1
|
Seyed Aliyan SM, Roohbakhsh A, Jafari Fakhrabad M, Salmasi Z, Moshiri M, Shahbazi N, Etemad L. Evaluating the Protective Effects of Thymoquinone on Methamphetamine-induced Toxicity in an In Vitro Model Based on Differentiated PC12 Cells. Altern Lab Anim 2024; 52:94-106. [PMID: 38445454 DOI: 10.1177/02611929241237409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Methamphetamine (Meth) is a highly addictive stimulant. Its potential neurotoxic effects are mediated through various mechanisms, including oxidative stress and the initiation of the apoptotic process. Thymoquinone (TQ), obtained from Nigella sativa seed oil, has extensive antioxidant and anti-apoptotic properties. This study aimed to investigate the potential protective effects of TQ against Meth-induced toxicity by using an in vitro model based on nerve growth factor-differentiated PC12 cells. Cell differentiation was assessed by detecting the presence of a neuronal marker with flow cytometry. The effects of Meth exposure were evaluated in the in vitro neuronal cell-based model via the determination of cell viability (in an MTT assay) and apoptosis (by annexin/propidium iodide staining). The generation of reactive oxygen species (ROS), as well as the levels of glutathione (GSH) and dopamine, were also determined. The model was used to determine the protective effects of 0.5, 1 and 2 μM TQ against Meth-induced toxicity (at 1 mM). The results showed that TQ reduced Meth-induced neurotoxicity, possibly through the inhibition of ROS generation and apoptosis, and by helping to maintain GSH and dopamine levels. Thus, the impact of TQ treatment on Meth-induced neurotoxicity could warrant further investigation.
Collapse
Affiliation(s)
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Jafari Fakhrabad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahar Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Toxicology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niosha Shahbazi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Uzzan S, Rostevanov IS, Rubin E, Benguigui O, Marazka S, Kaplanski J, Agbaria R, Azab AN. Chronic Treatment with Nigella sativa Oil Exerts Antimanic Properties and Reduces Brain Inflammation in Rats. Int J Mol Sci 2024; 25:1823. [PMID: 38339101 PMCID: PMC10855852 DOI: 10.3390/ijms25031823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Nigella sativa (NS) is a native herb consumed habitually in several countries worldwide, possessing manifold therapeutic properties. Among them, anti-inflammatory features have been reported, presumably relating to mechanisms involved in the nuclear factor kappa-B pathway, among others. Given the observed association between neuroimmune factors and mental illness, the primary aim of the present study was to examine the effects of chronic NS use on manic-like behavior in rats, as well as analyze levels of brain inflammatory mediators following NS intake. Using male and female rats, baseline tests were performed; thereafter, rats were fed either regular food (control) or NS-containing food (treatment) for four weeks. Following intervention, behavioral tests were induced (an open field test, sucrose consumption test, three-chamber sociality test, and amphetamine-induced hyperactivity test). Subsequently, brain samples were extracted, and inflammatory mediators were evaluated, including interleukin-6, leukotriene B4, prostaglandin E2, tumor necrosis factor-α, and nuclear phosphorylated-p65. Our findings show NS to result in a marked antimanic-like effect, in tandem with a positive modulation of select inflammatory mediators among male and female rats. The findings reinforce the proposed therapeutic advantages relating to NS ingestion.
Collapse
Affiliation(s)
- Sarit Uzzan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel (R.A.)
| | - Ira-Sivan Rostevanov
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel (R.A.)
| | - Elina Rubin
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel (R.A.)
| | - Olivia Benguigui
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, QC H2W1S4, Canada
| | - Said Marazka
- Department of Cognitive and Brain Sciences, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Jacob Kaplanski
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel (R.A.)
| | - Riad Agbaria
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel (R.A.)
| | - Abed N. Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel (R.A.)
- Department of Nursing, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
3
|
Bhandari M, Tiwari RK, Chanda S, Bonde GV. Targeting angiogenesis, inflammation, and oxidative stress in Alzheimer's diseases. TARGETING ANGIOGENESIS, INFLAMMATION, AND OXIDATIVE STRESS IN CHRONIC DISEASES 2024:215-249. [DOI: 10.1016/b978-0-443-13587-3.00003-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Azami S, Forouzanfar F. Potential role of Nigella Sativa and its Constituent (Thymoquinone) in Ischemic Stroke. Curr Mol Med 2024; 24:327-334. [PMID: 37038292 DOI: 10.2174/1566524023666230410101724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 04/12/2023]
Abstract
Ischemic stroke is one of the major causes of global mortality, which puts great demands on health systems and social welfare. Ischemic stroke is a complex pathological process involving a series of mechanisms such as ROS accumulation, Ca2+ overload, inflammation, and apoptosis. The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients has led scientists to find new treatments. The use of herbal medicine, as an alternative or complementary therapy, is increasing worldwide. For centuries, our ancestors had known the remedial nature of Nigella sativa (Family Ranunculaceae) and used it in various ways, either as medicine or as food. Nowadays, N. sativa is generally utilized as a therapeutic plant all over the world. Most of the therapeutic properties of this plant are attributed to the presence of thymoquinone which is the major biological component of the essential oil. The present review describes the pharmacotherapeutic potential of N. sativa in ischemic stroke that has been carried out by various researchers. Existing literature highlights the protective effects of N. sativa as well as thymoquinone in ischemia stroke via different mechanisms including anti-oxidative stress, anti-inflammation, anti-apoptosis, neuroprotective, and vascular protective effects. These properties make N. sativa and thymoquinone promising candidates for developing potential agents for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Shakiba Azami
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Abstract
Targeted protein degradation (TPD) has emerged as the most promising approach for the specific knockdown of disease-associated proteins and is achieved by exploiting the cellular quality control machinery. TPD technologies are highly advantageous in overcoming drug resistance as they degrade the whole target protein. Microtubules play important roles in many cellular processes and are among the oldest and most well-established targets for tumor chemotherapy. However, the development of drug resistance, risk of hypersensitivity reactions, and intolerable toxicities severely restrict the clinical applications of microtubule-targeting agents (MTAs). Microtubule degradation agents (MDgAs) operate via completely different mechanisms compared with traditional MTAs and are capable of overcoming drug resistance. The emergence of MDgAs has expanded the scope of TPD and provided new avenues for the discovery of tubulin-targeted drugs. Herein, we summarized the development of MDgAs, and discussed their degradation mechanisms, mechanisms of action on the binding sites, potential opportunities, and challenges.
Collapse
Affiliation(s)
- Chufeng Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
6
|
Tekade AR, Suryavanshi MR, Shewale AB, Patil VS. Design and development of donepezil hydrochloride loaded nanostructured lipid carriers for efficient management of Alzheimer's disease. Drug Dev Ind Pharm 2023; 49:590-600. [PMID: 37733474 DOI: 10.1080/03639045.2023.2262035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE The primary objective of this study was to develop nanostructured lipid carriers of donepezil hydrochloride (DNZ HCl) for effective management of Alzheimer's disease (AD). SIGNIFICANCE Intranasal administration of DNZ NLC containing Nigella sativa (NS) oil as a liquid lipid may significantly improve nasal penetration and deliver the drug directly to the brain avoiding blood brain barrier (BBB). METHOD High pressure homogenization was used to prepare nanostructured lipid carriers (NLCs), followed by ultrasonication. Glyceryl monostearate (GMS), Tween 80, and Poloxamer 407 were used as solid lipid, surfactant and co-surfactant respectively, whereas, Nigella sativa oil was used as a liquid lipid. RESULT The particle size, polydispersity index and zeta potential were found to be 107.4 ± 2.64 nm, 0.25 ± 0.04 and -41.7 mV. The entrapment efficiency and drug content were found to be 70.20% and 89.05% respectively. After intranasal administration of Donepezil hydrochloride (DNZ HCl) loaded NLC's, the maximum concentrations (Cmax) of 4.597 µg/mL in brain and 2.2583 µg/mL in blood was achieved after 1 h (Tmax). CONCLUSION The formulated DNZ HCl loaded NLCs significantly improved nasal penetration and enhanced drug distribution in brain resulting in a potentially effective intranasal drug delivery system for the effective management of Alzheimer's disease.
Collapse
Affiliation(s)
- Avinash R Tekade
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Mayuri R Suryavanshi
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Ashutosh B Shewale
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Vilas S Patil
- Department of Pharmacology, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| |
Collapse
|
7
|
Mir Najib Ullah SN, Afzal O, Altamimi ASA, Ather H, Sultana S, Almalki WH, Bharti P, Sahoo A, Dwivedi K, Khan G, Sultana S, Alzahrani A, Rahman M. Nanomedicine in the Management of Alzheimer's Disease: State-of-the-Art. Biomedicines 2023; 11:1752. [PMID: 37371847 DOI: 10.3390/biomedicines11061752] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is a deadly, progressive, and irreversible brain condition that impairs cognitive abilities. Globally, it affects 32.6 million individuals, and if no viable therapies are available by 2050, that figure might rise to 139 million. The current course of treatment enhances cognitive abilities and temporarily relieves symptoms, but it does not halt or slow the disease's development. Additionally, treatments are primarily offered in conventional oral dosage forms, and conventional oral treatments lack brain specialization and cause adverse effects, resulting in poor patient compliance. A potential nanotechnology-based strategy can improve the bioavailability and specificity of the drug targeting in the brain. Furthermore, this review extensively summarizes the applications of nanomedicines for the effective delivery of drugs used in the management of AD. In addition, the clinical progress of nanomedicines in AD is also discussed, and the challenges facing the clinical development of nanomedicines are addressed in this article.
Collapse
Affiliation(s)
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | - Hissana Ather
- Department of Pharmaceutical Chemistry, King Khalid University, Abha 62529, Saudi Arabia
| | - Shaheen Sultana
- IIMT College of Pharmacy, Greater Noida 201310, Uttar Pradesh, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Pragya Bharti
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana 133207, Haryana, India
| | - Ankit Sahoo
- Department of Pharmaceutics, Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India
| | - Khusbu Dwivedi
- Department of Pharmaceutics, Sambhunath Institute of Pharmacy Jhalwa, Prayagraj 211015, Uttar Pradesh, India
| | - Gyas Khan
- Department of Pharmacology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulaziz Alzahrani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al-Baha University, Alaqiq 65779-7738, Saudi Arabia
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India
| |
Collapse
|
8
|
Shayan M, Barangi S, Hosseinzadeh H, Mehri S. The protective effect of natural or chemical compounds against arsenic-induced neurotoxicity: Cellular and molecular mechanisms. Food Chem Toxicol 2023; 175:113691. [PMID: 36871878 DOI: 10.1016/j.fct.2023.113691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Arsenic is a notorious metalloid that exists in the earth's crust and is considered toxic for humans and the environment. Both cancerous and non-cancerous complications are possible after arsenic exposure. Target organs include the liver, lungs, kidney, heart, and brain. Arsenic-induced neurotoxicity, the main focus of our study, can occur in central and peripheral nervous systems. Symptoms can develop in a few hours, weeks, or years depending on the quantity of arsenic and the duration of exposure. In this review, we aimed to gather all the compounds, natural and chemical, that have been studied as protective agents in cellular, animal, and human reports. Oxidative stress, apoptosis, and inflammation are frequently described as destructive mechanisms in heavy metal toxicity. Moreover, reduced activity of acetylcholinesterase, the altered release of monoamine neurotransmitters, down-regulation of N-methyl-D-aspartate receptors, and decreased brain-derived neurotrophic factor are important underlying mechanisms of arsenic-induced neurotoxicity. As for neuroprotection, though some compounds have yet limited data, there are others, such as curcumin, resveratrol, taurine, or melatonin which have been studied more deeply and might be closer to a reliable protective agent. We collected the available information on all protective agents and the mechanisms by which they fight against arsenic-induced neurotoxicity.
Collapse
Affiliation(s)
- Mersedeh Shayan
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Barangi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Cao Y, Zhang R. The application of nanotechnology in treatment of Alzheimer's disease. Front Bioeng Biotechnol 2022; 10:1042986. [PMID: 36466349 PMCID: PMC9713307 DOI: 10.3389/fbioe.2022.1042986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/02/2022] [Indexed: 09/19/2023] Open
Abstract
The buildup of beta-amyloid plaques in the brain results in Alzheimer's disease (AD), a neurodegenerative condition. A permanent treatment for AD is not yet available. Only a slowing down of its advancement is possible with the current pharmaceutical options. Nevertheless, nanotechnology has proven to be advantageous in medical applications. It has a lot of potential for AD therapy, particularly in diagnosing the condition and providing an alternative course of treatment. In this review, we outline the developments and benefits of nanomedicines in treating AD. Prospective nanomedicines for diagnosing and surveillance therapeutic interventions for AD and other diseases of the central nervous system (CNS) may be clinically accessible, persuading the development of investigation in this field.
Collapse
Affiliation(s)
- Yanyan Cao
- Department of Neurology, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | | |
Collapse
|
10
|
Chopra H, Bibi S, Singh I, Kamal MA, Islam F, Alhumaydhi FA, Emran TB, Cavalu S. Nanomedicines in the Management of Alzheimer's Disease: Current View and Future Prospects. Front Aging Neurosci 2022; 14:879114. [PMID: 35875806 PMCID: PMC9304964 DOI: 10.3389/fnagi.2022.879114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a kind of dementia that creates serious challenges for sufferers' memory, thinking, and behavior. It commonly targeting the aging population and decay the brain cells, despite attempts have been performed to enhance AD diagnostic and therapeutic techniques. Hence, AD remains incurable owing to its complex and multifactorial consequences and still there is lack of appropriate diagnostics/therapeutics option for this severe brain disorder. Therefore, nanotechnology is currently bringing new tools and insights to improve the previous knowledge of AD and ultimately may provide a novel treatment option and a ray of hope to AD patients. Here in this review, we highlighted the nanotechnologies-based findings for AD, in both diagnostic and therapeutic aspects and explained how advances in the field of nanotechnology/nanomedicine could enhance patient prognosis and quality of life. It is highly expected these emerging technologies could bring a research-based revolution in the field of neurodegenerative disorders and may assist their clinical experiments and develop an efficacious drug for AD also. The main aim of review is to showcase readers the recent advances in nanotechnology-based approaches for treatment and diagnosing of AD.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
11
|
Potential food-drug interaction risk of thymoquinone with warfarin. Chem Biol Interact 2022; 365:110070. [DOI: 10.1016/j.cbi.2022.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
|
12
|
Verma R, Sartaj A, Qizilbash FF, Ghoneim MM, Alshehri S, Imam SS, Kala C, Alam MS, Gilani SJ, Taleuzzaman M. An Overview of the Neuropharmacological Potential of Thymoquinone and its Targeted Delivery Prospects for CNS Disorder. Curr Drug Metab 2022; 23:447-459. [PMID: 35676849 DOI: 10.2174/1389200223666220608142506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/22/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
At present, people and patients worldwide are relying on the medicinal plant as a therapeutic agent over pharmaceuticals because the medicinal plant is considered safer, especially for chronic disorders. Several medicinal plants and their components are being researched and explored for their possible therapeutic contribution to CNS disorders. Thymoquinone (TQ) is one such molecule. Thymoquinone, one of the constituents of Plant Nigella Sativa, is effective against several neurodegenerative diseases like; Alzheimer's, Depression, Encephalomyelitis, Epilepsy, Ischemia, Parkinson's, and Traumatic. This review article presents the neuropharmacological potential of TQ's, their challenges, and delivery prospects, explicitly focusing on neurological disorders along with their chemistry, pharmacokinetics, and toxicity. Since TQ has some pharmacokinetic challenges, scientists have focused on novel formulations and delivery systems to enhance bioavailability and ultimately increase its therapeutic value. In the present work, the role of nanotechnology in neurodegenerative disease and how it improves bioavailability and delivery of a drug to the site of action has been discussed. There are a few limitations for developing novel drug formulation, including solubility, pH, and compatibility of nanomaterials. Since here we are targeting CNS disorders, the blood-brain barrier (BBB) becomes an additional challenge Hence, the review summarized the novel aspects of delivery and biocompatible nanoparticles-based approaches for targeted drug delivery into CNS, enhancing TQ bioavailability and its neurotherapeutic effects.
Collapse
Affiliation(s)
- Rishabh Verma
- Department of Pharmacology, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, India
| | - Farheen Fatima Qizilbash
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Al Maarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chandra Kala
- Department of Pharmacology, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, 342802. Rajasthan, India
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Kingdom of Saudi Arabia
| | - Sadaf Jamal Gilani
- College of Basic Health Science, Preparatory Year, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, Rajasthan,342008, India
| |
Collapse
|
13
|
Tuzimski T, Petruczynik A. Determination of Anti-Alzheimer's Disease Activity of Selected Plant Ingredients. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103222. [PMID: 35630702 PMCID: PMC9147832 DOI: 10.3390/molecules27103222] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases, among which one of the more common is Alzheimer’s disease, are the one of the biggest global public health challenges facing our generation because of the increasing elderly population in most countries. With the growing burden of these diseases, it is essential to discover and develop new treatment options capable of preventing and treating them. Neurodegenerative diseases, among which one of the most common is Alzheimer’s disease, are a multifactorial disease and therefore demand multiple therapeutic approaches. One of the most important therapeutic strategies is controlling the level of acetylcholine—a neurotransmitter in cholinergic synapses—by blocking the degradation of acetylcholine using acetylcholinesterase inhibitors such as tacrine, galantamine, donepezil and rivastigmine. However, these drugs can cause some adverse side effects, such as hepatotoxicity and gastrointestinal disorder. Thus, the search for new, more effective drugs is very important. In the last few years, different active constituents from plants have been tested as potential drugs in neurodegenerative disease therapy. The availability, lower price and less toxic effects of herbal medicines compared with synthetic agents make them a simple and excellent choice in the treatment of neurodegenerative diseases. The empirical approach to discovering new drugs from the systematic screening of plant extracts or plant-derived compounds is still an important strategy when it comes to finding new biologically active substances. The aim of this review is to identify new, safe and effective compounds that are potential candidates for further in vivo and clinical tests from which more effective drugs for the treatment of Alzheimer’s disease could be selected. We reviewed the methods used to determine anti-Alzheimer’s disease activity. Here, we have discussed the relevance of plant-derived compounds with in vitro activity. Various plants and phytochemical compounds have shown different activity that could be beneficial in the treatment of Alzheimer’s disorders. Most often, medicinal plants and their active components have been investigated as acetylcholinesterase and/or butyrylcholinesterase activity inhibitors, modifiers of β-amyloid processing and antioxidant agents. This study also aims to highlight species with assessed efficacy, usable plant parts and the most active plant components in order to identify species and compounds of interest for further study. Future research directions are suggested and recommendations made to expand the use of medicinal plants, their formulations and plant-derived active compounds to prevent, mitigate and treat Alzheimer’s disease.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (T.T.); (A.P.)
| | - Anna Petruczynik
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (T.T.); (A.P.)
| |
Collapse
|
14
|
Zadeh AR, Eghbal AF, Mirghazanfari SM, Ghasemzadeh MR, Nassireslami E, Donyavi V. Nigella sativa extract in the treatment of depression and serum Brain-Derived Neurotrophic Factor (BDNF) levels. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2022; 27:28. [PMID: 35548175 PMCID: PMC9081508 DOI: 10.4103/jrms.jrms_823_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/14/2021] [Accepted: 01/19/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND Here, we aimed to investigate the therapeutic effects of Nigella sativa extract on serum brain-derived neurotrophic factor (BDNF) and depression score in patients with depression. MATERIALS AND METHODS This clinical trial was performed in 2021 in the hospitals of military forces in Tehran on 52 male patients with major depressive disorder treated with sertraline. We used the Depression, Anxiety, and Stress Scale-21 Items (DASS-21) questionnaire to assess the patients. Serum BDNF levels were measured by the enzyme-linked immunosorbent assay. Patients were then divided into two groups receiving 1000 mg N. sativa oil extract, daily, and placebo. Both groups received sertraline for at least 3 months. DASS-21 questionnaire and serum BDNF levels were measured after 10 weeks. RESULTS After treatments, we observed significantly decreased DASS-21 score (-11.24 ± 5.69) in the intervention group (P < 0.001) and placebo (-2.72 ± 6.19, P = 0.032), but patients in the intervention group had significantly lower scores (50.1 ± 6.8 vs. 58.2 ± 5.6, respectively, P < 0.001). Furthermore, patients in the intervention group had significantly decreased depression score (-5.5 ± 2.47, P < 0.001) and lower scores compared to the placebo (P < 0.001) (18.6 ± 2.7 vs. 23.4 ± 2.1 in intervention and placebo, respectively). We also observed significantly increased BDNF levels in the intervention group after the treatments (6.08 ± 3.76, P < 0.001) compared to the placebo group (29.4 ± 3.6 vs. 24.9 ± 2.1, P < 0.001). Serum BDNF levels had also significant reverse correlations with DASS-21 score (r = -0.35, P = 0.011) and depression score (r = -0.45, P = 0.001). CONCLUSION The use of N. sativa resulted in decreased depression score and increase in serum BDNF levels that indicate the importance and efficacy of this drug.
Collapse
Affiliation(s)
- Aryan Rafiee Zadeh
- AJA University of Medical Sciences, Tehran, Iran
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Seyed Mahdi Mirghazanfari
- Department of Physiology and Iranian medicine, School of Medicine, AJA University of Medical science, Tehran, Iran
| | - Mohammad Reza Ghasemzadeh
- Assistant Professor of Psychiatry, School of Medicine, 505 Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Toxin Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Vahid Donyavi
- Associate Professor of Psychiatry, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
The effect of Nigella sativa on TAC and MDA in obese and overweight women: secondary analysis of a crossover, double blind, randomized clinical trial. J Diabetes Metab Disord 2022; 21:171-179. [PMID: 35673509 PMCID: PMC9167332 DOI: 10.1007/s40200-021-00954-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Purpose Since obesity is a risk factor for various diseases and is associated with increased oxidative stress conditions, some herbs are considered to be effective in reducing obesity and its complications. Methods This secondary analysis investigates the effect of Nigella sativa (N.S) oil supplement on total antioxidant capacity (TAC) and malondialdehyde (MDA) levels in obese/overweight women. Obese and overweight healthy women were randomized to receive 2,000 mg/d of N.S supplement and placebo. The intervention periods lasted 8 weeks and were separated by a 4-week washout period. Also, each participant was given an iso-calorie diet. Baseline characteristics and TAC and MDA levels were measured. Pkcross analysis was performed for statistical analysis using Stata software. Also, Cohen's d was estimated as effect size for all results to assess the magnitude of the effects. Results 39 women completed the study. N.S oil supplementation at a dose of 2000 mg/d significantly increased serum TAC (P effect = 0.017, Cohen's d = 1.81) and reduced serum MDA (P effect < 0/001, Cohen's d = - 0.32). Conclusion Based on our findings taking N.S supplementation for 8 weeks can improve antioxidant conditions in obese and overweight adults. However, more studies with a larger population and the presence of both genders need to be done to confirm the results.Registration number: IRCT20180430039475N1.
Collapse
|
16
|
Potential herb-drug interaction risk of thymoquinone and phenytoin. Chem Biol Interact 2022; 353:109801. [PMID: 34998822 DOI: 10.1016/j.cbi.2022.109801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
Thymoquinone is a main bioactive compound of Nigella sativa L. (N.sativa), which has been used for clinical studies in the treatment of seizures due to its beneficial neuroprotective activity and antiepileptic effects. It has been evidenced that thymoquinone may inhibit the activity of cytochrome P450 2C9 (CYP2C9). However, little is known about the effect of thymoquinone or N.sativa on the pharmacokinetic behavior of phenytoin, a second-line drug widely used in the management of status epilepticus. In this study, we systematically investigated the risk of the potential pharmacokinetic drug interaction between thymoquinone and phenytoin. The inhibitory effect of thymoquinone on phenytoin hydroxylation activity by CYP2C9 was determined using UPLC-MS/MS by measuring the formation rates for p-hydroxyphenytoin (p-HPPH). The potential for drug-interaction between thymoquinone and phenytoin was quantitatively predicted by using in vitro-in vivo extrapolation (IVIVE). Our data demonstrated that thymoquinone displayed effective inhibition against phenytoin hydroxylation activity. Enzyme kinetic studies showed that thymoquinone exerted a competitive inhibition against phenytoin hydroxylation with a Ki value of 4.45 ± 0.51 μM. The quantitative prediction from IVIVE suggested that the co-administration of thymoquinone (>18 mg/day) or thymoquinone-containing herbs (N.sativa > 1 g/day or N.sativa oil >1 g/day) might result in a clinically significant herb-drug interactions. Additional caution should be taken when thymoquinone or thymoquinone-containing herbs are co-administered with phenytoin, which may induce unexpected potential herb-drug interactions via the inhibition of CYP2C9.
Collapse
|
17
|
Nemati S, Masroorchehr M, Elahi H, Kamalinejad M, Ebrahimi SM, Akbari M. Effects of Nigella sativa Extract on Chronic Rhinosinusitis: A Randomized Double Blind Study. Indian J Otolaryngol Head Neck Surg 2021; 73:455-460. [PMID: 34722227 DOI: 10.1007/s12070-020-02296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022] Open
Abstract
Chronic rhinosinusitis (CRS) causes long-term discomfort for patients, and due to the frequent relapses and dissatisfaction with current treatments, CRS patients pay more attention to herbal-traditional remedies nowadays. Nigella sativa seed has a special place in Traditional Persian medicine because of its therapeutic and clinical applications. Therefore, we decided to evaluate the effect of N. sativa seed extract on clinical symptoms of CRS patients. In a double-blind controlled clinical trial on CRS patients referred to otolaryngology clinics of Firoozgar and Amiralmomenin hospitals, all the patients used nasal drops of the N. sativa (drug) or sesame oil extract (placebo), and standard SNOT-22 questionnaire completed on days 0 and 28th of study. Data collected and statistical analysis performed by SPSS software. Level of significance was considered as P < 0.05. Out of 53 subjects (33 male and 20 female), 27 were assigned in the drug group and 26 in the placebo group. The mean SNOT-22 score on the 28th day was 19.08 ± 13.21 in the drug group, and in the placebo group, the mean was 37.15 ± 21.47 (P = 0.001). N. sativa extract was particularly effective in improving the feeling of pain, pressure or fullness, numbness and congestion in the nose, and reduction of bad breath. The results of our study indicated that the N. sativa seed nasal drop significantly improved the symptoms of CRS-especially, four major and one minor symptoms- and improved the quality of life of the patients.
Collapse
Affiliation(s)
- Shadman Nemati
- Department of Otolaryngology and Head and Neck Surgery, Otorhinolaryngology Research Center, School of Medicine, Amiralmomenin Hospital, Guilan University of Medical Sciences, 17 Shahrivar Ave, Rasht, Guilan 4139637459 Iran
| | | | - Homayoon Elahi
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Kamalinejad
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Matin Ebrahimi
- Department of Otolaryngology and Head and Neck Surgery, Otorhinolaryngology Research Center, School of Medicine, Amiralmomenin Hospital, Guilan University of Medical Sciences, 17 Shahrivar Ave, Rasht, Guilan 4139637459 Iran
| | - Maryam Akbari
- Department of Otolaryngology and Head and Neck Surgery, Otorhinolaryngology Research Center, School of Medicine, Amiralmomenin Hospital, Guilan University of Medical Sciences, 17 Shahrivar Ave, Rasht, Guilan 4139637459 Iran
| |
Collapse
|
18
|
Balakrishnan R, Azam S, Cho DY, Su-Kim I, Choi DK. Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson's Disease: Current Knowledge and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6680935. [PMID: 34122727 PMCID: PMC8169248 DOI: 10.1155/2021/6680935] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative chronic disease affecting both cognitive performance and motor functions in aged people. Yet despite the prevalence of this disease, the current therapeutic options for the management of PD can only alleviate motor symptoms. Research has explored novel substances for naturally derived antioxidant phytochemicals with potential therapeutic benefits for PD patients through their neuroprotective mechanism, targeting oxidative stress, neuroinflammation, abnormal protein accumulation, mitochondrial dysfunction, endoplasmic reticulum stress, neurotrophic factor deficit, and apoptosis. The aim of the present study is to perform a comprehensive evaluation of naturally derived antioxidant phytochemicals with neuroprotective or therapeutic activities in PD, focusing on their neuropharmacological mechanisms, including modulation of antioxidant and anti-inflammatory activity, growth factor induction, neurotransmitter activity, direct regulation of mitochondrial apoptotic machinery, prevention of protein aggregation via modulation of protein folding, modification of cell signaling pathways, enhanced systemic immunity, autophagy, and proteasome activity. In addition, we provide data showing the relationship between nuclear factor E2-related factor 2 (Nrf2) and PD is supported by studies demonstrating that antiparkinsonian phytochemicals can activate the Nrf2/antioxidant response element (ARE) signaling pathway and Nrf2-dependent protein expression, preventing cellular oxidative damage and PD. Furthermore, we explore several experimental models that evaluated the potential neuroprotective efficacy of antioxidant phytochemical derivatives for their inhibitory effects on oxidative stress and neuroinflammation in the brain. Finally, we highlight recent developments in the nanodelivery of antioxidant phytochemicals and its neuroprotective application against pathological conditions associated with oxidative stress. In conclusion, naturally derived antioxidant phytochemicals can be considered as future pharmaceutical drug candidates to potentially alleviate symptoms or slow the progression of PD. However, further well-designed clinical studies are required to evaluate the protective and therapeutic benefits of phytochemicals as promising drugs in the management of PD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - In Su-Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
19
|
Yusuf M, Khan M, Alrobaian MM, Alghamdi SA, Warsi MH, Sultana S, Khan RA. Brain targeted Polysorbate-80 coated PLGA thymoquinone nanoparticles for the treatment of Alzheimer's disease, with biomechanistic insights. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Alagawany M, Elnesr SS, Farag MR, Abd El-Hack ME, Khafaga AF, Sharun K, Marappan G, Dhama K. Health-Promoting Activities of Nigella sativa Essential Oil. BLACK CUMIN (NIGELLA SATIVA) SEEDS: CHEMISTRY, TECHNOLOGY, FUNCTIONALITY, AND APPLICATIONS 2021:457-478. [DOI: 10.1007/978-3-030-48798-0_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
21
|
Mohd Adnan LH, Abu Bakar NH, Simbak N, Mohamad N, Ismail R, Ahmad NZ, Mustafa NS, Md Fauzi NFA. Thymoquinone: From Nigella sativa to a protective pharmacological compound in managing opioid dependence and amphetamine type stimulant issues. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:849-852. [PMID: 32774804 PMCID: PMC7395189 DOI: 10.22038/ijbms.2020.41678.9841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/09/2019] [Indexed: 01/01/2023]
Abstract
Opioids, amphetamines, and other types of substances have been widely abused around the world. Opioid dependence and tolerance are two distinct phenomena that have been associated with substance abuse issues. The management of its adverse consequences is becoming more challenging. More and more people are treated in Methadone Maintenance Therapy (MMT) program yet the issues are still unresolved. Researchers are continuing to study the best formulation in treating opioid dependent people starting with modern and alternative drug therapies. Since 2008 , thymoquinone (TQ) has been extensively studied by researchers around the world and has emerged to be a new potential drug candidate in managing substance abuse issues. Thus, the aim of this article is to review the effects that TQ may have on opioid dependent subjects and other abused substances such as amphetamine may have been studied. All of the articles from 2008 until 2019 involving the effects of TQ on substance abuse from Google Scholar®, Scopus®, and Pubmed® databases have been searched and reviewed. The keywords used were thymoquinone, opioid dependence, amphetamine, and Nigella sativa. The research results also have been discussed in this article. Based on the research conducted, TQ was effective in reducing the adverse health consequences associated with substance abuse such as withdrawal symptoms, tolerance, and cell damages. It is concluded that TQ could be a potential drug that can be complemented with the currently available drugs in substance abuse therapies.
Collapse
Affiliation(s)
| | - Nor Hidayah Abu Bakar
- Faculty of Medicine, University Sultan Zainal Abidin, City Campus, 20400 Kuala Terengganu, Malaysia
| | - Nordin Simbak
- Faculty of Medicine, University Sultan Zainal Abidin, City Campus, 20400 Kuala Terengganu, Malaysia
| | - Nasir Mohamad
- Faculty of Medicine, University Sultan Zainal Abidin, City Campus, 20400 Kuala Terengganu, Malaysia
| | - Rusli Ismail
- Faculty of Medicine, University Sultan Zainal Abidin, City Campus, 20400 Kuala Terengganu, Malaysia
| | - Nor Zidah Ahmad
- Faculty of Medicine, University Sultan Zainal Abidin, City Campus, 20400 Kuala Terengganu, Malaysia
| | - Nor Suliana Mustafa
- Faculty of Medicine, University Sultan Zainal Abidin, City Campus, 20400 Kuala Terengganu, Malaysia
| | | |
Collapse
|
22
|
Alizadeh-Naini M, Yousefnejad H, Hejazi N. The beneficial health effects of Nigella sativa on Helicobacter pylori eradication, dyspepsia symptoms, and quality of life in infected patients: A pilot study. Phytother Res 2020; 34:1367-1376. [PMID: 31916648 DOI: 10.1002/ptr.6610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 11/27/2019] [Accepted: 12/23/2019] [Indexed: 01/02/2023]
Abstract
The aim of this study was to evaluate the effects of Nigella sativa (N. sativa) in addition to quadruple-therapy on Helicobacter pylori eradication, dyspepsia, biochemical-markers, and quality of life in infected patients. In this double-blind placebo-controlled clinical-trial, 51 H. pylori infected patients with functional dyspepsia were randomly assigned to treatment (quadruple-therapy with 2 g/day N. sativa) or placebo groups (quadruple-therapy with 2 g/day placebo) for 8 weeks. Serum levels of interleukin-8 (IL-8), high-sensitivity C-reactive protein (hs-CRP) and malondialdehyde, quality of life, dyspepsia, food-intake, body-weight, and body mass index (BMI) were evaluated at the baseline and at the end of the study. H. pylori eradication was evaluated at the end of the intervention. At the end of the study, H. pylori eradication was more in the N. sativa group compared with the placebo (p = .01). Weight, BMI, and dietary-intake (p < .05) increased significantly as compared with placebo. A significant improvement was also observed in patients' quality of life in the treatment group compared with the placebo (p < .05). The differences of biochemical-markers and dyspepsia between the two groups were not significant. So, N. sativa supplementation with medical treatment may have beneficial effects on H. pylori eradication, weight, BMI, dietary-intake, and quality of life in infected patients.
Collapse
Affiliation(s)
- Mahvash Alizadeh-Naini
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hedieh Yousefnejad
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Hejazi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Tian F, Liu R, Fan C, Sun Y, Huang X, Nie Z, Zhao X, Pu X. Effects of Thymoquinone on Small-Molecule Metabolites in a Rat Model of Cerebral Ischemia Reperfusion Injury Assessed using MALDI-MSI. Metabolites 2020; 10:metabo10010027. [PMID: 31936061 PMCID: PMC7023359 DOI: 10.3390/metabo10010027] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Thymoquinone is one of the main components present in Nigella sativa seeds and is known to have various biological functions in inflammation, oxidative stress, tumors, aging, and in lowering blood glucose levels. Few studies have focused on its neuroprotective effects and its regulation of small-molecule metabolites during cerebral ischemia reperfusion injury. In this study, transient middle cerebral occlusion (tMCAO) was used to establish the rat model of cerebral ischemia reperfusion injury. We investigated the effects of thymoquinone using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) in a model of ischemia reperfusion injury to explore the changes in small-molecule metabolites in the brain. We found that that thymoquinone significantly improved neurobehavioral scores, reduced the cerebral infarct area, alleviated brain edema, and increased the number of normal neurons following injury. MALDI-MSI revealed that thymoquinone reduced abnormal accumulations of glucose, citric acid, succinate and potassium ions. Thymoquinone also increased the amount of energy-related molecules such as ADP, AMP, GMP, and creatine, antioxidants such as glutathione, ascorbic acid, and taurine, and other metabolism-related molecules such as glutamate, glutamine, aspartate, N-acetyl-L-aspartate, and sodium ions in damaged areas of the brain following cerebral ischemia reperfusion injury. In summary, based on the neuroprotective effect of thymoquinone on cerebral ischemia reperfusion injury, this study revealed the regulation of thymoquinone on energy metabolism and small-molecule substance metabolism.
Collapse
Affiliation(s)
- Fang Tian
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (F.T.); (R.L.); (C.F.); (Y.S.); (X.Z.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Runzhe Liu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (F.T.); (R.L.); (C.F.); (Y.S.); (X.Z.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chaoxin Fan
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (F.T.); (R.L.); (C.F.); (Y.S.); (X.Z.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi Sun
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (F.T.); (R.L.); (C.F.); (Y.S.); (X.Z.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xi Huang
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; (X.H.); (Z.N.)
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Zongxiu Nie
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; (X.H.); (Z.N.)
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Xin Zhao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (F.T.); (R.L.); (C.F.); (Y.S.); (X.Z.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (F.T.); (R.L.); (C.F.); (Y.S.); (X.Z.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: ; Tel.: +86-10-8280-2431
| |
Collapse
|
24
|
Goleva T, Rogov A, Korshunova G, Trendeleva T, Mamaev D, Aliverdieva D, Zvyagilskaya R. SkQThy, a novel and promising mitochondria-targeted antioxidant. Mitochondrion 2019; 49:206-216. [DOI: 10.1016/j.mito.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/17/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
|
25
|
Alhibshi AH, Odawara A, Suzuki I. Neuroprotective efficacy of thymoquinone against amyloid beta-induced neurotoxicity in human induced pluripotent stem cell-derived cholinergic neurons. Biochem Biophys Rep 2019; 17:122-126. [PMID: 30623116 PMCID: PMC6317145 DOI: 10.1016/j.bbrep.2018.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022] Open
Abstract
The natural antioxidant Thymoquinone (TQ) is the most abundant ingredient in the curative plant Nigella sativa seed's oil. An extensive number of studies have revealed that TQ is the most active and most responsible component for the plant's pharmacological properties. It has been documented in several studies that TQ has a wide range of protective activities and many neuropharmacological attributes. Amyloid beta (Aβ) is the major role player peptide in the progression of Alzheimer's disease (AD). Our current study has been implemented to explore the protective possibilities of TQ on Aβ1–42 -induced neurotoxicity. To test TQ's effect we used cultured human induced pluripotent stem cell (hiPSC)-derived cholinergic neurons. The obtained results showed that Aβ1–42 caused cell death and apoptosis, which was efficiently attenuated by the co-treatment of TQ. Moreover, TQ restored the decrease in the intracellular antioxidant enzyme glutathione levels and inhibited the generation of reactive oxygen species induced by Aβ1–42. Furthermore, using the fluorescent dye FM1–43 we demonstrated that TQ was able to reduce synaptic toxicity caused by Aβ1–42. Thus, the findings of our study suggest that TQ holds a neuroprotective potential and could be a promising therapeutic agent to reduce the risk of developing AD and other disorders of the central nervous system. TQ protected hiPSC-derived cholinergic neurons against Aβ1–42 induced apoptosis. TQ restored reduced Glutathione level in hiPSC-derived cholinergic neurons. TQ protected hiPSC-derived cholinergic neurons against ROS generation induced by Aβ1–42. TQ attenuated Aβ1–42 – induced synaptic toxicity.
Collapse
Affiliation(s)
- A H Alhibshi
- Department of Neuroscience, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441, Saudi Arabia
| | - A Odawara
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 192-0982, Japan
| | - I Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 192-0982, Japan
| |
Collapse
|
26
|
Rezaeian A, Amoushahi Khouzani S. Effect of Nigella sativa Nasal Spray on the Treatment of Chronic Rhinosinusitis Without a Nasal Polyp. ALLERGY & RHINOLOGY 2018; 9:2152656718800059. [PMID: 30370173 PMCID: PMC6201182 DOI: 10.1177/2152656718800059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background Chronic rhinosinusitis (CRS) is a common inflammatory disease of nasal and
paranasal sinuses, with many treatment methods available for the management
of this disease. Recently, herbal medicines have shown a significant impact
on inflammatory diseases such as CRS, and one of these herbal medicines is
Nigella sativa. Therefore, the current study aimed to
evaluate the effectiveness of N. sativa in patients with
CRS without nasal polyp (CRSsNP). Methods In this randomized clinical trial, 65 patients with mild to moderate CRSsNP
were enrolled based on the inclusion criteria. Patients were divided
randomly into 2 parallel groups: intervention and placebo groups. Patients
in the intervention group received 2 puffs/day of N. sativa
nasal spray (1 g/day of N. sativa) and in the placebo group
received 2 puffs/day of sodium chloride spray 0.65%. Results Thirty-one patients (19 men and 12 women) in the intervention group and 34 in
the placebo group (18 men and 16 women) were evaluated. Lund–McKay, Lund
Kennedy, and Sino-Nasal Outcome Test-22 scores were assessed for both groups
after 8 weeks of treatments. These scores decreased significantly in both
groups. However, these scores were significantly lower in the intervention
group compared with the placebo group (P < .0001, for
all). Conclusion The use of N. sativa nasal spray has symptom reliever effect
with no adverse effects in patients with CRSsNP.
Collapse
Affiliation(s)
- Ahmad Rezaeian
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
27
|
Mashayekhi-Sardoo H, Rezaee R, Karimi G. An overview of in vivo toxicological profile of thymoquinone. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1514637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Habibeh Mashayekhi-Sardoo
- Department of Pharmacodynamics and Toxicology School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Üstün R, Oğuz EK, Şeker A, Korkaya H. Thymoquinone protects DRG neurons from axotomy-induced cell death. Neurol Res 2018; 40:930-937. [PMID: 30088803 DOI: 10.1080/01616412.2018.1504157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Peripheral nerve injury (PNI) is a significant health problem that is linked to sensory, motor, and autonomic deficits. This pathological condition leads to a reduced quality of life in most affected individuals. Schwann cells (SCs) play a crucial role in the repair of PNI. Effective agents that promote SC activation may facilitate and accelerate peripheral nerve repair. Thymoquinone (TQ), a bioactive component of Nigella sativa seeds, has an antioxidant, anti-inflammatory, immunomodulatory, and neuroprotective properties. In the present study, the neuroprotective efficacy of TQ was investigated by using a laser microdissection technique in a mouse PNI model. METHODS Single cells were isolated from dorsal root ganglions (DRGs) of 6-8-week-old mice, maintained in defined culture conditions and treated with or without TQ at different concentrations. Axons were cut (axotomy) using a controllable laser microbeam to model axonal injury in vitro. Under fluorescence microscopy, cell viability was evaluated using the fluorescent dyes. The behavior of the cells was continuously monitored with time-lapse video microscopy. RESULTS TQ significantly increased neuronal survival by promoting the survival and proliferation of SCs and fibroblasts, as well as the migration of SCs. Furthermore, TQ improved the ability to extend neurites of axotomized neurons. The regenerative effect of TQ was dose-dependent suggesting a target specificity. Our studies warrant further preclinical and clinical investigations of TQ as a potential regenerative agent to treat peripheral nerve injuries. CONCLUSION TQ exhibits a regenerative potential for the treatment of damaged peripheral nerves.
Collapse
Affiliation(s)
- Ramazan Üstün
- a Department of Physiology, Faculty of Medicine , Van Yüzüncü Yıl University , Van , Turkey.,b Neuroscience Research Unit, Faculty of Medicine , Van Yüzüncü Yıl University , Van , Turkey
| | - Elif Kaval Oğuz
- b Neuroscience Research Unit, Faculty of Medicine , Van Yüzüncü Yıl University , Van , Turkey
| | - Ayşe Şeker
- a Department of Physiology, Faculty of Medicine , Van Yüzüncü Yıl University , Van , Turkey
| | - Hasan Korkaya
- c Department of Biochemistry and Molecular Biology, Georgia Cancer Center , Augusta University , Augusta , GA , USA
| |
Collapse
|
29
|
Hosseinian S, Ebrahimzadeh Bideskan A, Shafei MN, Sadeghnia HR, Soukhtanloo M, Shahraki S, Samadi Noshahr Z, Khajavi Rad A. Nigella sativa extract is a potent therapeutic agent for renal inflammation, apoptosis, and oxidative stress in a rat model of unilateral ureteral obstruction. Phytother Res 2018; 32:2290-2298. [PMID: 30070029 DOI: 10.1002/ptr.6169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Unilateral ureteral obstruction (UUO) is a well-established experimental model to evaluate renal interstitial fibrosis. Current study is aimed to investigate the effects of Nigella sativa (NS) extract and renin-angiotensin system (RAS) blockade against kidney damage following UUO in rats. In this study, the rats received intraperitoneal injection of losartan (15 mg/kg), captopril (30 mg/kg), and two doses of NS extract (200 and 400 mg/kg) for 18 consecutive days. At the fourth day of the experiment, laparotomy was performed, and the left ureter was ligated. Sham-operated animals received saline as vehicle, and laparotomy without ureteral ligation was done. UUO was associated with significant increase in the expression of renal angiotensin II and monocyte chemoattractant protein-1, concentration of malondialdehyde and tumor necrosis factor-α, and the number of apoptotic cells when compared with sham group. Renal total thiol content and the activity of antioxidant enzymes were significantly reduced as compared with the sham group. However, treatment of obstructed rats with losartan, captopril, and NS extract significantly improved these renal impairments when compared with UUO group. Thus, NS extract, a potent antioxidant and anti-inflammatory herb, is a therapeutic agent to treat the UUO-induced kidney damage comparable with the well-known RAS inhibitors captopril and losartan.
Collapse
Affiliation(s)
- Sara Hosseinian
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Naser Shafei
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Shahraki
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Samadi Noshahr
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Khajavi Rad
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Vlachojannis C, Chrubasik-Hausmann S, Hellwig E, Vach K, Al-Ahmad A. Activity of preparations from Spilanthes oleracea, propolis, Nigella sativa, and black garlic on different microorganisms involved in oral diseases and on total human salivary bacteria: A pilot study. Phytother Res 2018; 32:1992-2001. [PMID: 29938856 DOI: 10.1002/ptr.6129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022]
Abstract
Due to continuous rise in antibiotic resistance, there is a need for alternative treatment options to reduce the levels of oral pathogens for the maintenance of oral as well as overall health. The aim of this study was to evaluate the in vitro antibacterial potential of tinctures of Spilanthes oleracea and propolis, Nigella seed oil, and an ethanolic extract of black garlic on microorganisms involved in oral diseases. Both the minimum inhibitory concentration assay and the minimum bactericidal/fungicidal concentration assay were used in this study. Inhibition effects against total human salivary bacteria were also determined. Our results show that all of the preparations tested had potent antimicrobial activities. When measured 10 min after exposure, even low concentrations of the propolis tincture were found to have killed more than 99% of salivary bacteria, whereas Spilanthes tincture and black garlic extract killed more than 90% and Nigella seed oil more than 60% of the pathogens. This suggests that all preparations are promising candidates for the use in oral health care products and that all have the potential to control biofilm associated infections.
Collapse
Affiliation(s)
- Christian Vlachojannis
- University of Freiburg, Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sigrun Chrubasik-Hausmann
- University of Freiburg, Institute of Forensic Medicine, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Elmar Hellwig
- University of Freiburg, Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Kirstin Vach
- University of Freiburg, Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, Freiburg, Germany
| | - Ali Al-Ahmad
- University of Freiburg, Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
31
|
Cascella M, Bimonte S, Barbieri A, Del Vecchio V, Muzio MR, Vitale A, Benincasa G, Ferriello AB, Azzariti A, Arra C, Cuomo A. Dissecting the Potential Roles of Nigella sativa and Its Constituent Thymoquinone on the Prevention and on the Progression of Alzheimer's Disease. Front Aging Neurosci 2018; 10:16. [PMID: 29479315 PMCID: PMC5811465 DOI: 10.3389/fnagi.2018.00016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/12/2018] [Indexed: 01/31/2023] Open
Abstract
Several nutraceuticals have been investigated for preventing or retarding the progression of different neurodegenerative diseases, including Alzheimer's disease (AD). Because Nigella sativa (NS) and its isolated compound thymoquinone (TQ) have significant anti-oxidant and anti-inflammatory proprieties, they could represent effective neuroprotective agents. The purpose of this manuscript is to analyze and to recapitulate the results of in vitro and in vivo studies on the potential role of NS/TQ in AD's prevention and treatment. The level of evidence for each included animal study has been assessed by using a modified CAMARADES (Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies) 10-item checklist. We used MEDLINE and EMBASE databases to screen relevant articles published up to July 2017. A manual search was also performed. The database search yielded 38 studies, of which 18 were included in this manuscript. Results from these approaches suggest that NS or TQ could represent an effective strategy against AD due to the balancing of oxidative processes and the binding to specific intracellular targets. The overall effects mainly regard the prevention of hippocampal pyramidal cell loss and the increased cognitive functions.
Collapse
Affiliation(s)
- Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Antonio Barbieri
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Vitale Del Vecchio
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Maria Rosaria Muzio
- Division of Infantile Neuropsychiatry, UOMI-Maternal and Infant Health, Naples, Italy
| | | | | | | | - Amalia Azzariti
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Claudio Arra
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
32
|
Mollazadeh H, Afshari AR, Hosseinzadeh H. Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis: - Black cumin and cancer. J Pharmacopuncture 2017; 20:158-172. [PMID: 30087792 PMCID: PMC5633668 DOI: 10.3831/kpi.2017.20.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 01/12/2023] Open
Abstract
Nigella sativa (N. sativa, family Ranunculaceae) is a medicinal plant that has been widely used for centuries throughout the world as a natural remedy. A wide range of chemical compounds found in N. sativa expresses its vast therapeutic effects. Thymoquinone (TQ) is the main component (up to 50%) in the essential oil of N. sativa. Also, pinene (up to 15%), p-cymene (40%), thymohydroquinone (THQ), thymol (THY), and dithymoquinone (DTQ) are other pharmacologically active compounds of its oil. Other terpenoid compounds, such as carvacrol, carvone, 4-terpineol, limonenes, and citronellol, are also found in small quantities in its oil. The main pharmacological characteristics of this plant are immune system stimulatory, anti-inflammatory, hypotensive, hepatoprotective, antioxidant, anti-cancer, hypoglycemic, anti-tussive, milk production, uricosuric, choleretic, anti-fertility, and spasmolytic properties. In this regard, we have searched the scientific databases PubMed, Web of Science, and Google Scholar with keywords of N. sativa, anti-cancer, apoptotic effect, antitumor, antioxidant, and malignancy over the period from 2000 to 2017. The effectiveness of N. sativa against cancer in the blood system, kidneys, lungs, prostate, liver, and breast and on many malignant cell lines has been shown in many studies, but the molecular mechanisms behind that anti-cancer role are still not clearly understood. From among the many effects of N. sativa, including its anti-proliferative effect, cell cycle arrest, apoptosis induction, ROS generation, anti-metastasis/anti-angiogenesis effects, Akt pathway control, modulation of multiple molecular targets, including p53, p73, STAT-3, PTEN, and PPAR-γ, and activation of caspases, the main suggestive anti-cancer mechanisms of N. sativa are its free radical scavenger activity and the preservation of various anti-oxidant enzyme activities, such as glutathione peroxidase, catalase, and glutathione-S-transferase. In this review, we highlight the molecular mechanisms of apoptosis and the anti-cancer effects of N. sativa, with a focus on its molecular targets in apoptosis pathways.
Collapse
Affiliation(s)
- Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amir R Afshari
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Tavakkoli A, Mahdian V, Razavi BM, Hosseinzadeh H. Review on Clinical Trials of Black Seed (Nigella sativa ) and Its Active Constituent, Thymoquinone. J Pharmacopuncture 2017; 20:179-193. [PMID: 30087794 PMCID: PMC5633670 DOI: 10.3831/kpi.2017.20.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
Objectives Nigella sativa (black seed or black cumin), which belongs to the Ranunculacea family, is an annual herb with many pharmacological properties. Among its many active constituents, thymoquinone (TQ) is the most abundant constituent of the volatile oil of Nigella sativa (N. sativa) seeds, and it is the constituent to which most properties of this herb are attributed. Methods PubMed-Medline, Scopus, and Web of Science databases were searched to identify randomized control trials (RCTs) investigating the therapeutic effects of N. sativa and/or TQ. In this review, we investigated the clinical uses of N. sativa and TQ in the prevention and the treatment of different diseases and morbidity conditions in humans. Results Black seed and TQ are shown to possess multiple useful effects for the treatment of patients with several diseases, such as inflammatory and auto-immune disorders, as well as metabolic syndrome. Also, other advantages, including antimicrobial, anti-nociceptive and anti-epileptic properties, have been documented. The side effects of this herbal medicine appear not to be serious, so it can be applied in clinical trials because of its many advantages. Conclusion Some effects of N. sativa, such as its hypoglycemic, hypolipidemic and bronchodilatory effects, have been sufficiently studied and are sufficiently understood to allow for the next phase of clinical trials or drug developments. However, most of its other effects and applications require further clinical and animal studies.
Collapse
Affiliation(s)
- Alireza Tavakkoli
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Mahdian
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medi cal Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Shahroudi MJ, Mehri S, Hosseinzadeh H. Anti-Aging Effect of Nigella Sativa Fixed Oil on D-Galactose-Induced Aging in Mice. J Pharmacopuncture 2017; 20:29-35. [PMID: 28392960 PMCID: PMC5374336 DOI: 10.3831/kpi.2017.20.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objectives: Aging is an unconscious and gradual process that can lead to changes in biological systems. Induction of oxidative stress and apoptosis, hepatotoxicity and neurotoxicity are involved in the aging process. Regarding the antioxidant property of black seed oil, the aim of this study was to evaluate the anti-aging effect of Nigella sativa (N. sativa) oil on d-galactose-induced aging in mice. Methods: For induction of aging, D-galactose (500 mg/kg, subcoutaneously SC) was administrated to male mice for 42 days. Animals were treated with D-galactose alone or with b lack seed oil (0.1, 0.2, 0.5 mL/kg, intraperitoneally (ip)). Additionally, vitamin E (200 mg/kg) was used as a positive control. At the end of treatment, the malondialdehyde (MDA) and the glutathione (GSH) contents in brain and liver tissues were measured. Also, enzymes in serum, including aspartate aminotransferase (AST) and alanine amino transferase (ALT), were determined. The levels of the proteins Bax, Bcl2, caspase-3 (pro and cleaved) in brain and liver tissues were evaluated. Results: Administration of D-galactose (500 mg/kg, SC) for 42 days increased serum levels of ALT and AST, as well as the MDA content, in brain and liver tissues, but decreased the GSH content. Additionally, the levels of apoptotic proteins, including Bax, procaspase-3 and caspase-3 cleaved, were markedly increased. N. sativa oil (0.1 and 0.2 mL/kg) diminished the levels of the biochemical markers ALT and AST. Administration of black seed oil (0.1, 0.2 and 0.5 mL/kg) reduced lipid peroxidation and at doses 0.1 and 0.2 mL/kg significantly recovered the GSH content. The oil decreased Bax/Bcl2 levels and at 0.1 mL/kg down-regulated the expressions of caspase-3 (pro and cleaved) proteins in brain and liver tissues. Conclusion: Through its antioxidant and anti-apoptosis properties, black seed oil exhibited an anti-aging effect in a model of aging induced with D-galactose.
Collapse
Affiliation(s)
- Mahdieh Jafari Shahroudi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|