mass spectrometry (LC-MS) was utilized to determine concentrations of 12 bile acids in serum. Principal component analysis, fold change analysis and heatmap analysis were used to identify the most changed bile acid. And pathway analysis was used to identify the most affected pathway in bile acid metabolism. Spearman rank correlation analysis was employed to assess correlation between concentrations of bile acids and Child-Pugh classification. Hepatic stellate cells (LX-2) were cultured in DMEM. LX-2 cells were also co-cultured with HepG2 cells in the transwell chambers. LX-2 cells were treated with Na+/taurocholate in different concentrations. Western blot was used to evaluate the expression of alpha smooth muscle actin (α-SMA), type I collagen, and Toll-like receptor 4 (TLR4) in LX-2 cells. RESULTS Concentrations of 12 bile acids in serum of patients and healthy volunteers were determined with LC-MS successively. Principal component analysis, fold change analysis and heatmap analysis identified taurocholic acid (TCA) to be the most changed bile acid. Pathway analysis showed that TCA biosynthesis increased significantly. Spearman rank correlation analysis showed that concentration of TCA in serum of cirrhotic patients was positively associated with Child-Pugh classification. TCA increased the expression of α-SMA, type I collagen, and TLR4 in LX-2 cells. Moreover, the above effect was strengthened when LX-2 cells were co-cultured with HepG2 cells. CONCLUSIONS Increased TCA concentration in serum of liver cirrhotic patients is mainly due to increased bile acid biosynthesis. TCA is an active promoter of the progression of liver cirrhosis. TCA promoting liver cirrhosis is likely through activating hepatic stellate cells via upregulating TLR4 expression. TCA is a potential therapeutic target for the prevention and treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Zhimin Liu
- Second department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Zhifeng Zhang
- Second department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Mei Huang
- Second department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoping Sun
- The Sixth People's Hospital of Dalian, Dalian, 116021, China
| | - Bojia Liu
- Second department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Qiyang Guo
- Second department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Qingshan Chang
- The Sixth People's Hospital of Dalian, Dalian, 116021, China
| | - Zhijun Duan
- Second department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
19
|
Hu PF, Chen WP, Bao JP, Wu LD. Paeoniflorin inhibits IL-1β-induced chondrocyte apoptosis by regulating the Bax/Bcl-2/caspase-3 signaling pathway. Mol Med Rep 2018; 17:6194-6200. [PMID: 29484390 DOI: 10.3892/mmr.2018.8631] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/06/2018] [Indexed: 11/05/2022] Open
Abstract
Apoptosis serves a pivotal role in the pathogenesis of osteoarthritis (OA). Increasing evidence has demonstrated that paeoniflorin exerts key properties (including anticancer, anti-inflammation and neuroprotective) for clinical applications. However, the precise role of paeoniflorin in articular cartilage apoptosis remains unknown. The present study explored the effects and potential molecular mechanism of paeoniflorin on rat chondrocyte apoptosis. Rat articular chondrocytes were cultured in monolayers. The lactate dehydrogenase (LDH) release rate of cells was determined by an LDH release assay. Annexin V-fluorescein isothiocyanate and propidium iodide staining were performed to detect early and advanced apoptotic cells by flow cytometry. The activity of caspase-3 in chondrocytes was determined using a caspase-3 activity assay. The expression of B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) was examined by reverse transcription‑quantitative polymerase chain and western blotting. The present study also examined the protein kinase B (Akt) signaling pathway by western blotting. Treatment with 25 or 50 µM paeoniflorin markedly decreased the release of LDH and the ratio of apoptotic cells in interleukin (IL)-1β-induced rat chondrocytes. Paeoniflorin treatment decreased the mRNA and protein levels of Bax, and increased the level of Bcl-2. Paeoniflorin also reduced the activity of caspase-3 in chondrocytes. Furthermore, paeoniflorin was determined to regulate the Akt signaling pathway by increasing Akt phosphorylation. Therefore, paeoniflorin may exert its protective effect by inhibiting apoptosis in IL-1β-induced rat chondrocytes and thus, may be an effective agent in the prevention and treatment of OA.
Collapse
Affiliation(s)
- Peng-Fei Hu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei-Ping Chen
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jia-Peng Bao
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li-Dong Wu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
20
|
Yang F, Wang Y, Li G, Xue J, Chen ZL, Jin F, Luo L, Zhou X, Ma Q, Cai X, Li HR, Zhao L. Effects of corilagin on alleviating cholestasis via farnesoid X receptor-associated pathways in vitro and in vivo. Br J Pharmacol 2018; 175:810-829. [PMID: 29235094 DOI: 10.1111/bph.14126] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to investigate the ameliorative effects of corilagin on intrahepatic cholestasis induced by regulating liver farnesoid X receptor (FXR)-associated pathways in vitro and in vivo. EXPERIMENTAL APPROACH Cellular and animal models were treated with different concentrations of corilagin. In the cellular experiments, FXR expression was up-regulated by either lentiviral transduction or GW4064 treatment and down-regulated by either siRNA technology or treatment with guggulsterones. Real-time PCR and Western blotting were employed to detect the mRNA and protein levels of FXR, SHP1, SHP2, UGT2B4, BSEP, CYP7A1, CYP7B1, NTCP, MRP2 and SULT2A1. Immunohistochemistry was used to examine the expression of BSEP in liver tissues. Rat liver function and pathological changes in hepatic tissue were assessed using biochemical tests and haematoxylin and eosin staining. RESULTS Corilagin increased the mRNA and protein levels of FXR, SHP1, SHP2, UGT2B4, BSEP, MRP2 and SULT2A1, and decreased those of CYP7A1, CYP7B1 and NTCP. After either up- or down-regulating FXR using different methods, corilagin could still increase the mRNA and protein levels of FXR, SHP1, SHP2, UGT2B4, BSEP, MRP2 and SULT2A1 and decrease the protein levels of CYP7A1, CYP7B1 and NTCP, especially when administered at a high concentration. Corilagin also exerted a notable effect on the pathological manifestations of intrahepatic cholestasis, BSEP staining in liver tissues and liver function. CONCLUSIONS AND IMPLICATIONS Corilagin exerts a protective effect in hepatocytes and can prevent the deleterious activities of intrahepatic cholestasis by stimulating FXR-associated pathways.
Collapse
Affiliation(s)
- Fan Yang
- Department of Hepatology, Hubei Provincial Hospital of Chinese Medicine, Wuhan, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Li
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Juan Xue
- Department of Gastroenterology, Hubei Province Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University and Shangdong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong, China
| | - Lei Luo
- School of First Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuan Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Ma
- School of Life Science, Hubei University, Wuhan, China
| | - Xin Cai
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University and Shangdong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong, China
| | - Hua-Rong Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Yao H, Xu Y, Yin L, Tao X, Xu L, Qi Y, Han X, Sun P, Liu K, Peng J. Dioscin Protects ANIT-Induced Intrahepatic Cholestasis Through Regulating Transporters, Apoptosis and Oxidative Stress. Front Pharmacol 2017; 8:116. [PMID: 28337145 PMCID: PMC5340742 DOI: 10.3389/fphar.2017.00116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/24/2017] [Indexed: 12/18/2022] Open
Abstract
Intrahepatic cholestasis, a clinical syndrome, is caused by excessive accumulation of bile acids in body and liver. Proper regulation of bile acids in liver cells is critical for liver injury. We previously reported the effects of dioscin against α-naphthylisothio- cyanate (ANIT)-induced cholestasis in rats. However, the pharmacological and mechanism data are limited. In our work, the animals of rats and mice, and Sandwich-cultured hepatocytes (SCHs) were caused by ANIT, and dioscin was used for the treatment. The results showed that dioscin markedly altered relative liver weights, restored ALT, AST, ALP, TBIL, GSH, GSH-Px, MDA, SOD levels, and rehabilitated ROS level and cell apoptosis. In mechanism study, dioscin not only significantly regulated the protein levels of Ntcp, OAT1, OCT1, Bsep and Mrp2 to accelerate bile acids excretion, but also regulated the expression levels of Bak, Bcl-xl, Bcl-2, Bax, Caspase 3 and Caspase 9 in vivo and in vitro to improve apoptosis. In addition, dioscin markedly inhibited PI3K/Akt pathway and up-regulated the levels of Nrf2, GCLc, GCLm, NQO1 and HO-1 against oxidative stress (OS) caused by bile acids. These results were further validated by inhibition of PI3K and Akt using the inhibitors of wortmannin and perifosine in SCHs. Our data showed that dioscin had good action against ANIT-caused intrahepatic cholestasis through regulating transporters, apoptosis and OS. This natural product can be considered as one active compound to treat intrahepatic cholestasis in the future.
Collapse
Affiliation(s)
- Hong Yao
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Pengyuan Sun
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University Dalian, China
| |
Collapse
|
22
|
Wang L, Wu G, Wu F, Jiang N, Lin Y. Geniposide attenuates ANIT-induced cholestasis through regulation of transporters and enzymes involved in bile acids homeostasis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:178-185. [PMID: 27988401 DOI: 10.1016/j.jep.2016.12.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/29/2016] [Accepted: 12/14/2016] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geniposide (GE) is one of the major iridoid glycosides isolated from the fruit of Gardenia jasminoides Ellis that has been used to treat hepatic disorders including cholestasis. However, the underlying mechanisms for GE ameliorating the reduction in bile acids accumulation by α-naphthylisothiocyanate (ANIT) remain unclear. AIM OF THE STUDY The purpose of this study is to characterize the efficacy of GE in regulation of bile acids uptake, synthesis, metabolism, and transport in ANIT-induced rats. MATERIALS AND METHODS Sprague-Dawley rats were orally administrated with vehicle, GE (25, 50, and 100mg/kg), and ursodeoxycholic acid (UDCA) (60mg/kg) once daily for seven days. On the fifth day, a single dose of ANIT (75mg/kg) was administrated via oral gavage. Blood biochemical determination, bile flow rate and liver histopathology were measured to evaluate the protective effect of GE. The mRNA expressions and protein levels of transporters and enzymes involved in bile acids homeostasis were determined by quantitative real-time polymerase chain reaction (PCR) and western blot to study the underlying mechanism of GE against ANIT-induced rats. RESULTS GE (25, 50, and 100mg/kg, po) dose-dependently prevented ANIT-induced changes in serum markers for liver injury. GE treatment reduced basolateral bile acids uptake via repression of OATP2 (P<0.05). Bile acids biosynthesis was decreased through down-regulation of CYP7A1, CYP8B1, and CYP27A1 (P<0.05). GE significantly increased canalicular bile acids secretion via BSEP (P<0.05), subsequently stimulating bile flow during cholestasis. GE also markedly enhanced mRNA level of basolateral transporter OSTβ (P<0.01). Bile acids transported to the plasma were cleared into the urine, resulting in down-regulation of plasma bile acids. However, GE did not alter the mRNA levels of CYP3A2, UGT1A1 and SULT2A1. Furthermore, the gene and protein expression analysis demonstrated activation of FXR, PXR, and SHP after GE administration. CONCLUSION GE attenuates ANIT-induced hepatotoxicity and cholestasis in rats, due to regulation enzymes and transporters responsible for bile acids homeostasis.
Collapse
Affiliation(s)
- Lingling Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Guixin Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Feihua Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Nan Jiang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Yining Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
23
|
Upregulation of PDZK1 by Calculus Bovis Sativus May Play an Important Role in Restoring Biliary Transport Function in Intrahepatic Cholestasis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1640187. [PMID: 28133487 PMCID: PMC5241494 DOI: 10.1155/2017/1640187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/02/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023]
Abstract
Intrahepatic cholestasis is a main cause of hepatic accumulation of bile acids leading to liver injury, fibrosis, and liver failure. Our previous studies proved that Calculus Bovis Sativus (CBS) can restore biliary transport function through upregulating the multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP) in 17α-ethynylestradiol- (EE-) induced intrahepatic cholestasis rats. The regulation mechanism of CBS on these transporters, however, remains unclear. This study was designed to evaluate the possible relationship between the effect of CBS on transport activities and the regulation of CBS on the expression of PDZK1, a mainly scaffold protein which can regulate MRP2 and BCRP. Intrahepatic cholestasis model was induced in rats with injection of EE for five consecutive days and then the biliary excretion rates and cumulative biliary excretions were measured. The mRNA and protein expression levels of PDZK1 were detected by reverse transcription-quantitative real-time polymerase chain reaction, western blot, and immunohistochemical analysis. When treated with CBS, cumulative biliary excretions and mRNA and protein expressions of PDZK1 were significantly increased in intrahepatic cholestasis rats. This study demonstrated that CBS exerted a beneficial effect on EE-induced intrahepatic cholestasis rats by restoring biliary transport function, which may result from the upregulation of PDZK1 expression.
Collapse
|
24
|
Ding Y, Xiong XL, Zhou LS, Yan SQ, Qin H, Li HR, Zhang LL, Chen P, Yao C, Jiang ZX, Zhao L. Preliminary study on Emodin alleviating alpha-naphthylisothiocyanate-induced intrahepatic cholestasis by regulation of liver farnesoid X receptor pathway. Int J Immunopathol Pharmacol 2016; 29:805-811. [PMID: 27707957 DOI: 10.1177/0394632016672218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
The aim of this study is to investigate Emodin on alleviating intrahepatic cholestasis by regulation of liver farnesoid X receptor (FXR) pathway. Cell and animal models of intrahepatic cholestatis were established. Biochemical tests and histomorphology were performed. The messenger RNA (mRNA) and protein expression of FXR, small heterodimer partner (SHP), uridine diphosphate glucuronosyltransferase 2 family polypeptide B4 (UGT2B4), and bile salt export pump (BSEP) was detected. As a result, compared with the model group, the serum levels of biochemical test were significantly lower in the Emodin group (P <0.01). The histopathological changes were remitted significantly by Emodin treatment. In the model group, the mRNA and protein expression of FXR, SHP, UGT2B4, and BSEP was significantly lower than in the normal group in cell models (P <0.05). With Emodin intervention, the expression of FXR, SHP, UGT2B4, and BSEP was notably increased (P <0.05). In conclusion, Emodin plays a protective role in intrahepatic cholestasis by promoting FXR signal pathways.
Collapse
Affiliation(s)
- Yan Ding
- Department of Infectious Diseases and Immunology, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiao-Li Xiong
- Department of Integrated Chinese and Western Medicine, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Li-Shan Zhou
- Department of Integrated Chinese and Western Medicine, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Su-Qi Yan
- Department of Integrated Chinese and Western Medicine, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Huan Qin
- Department of Clinical Laboratory, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hua-Rong Li
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ling-Ling Zhang
- Department of Integrated Chinese and Western Medicine, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Peng Chen
- Department of Respiration, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Cong Yao
- Department of Health, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhi-Xia Jiang
- Department of Integrated Chinese and Western Medicine, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
25
|
Wei SL, Wang J, Li DM. Inhibitory effect of Swertiamarin on fibrosis in rats with cholestatic liver damage. Shijie Huaren Xiaohua Zazhi 2016; 24:3482-3487. [DOI: 10.11569/wcjd.v24.i23.3482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of Swertiamarin on fibrosis in rats with cholestatic liver damage.
METHODS: Thirty young male SD rats were randomly divided into three groups: a normal control group (n = 10), a model group (n = 10) and a Swertiamarin treatment group (n = 10). α-naphthylisothiocyanate was used to induce cholestatic liver damage and fibrosis. During the process of model development, rats in the treatment group were given Swertiamarin. After treatment, serum indexes for liver function and liver fibrosis, fibrosis of liver tissue and pathological tests were used to determine the therapeutic efficacy of Swertiamarin. Western blot was performed to determine the expression changes of hepatocyte membrane transporters Mrp3 and Mrp4 in rat liver tissue.
RESULTS: Compared with the model group, serum indexes for liver function (ALT, AST, TBIL, DBIL, ALP and GGT) and liver fibrosis (HA, LN, IV-C and PCIII), fibrosis of liver tissue (hydroxyproline content), and pathological tests (inflammation activity and fibrosis degree) were significantly improved in rats treated with Swertiamarin. Western blot results indicated that the expression of Mrp3 and Mrp4 was significantly increased in rats receiving Swertiamarin treatment.
CONCLUSION: Swertiamarin can inhibit the fibrosis in rats with cholestatic liver damage.
Collapse
|
26
|
Zhang CE, Niu M, Li RY, Feng WW, Ma X, Dong Q, Ma ZJ, Li GQ, Meng YK, Wang Y, Yin P, He LZ, Li YM, Tan P, Zhao YL, Wang JB, Dong XP, Xiao XH. Untargeted Metabolomics Reveals Dose-Response Characteristics for Effect of Rhubarb in a Rat Model of Cholestasis. Front Pharmacol 2016; 7:85. [PMID: 27065293 PMCID: PMC4814850 DOI: 10.3389/fphar.2016.00085] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/16/2016] [Indexed: 12/25/2022] Open
Abstract
Cholestasis is a serious manifestation of liver diseases with limited therapies. Rhubarb, a widely used herbal medicine, has been frequently used at a relatively large dose for treating cholestasis. However, whether large doses are optimal and the therapeutic mechanism remain unclear. To explore these questions, the anti-cholestatic effect of five doses of rhubarb (0.21, 0.66, 2.10, 6.60, and 21.0 g/kg) in an alpha-naphthylisothiocyanate (ANIT)-induced rat model of cholestasis was examined by histopathology and serum biochemistry. A dose-dependent anti-cholestatic effect of rhubarb (0.21–6.6 g/kg) was observed, and an overdose of 21.0 g/kg showed a poor effect. LC-MS-based untargeted metabolomics together with pathway analysis were further applied to characterize the metabolic alterations induced by the different rhubarb doses. Altogether, 13 biomarkers were identified. The dose-response curve based on nine important biomarkers indicated that doses in the 0.42–6.61 g/kg range (EC20–EC80 range, corresponding to 4.00–62.95 g in the clinic) were effective for cholestasis treatment. The pathway analysis showed that bile acid metabolism and excretion, inflammation and amino acid metabolism were altered by rhubarb in a dose-dependent manner and might be involved in the dose-response relationship and therapeutic mechanism of rhubarb for cholestasis treatment.
Collapse
Affiliation(s)
- Cong-En Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese MedicineChengdu, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Rui-Yu Li
- College of Pharmacy, Chengdu University of Traditional Chinese MedicineChengdu, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Wu-Wen Feng
- College of Pharmacy, Chengdu University of Traditional Chinese MedicineChengdu, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese MedicineChengdu, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Qin Dong
- College of Pharmacy, Chengdu University of Traditional Chinese MedicineChengdu, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Zhi-Jie Ma
- China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China; Department of Pharmacy, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
| | - Guang-Quan Li
- College of Pharmacy, Chengdu University of Traditional Chinese MedicineChengdu, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Ya-Kun Meng
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Ya Wang
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Ping Yin
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Lan-Zhi He
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Yu-Meng Li
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Peng Tan
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Yan-Ling Zhao
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Xiao-Ping Dong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| |
Collapse
|