1
|
Pacyga K, Pacyga P, Topola E, Viscardi S, Duda-Madej A. Bioactive Compounds from Plant Origin as Natural Antimicrobial Agents for the Treatment of Wound Infections. Int J Mol Sci 2024; 25:2100. [PMID: 38396777 PMCID: PMC10889580 DOI: 10.3390/ijms25042100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The rising prevalence of drug-resistant bacteria underscores the need to search for innovative and nature-based solutions. One of the approaches may be the use of plants that constitute a rich source of miscellaneous compounds with a wide range of biological properties. This review explores the antimicrobial activity of seven bioactives and their possible molecular mechanisms of action. Special attention was focused on the antibacterial properties of berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine against Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens and Pseudomonas aeruginosa. The growing interest in novel therapeutic strategies based on new plant-derived formulations was confirmed by the growing number of articles. Natural products are one of the most promising and intensively examined agents to combat the consequences of the overuse and misuse of classical antibiotics.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| |
Collapse
|
2
|
Figueiredo CSSES, de Oliveira PV, Saminez WFDS, Diniz RM, Mendonça JSP, Silva LDS, Paiva MYM, do Nascimento MDS, Aliança ASDS, Zagmignan A, Rodrigues JFS, Souza JCDS, Grisotto MAG, da Silva LCN. Immunomodulatory Effects of Cinnamaldehyde in Staphylococcus aureus-Infected Wounds. Molecules 2023; 28:molecules28031204. [PMID: 36770872 PMCID: PMC9921375 DOI: 10.3390/molecules28031204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 01/28/2023] Open
Abstract
Cinnamaldehyde (CNM) is an essential-oil component with reported anti-infective, anti-inflammatory, and healing effects, making it an interesting compound for the treatment of wound infection. Herein, we evaluated the effects of topical administration of CNM in experimental wounds infected by Staphylococcus aureus. Swiss mice (n = 12/group) were randomly allocated into three groups (CON: animals with uninfected lesions; Sa: animals with untreated infected lesions; Sa + CNM: animals with infected wounds and treated with CNM). Excisional lesions (64 mm2) were induced at the dorsal area followed by the addition of S. aureus (80 μL of a 1.5 × 108 CFU/mL bacterial suspension). The wounds were treated with CNM (200 μg/wound/day) or vehicle (2% DMSO) for 10 days. Skin samples were taken on the 3rd or 10th treatment day for quantification of inflammatory mediators, bacterial load, immunophenotyping, and histological analysis. The treatment with CNM improved the healing process and attenuated the severity of skin lesions infected by S. aureus. These effects were associated with significant decreases in bacterial loads in CNM-treated wounds. The levels of neutrophils, TNF-α, IL-6, NO, and VEGF were decreased in the lesions treated with CNM. Taken together, these data provide further evidence of the effectiveness of CNM for the treatment of skin infections.
Collapse
Affiliation(s)
- Cristiane Santos Silva e Silva Figueiredo
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal (BIONORTE), São Luís 65075-120, Brazil
| | | | | | - Roseana Muniz Diniz
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | | | - Lucas dos Santos Silva
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | | | | | | | - Adrielle Zagmignan
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | | | | | | | - Luís Cláudio Nascimento da Silva
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal (BIONORTE), São Luís 65075-120, Brazil
- Correspondence:
| |
Collapse
|
3
|
Kopel J, McDonald J, Hamood A. An Assessment of the In Vitro Models and Clinical Trials Related to the Antimicrobial Activities of Phytochemicals. Antibiotics (Basel) 2022; 11:antibiotics11121838. [PMID: 36551494 PMCID: PMC9774156 DOI: 10.3390/antibiotics11121838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
An increased number antibiotic-resistant bacteria have emerged with the rise in antibiotic use worldwide. As such, there has been a growing interest in investigating novel antibiotics against antibiotic-resistant bacteria. Due to the extensive history of using plants for medicinal purposes, scientists and medical professionals have turned to plants as potential alternatives to common antibiotic treatments. Unlike other antibiotics in use, plant-based antibiotics have the innate ability to eliminate a broad spectrum of microorganisms through phytochemical defenses, including compounds such as alkaloids, organosulfur compounds, phenols, coumarins, and terpenes. In recent years, these antimicrobial compounds have been refined through extraction methods and tested against antibiotic-resistant strains of Gram-negative and Gram-positive bacteria. The results of the experiments demonstrated that plant extracts successfully inhibited bacteria independently or in combination with other antimicrobial products. In this review, we examine the use of plant-based antibiotics for their utilization against antibiotic-resistant bacterial infections. In addition, we examine recent clinical trials utilizing phytochemicals for the treatment of several microbial infections.
Collapse
Affiliation(s)
- Jonathan Kopel
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Abdul Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence:
| |
Collapse
|
4
|
Yin L, Dai Y, Chen H, He X, Ouyang P, Huang X, Sun X, Ai Y, Lai S, Zhu L, Xu Z. Cinnamaldehyde Resist Salmonella Typhimurium Adhesion by Inhibiting Type I Fimbriae. Molecules 2022; 27:molecules27227753. [PMID: 36431853 PMCID: PMC9699031 DOI: 10.3390/molecules27227753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
Salmonella Typhimurium (S. Typhimurium), a common foodborne pathogen, severely harms the public and food security. Type I fimbriae (T1F) of S. Typhimurium, plays a crucial role in the pathogenic processes; it mediates the adhesion of bacteria to the mannose receptor on the host cell, assists the bacteria to invade the host cell, and triggers an inflammatory response. Cinnamaldehyde is the main ingredient in cinnamon essential oil. In this study, cinnamaldehyde was demonstrated to inhibit the expression of T1F by hemagglutination inhibition test, transmission electron microscopy, and biofilms. The mechanism of cinnamaldehyde action was studied by proteomics technology, PCR and Western blotting. The results showed that cinnamaldehyde can inhibit T1F in S. typhimurium without the growth of bacteria, by regulating the level of expression and transcription of fimA, fimZ, fimY, fimH and fimW. Proteomics results showed that cinnamaldehyde downregulated the subunits and regulators of T1F. In addition, the invasion assays proved that cinnamaldehyde can indeed reduce the ability of S. typhimurium to adhere to cells. The results of animal experiments showed that the colonization in the intestinal tract and the expression levels of inflammatory cytokine were significantly decreased, and the intestinal mucosal immune factors MUC1 and MUC2 were increased under cinnamaldehyde treatment. Therefore, cinnamaldehyde may be a potential drug to target T1F to treat Salmonella infections.
Collapse
Affiliation(s)
- Lizi Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Chengdu 611130, China
| | - Yuyun Dai
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Chengdu 611130, China
| | - Han Chen
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Chengdu 611130, China
| | - Xuewen He
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Chengdu 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Chengdu 611130, China
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agriculture University, Huimin Road 211, Chengdu 611130, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Chengdu 611130, China
| | - Yanru Ai
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Chengdu 611130, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Chengdu 611130, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Chengdu 611130, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Chengdu 611130, China
- Correspondence: ; Tel.: +86-13981604765
| |
Collapse
|
5
|
Zhang M, Han W, Gu J, Qiu C, Jiang Q, Dong J, Lei L, Li F. Recent advances on the regulation of bacterial biofilm formation by herbal medicines. Front Microbiol 2022; 13:1039297. [PMID: 36425031 PMCID: PMC9679158 DOI: 10.3389/fmicb.2022.1039297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Biofilm formation is a fundamental part of life cycles of bacteria which affects various aspects of bacterial-host interactions including the development of drug resistance and chronic infections. In clinical settings, biofilm-related infections are becoming increasingly difficult to treat due to tolerance to antibiotics. Bacterial biofilm formation is regulated by different external and internal factors, among which quorum sensing (QS) signals and nucleotide-based second messengers play important roles. In recent years, different kinds of anti-biofilm agents have been discovered, among which are the Chinese herbal medicines (CHMs). CHMs or traditional Chinese medicines have long been utilized to combat various diseases around the world and many of them have the ability to inhibit, impair or decrease bacterial biofilm formation either through regulation of bacterial QS system or nucleotide-based second messengers. In this review, we describe the research progresses of different chemical classes of CHMs on the regulation of bacterial biofilm formation. Though the molecular mechanisms on the regulation of bacterial biofilm formation by CHMs have not been fully understood and there are still a lot of work that need to be performed, these studies contribute to the development of effective biofilm inhibitors and will provide a novel treatment strategy to control biofilm-related infections.
Collapse
Affiliation(s)
- Meimei Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Cao Qiu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qiujie Jiang
- Jilin Animal Disease Control Center, Changchun, China
| | - Jianbao Dong
- Department of Veterinary Medical, Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fengyang Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
6
|
Cinnamaldehyde-Based Self-Nanoemulsion (CA-SNEDDS) Accelerates Wound Healing and Exerts Antimicrobial, Antioxidant, and Anti-Inflammatory Effects in Rats’ Skin Burn Model. Molecules 2022; 27:molecules27165225. [PMID: 36014463 PMCID: PMC9413107 DOI: 10.3390/molecules27165225] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/19/2022] Open
Abstract
Cinnamaldehyde, the main phytoconstituent of the cinnamon oil, has been reported for its potential wound healing activity, associated to its antimicrobial and anti-inflammatory effects. In this study, we are reporting on the cinnamaldehyde-based self-nanoemulsifying drug delivery system (CA-SNEDDS), which was prepared and evaluated for its antimicrobial, antioxidant, anti-inflammatory, and wound healing potential using the rat third-degree skin injury model. The parameters, i.e., skin healing, proinflammatory, and oxidative/antioxidant markers, were evaluated after 3 weeks of treatment regimens with CA-SNEDDS. Twenty rats were divided randomly into negative control (untreated), SNEDDS control, silver sulfadiazine cream positive control (SS), and CA-SNEDDS groups. An aluminum cylinder (120 °C, 10-s duration) was used to induce 3rd-degree skin burns (1-inch square diameter each) on the rat’s dorsum. At the end of the experiment, skin biopsies were collected for biochemical analysis. The significantly reduced wound size in CA-SNEDDS compared to the negative group was observed. CA-SNEDDS-treated and SS-treated groups demonstrated significantly increased antioxidant biomarkers, i.e., superoxide dismutase (SOD) and catalase (CAT), and a significant reduction in the inflammatory marker, i.e., NAP-3, compared to the negative group. Compared to SNEDDS, CA-SNEDDS exhibited a substantial antimicrobial activity against all the tested organisms at the given dosage of 20 µL/disc. Among all the tested microorganisms, MRSA and S. typhimurium were the most susceptible bacteria, with an inhibition zone diameter (IZD) of 17.0 ± 0.3 mm and 19.0 ± 0.9 mm, respectively. CA-SNEDDS also exhibited strong antifungal activity against C. albicans and A. niger, with IZD of 35.0 ± 0.5 mm and 34.0 ± 0.5 mm, respectively. MIC and MBC of CA-SNEDDS for the tested bacteria ranged from 3.125 to 6.25 µL/mL and 6.25 to 12.5 µL/mL, respectively, while the MIC and MBC for C. albicans and A. niger were 1.56 µL/mL and 3.125 µL/mL, respectively. The MBIC and MBEC of CA-SNEDDS were also very significant for the tested bacteria and ranged from 6.25 to 12.5 µL/mL and 12.5 to 25.0 µL/mL, respectively, while the MBIC and MBEC for C. albicans and A. niger were 3.125 µL/mL and 6.25 µL/mL, respectively. Thus, the results indicated that CA-SNEDDS exhibited significant wound healing properties, which appeared to be attributed to the formulation’s antimicrobial, antioxidant, and anti-inflammatory effects.
Collapse
|
7
|
Didehdar M, Chegini Z, Tabaeian SP, Razavi S, Shariati A. Cinnamomum: The New Therapeutic Agents for Inhibition of Bacterial and Fungal Biofilm-Associated Infection. Front Cell Infect Microbiol 2022; 12:930624. [PMID: 35899044 PMCID: PMC9309250 DOI: 10.3389/fcimb.2022.930624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the potent antibacterial properties of Cinnamomum and its derivatives, particularly cinnamaldehyde, recent studies have used these compounds to inhibit the growth of the most prevalent bacterial and fungal biofilms. By inhibiting flagella protein synthesis and swarming motility, Cinnamomum could suppress bacterial attachment, colonization, and biofilm formation in an early stage. Furthermore, by downregulation of Cyclic di‐guanosine monophosphate (c‐di‐GMP), biofilm-related genes, and quorum sensing, this compound suppresses intercellular adherence and accumulation of bacterial cells in biofilm and inhibits important bacterial virulence factors. In addition, Cinnamomum could lead to preformed biofilm elimination by enhancing membrane permeability and the disruption of membrane integrity. Moreover, this substance suppresses the Candida species adherence to the oral epithelial cells, leading to the cell wall deformities, damage, and leakages of intracellular material that may contribute to the established Candida’s biofilm elimination. Therefore, by inhibiting biofilm maturation and destroying the external structure of biofilm, Cinnamomum could boost antibiotic treatment success in combination therapy. However, Cinnamomum has several disadvantages, such as poor solubility in aqueous solution, instability, and volatility; thus, the use of different drug-delivery systems may resolve these limitations and should be further considered in future investigations. Overall, Cinnamomum could be a promising agent for inhibiting microbial biofilm-associated infection and could be used as a catheter and other medical materials surface coatings to suppress biofilm formation. Nonetheless, further in vitro toxicology analysis and animal experiments are required to confirm the reported molecular antibiofilm effect of Cinnamomum and its derivative components against microbial biofilm.
Collapse
Affiliation(s)
- Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seidamir Pasha Tabaeian
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- *Correspondence: Aref Shariati,
| |
Collapse
|
8
|
Ding X, Tang Q, Xu Z, Xu Y, Zhang H, Zheng D, Wang S, Tan Q, Maitz J, Maitz PK, Yin S, Wang Y, Chen J. Challenges and innovations in treating chronic and acute wound infections: from basic science to clinical practice. BURNS & TRAUMA 2022; 10:tkac014. [PMID: 35611318 PMCID: PMC9123597 DOI: 10.1093/burnst/tkac014] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/06/2022] [Indexed: 12/30/2022]
Abstract
Acute and chronic wound infection has become a major worldwide healthcare burden leading to significantly high morbidity and mortality. The underlying mechanism of infections has been widely investigated by scientist, while standard wound management is routinely been used in general practice. However, strategies for the diagnosis and treatment of wound infections remain a great challenge due to the occurrence of biofilm colonization, delayed healing and drug resistance. In the present review, we summarize the common microorganisms found in acute and chronic wound infections and discuss the challenges from the aspects of clinical diagnosis, non-surgical methods and surgical methods. Moreover, we highlight emerging innovations in the development of antimicrobial peptides, phages, controlled drug delivery, wound dressing materials and herbal medicine, and find that sensitive diagnostics, combined treatment and skin microbiome regulation could be future directions in the treatment of wound infection.
Collapse
Affiliation(s)
- Xiaotong Ding
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Qinghan Tang
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Zeyu Xu
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Ye Xu
- Department of Burns and Plastic Surgery, The affiliated Drum Tow Hospital of Nanjing University of Chinese Medicine, Nanjing 210008, People's Republic of China
| | - Hao Zhang
- Department of Burns and Plastic Surgery, The affiliated Drum Tow Hospital of Nanjing University of Chinese Medicine, Nanjing 210008, People's Republic of China
| | - Dongfeng Zheng
- Department of Burns and Plastic Surgery, The affiliated Drum Tow Hospital of Nanjing University of Chinese Medicine, Nanjing 210008, People's Republic of China
| | - Shuqin Wang
- Department of Burns and Plastic Surgery, The affiliated Drum Tow Hospital of Nanjing University of Chinese Medicine, Nanjing 210008, People's Republic of China
| | - Qian Tan
- Department of Burns and Plastic Surgery, The affiliated Drum Tow Hospital of Nanjing University of Chinese Medicine, Nanjing 210008, People's Republic of China
| | - Joanneke Maitz
- Burns Injury and Reconstructive Surgery Research, ANZAC Research Institute, University of Sydney, Sydney, Australia, 2137
| | - Peter K Maitz
- Burns Injury and Reconstructive Surgery Research, ANZAC Research Institute, University of Sydney, Sydney, Australia, 2137
| | - Shaoping Yin
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Yiwei Wang
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Jun Chen
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| |
Collapse
|
9
|
Salem MA, El-Shiekh RA, Hashem RA, Hassan M. In vivo Antibacterial Activity of Star Anise ( Illicium verum Hook.) Extract Using Murine MRSA Skin Infection Model in Relation to Its Metabolite Profile. Infect Drug Resist 2021; 14:33-48. [PMID: 33442274 PMCID: PMC7797340 DOI: 10.2147/idr.s285940] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Star anise fruits (Illicium verum Hook.) have been used as an important treatment in traditional Chinese medicine. The previous studies reported the activity of the non-polar fractions as potential sources of antibacterial metabolites, and little was done concerning the polar fractions of star anise. Methods The antibacterial activity of the star anise aqueous methanolic (50%) extract against multidrug-resistant Acinetobacter baumannii AB5057 and methicillin-resistant Staphylococcus aureus (MRSA USA300) was investigated in vitro (disc diffusion assay, minimum bactericidal concentration determination, anti-biofilm activity and biofilm detachment activity). The antibacterial activity was further tested in vivo using a murine model of MRSA skin infection. Ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC/HRMS) approach was applied for the identification of the metabolites responsible for the antibacterial activity. The antioxidant potential was evaluated using five in vitro assays: TAC (total antioxidant capacity), DPPH, ABTS, FRAP (ferric reducing antioxidant power) and iron-reducing power. Results In vitro, star anise aqueous methanolic extract showed significant inhibition and detachment activity against biofilm formation by the multidrug-resistant and highly virulent Acinetobacter baumannii AB5057 and MRSA USA300. The topical application of the extract in vivo significantly reduced the bacterial load in MRSA-infected skin lesions. The extract showed strong antioxidant activity using five different complementary methods. More than seventy metabolites from different classes were identified: phenolic acids, phenylpropanoids, sesquiterpenes, tannins, lignans and flavonoids. Conclusion This study proposes the potential use of star anise polar fraction in anti-virulence strategies against persistent infections and for the treatment of staphylococcal skin infections as a topical antimicrobial agent. To our knowledge, our research is the first to provide the complete polar metabolome list of star anise in an approach to understand the relationship between the chemistry of these metabolites and the proposed antibacterial activity.
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rasha A Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Ismail MM, Samir R, Saber FR, Ahmed SR, Farag MA. Pimenta Oil as A Potential Treatment for Acinetobacter Baumannii Wound Infection: In Vitro and In Vivo Bioassays in Relation to Its Chemical Composition. Antibiotics (Basel) 2020; 9:antibiotics9100679. [PMID: 33036456 PMCID: PMC7600634 DOI: 10.3390/antibiotics9100679] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial biofilm contributes to antibiotic resistance. Developing antibiofilm agents, more favored from natural origin, is a potential method for treatment of highly virulent multidrug resistant (MDR) bacterial strains; The potential of Pimenta dioica and Pimenta racemosa essential oils (E.Os) antibacterial and antibiofilm activities in relation to their chemical composition, in addition to their ability to treat Acinetobacter baumannii wound infection in mice model were investigated; P. dioica leaf E.O at 0.05 µg·mL−1 efficiently inhibited and eradicated biofilm formed by A. baumannii by 85% and 34%, respectively. Both P. diocia and P. racemosa leaf E.Os showed a bactericidal action against A. baumanii within 6h at 2.08 µg·mL−1. In addition, a significant reduction of A. baumannii microbial load in mice wound infection model was found. Furthermore, gas chromatography mass spectrometry analysis revealed qualitative and quantitative differences among P. racemosa and P. dioica leaf and berry E.Os. Monoterpene hydrocarbons, oxygenated monoterpenes, and phenolics were the major detected classes. β-Myrcene, limonene, 1,8-cineole, and eugenol were the most abundant volatiles. While, sesquiterpenes were found as minor components in Pimenta berries E.O; Our finding suggests the potential antimicrobial activity of Pimenta leaf E.O against MDR A. baumannii wound infections and their underlying mechanism and to be further tested clinically as treatment for MDR A. baumannii infections.
Collapse
Affiliation(s)
- Maha M. Ismail
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt;
- Correspondence: (M.M.I.); (F.R.S.); Tel./Fax: +20-3628426 (ext. 00202) (F.R.S.)
| | - Reham Samir
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt;
| | - Fatema R. Saber
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el-Aini Street, Cairo 11562, Egypt; (S.R.A.); (M.A.F.)
- Correspondence: (M.M.I.); (F.R.S.); Tel./Fax: +20-3628426 (ext. 00202) (F.R.S.)
| | - Shaimaa R. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el-Aini Street, Cairo 11562, Egypt; (S.R.A.); (M.A.F.)
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka 2014, Saudi Arabia
| | - Mohamed A. Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el-Aini Street, Cairo 11562, Egypt; (S.R.A.); (M.A.F.)
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
11
|
Ansarizadeh M, Haddadi SA, Amini M, Hasany M, Ramazani SaadatAbadi A. Sustained release of CIP from TiO
2
‐PVDF/starch nanocomposite mats with potential application in wound dressing. J Appl Polym Sci 2020. [DOI: 10.1002/app.48916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohamadhasan Ansarizadeh
- Chemical and Petroleum Engineering DepartmentSharif University of Technology P.O. Box: 11365‐9465 Tehran Iran
- Oulu Center for Cell‐Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular MedicineUniversity of Oulu Oulu Finland
| | - Seyyed Arash Haddadi
- Chemical and Petroleum Engineering DepartmentSharif University of Technology P.O. Box: 11365‐9465 Tehran Iran
- School of EngineeringUniversity of British Columbia Kelowna British Columbia V1V 1V7 Canada
| | - Majed Amini
- Chemical and Petroleum Engineering DepartmentSharif University of Technology P.O. Box: 11365‐9465 Tehran Iran
| | - Masoud Hasany
- Chemical and Petroleum Engineering DepartmentSharif University of Technology P.O. Box: 11365‐9465 Tehran Iran
| | - Ahmad Ramazani SaadatAbadi
- Chemical and Petroleum Engineering DepartmentSharif University of Technology P.O. Box: 11365‐9465 Tehran Iran
| |
Collapse
|
12
|
Karumathil DP, Nair MS, Gaffney J, Kollanoor-Johny A, Venkitanarayanan K. Trans-Cinnamaldehyde and Eugenol Increase Acinetobacter baumannii Sensitivity to Beta-Lactam Antibiotics. Front Microbiol 2018; 9:1011. [PMID: 29875743 PMCID: PMC5974060 DOI: 10.3389/fmicb.2018.01011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 04/30/2018] [Indexed: 01/23/2023] Open
Abstract
Multi-drug resistant (MDR) Acinetobacter baumannii is a major nosocomial pathogen causing a wide range of clinical conditions with significant mortality rates. A. baumannii strains are equipped with a multitude of antibiotic resistance mechanisms, rendering them resistant to most of the currently available antibiotics. Thus, there is a critical need to explore novel strategies for controlling antibiotic resistance in A. baumannii. This study investigated the efficacy of two food-grade, plant-derived antimicrobials (PDAs), namely trans-cinnamaldehyde (TC) and eugenol (EG) in decreasing A. baumannii’s resistance to seven β-lactam antibiotics, including ampicillin, methicillin, meropenem, penicillin, aztreonam, amoxicillin, and piperacillin. Two MDR A. baumannii isolates (ATCC 17978 and AB 251847) were separately cultured in tryptic soy broth (∼6 log CFU/ml) containing the minimum inhibitory concentration (MIC) of TC or EG with or without the MIC of each antibiotic at 37°C for 18 h. A. baumannii strains not exposed to the PDAs or antibiotics served as controls. Following incubation, A. baumannii counts were determined by broth dilution assay. In addition, the effect of PDAs on the permeability of outer membrane and efflux pumps in A. baumannii was measured. Further, the effect of TC and EG on the expression of A. baumannii genes encoding resistance to β-lactam antibiotics (blaP), efflux pumps (adeABC), and multi-drug resistant protein (mdrp) was studied using real-time quantitative PCR (RT-qPCR). The experiment was replicated three times with duplicate samples of each treatment and control. The results from broth dilution assay indicated that both TC and EG in combination with antibiotics increased the sensitivity of A. baumannii to all the tested antibiotics (P < 0.05). The two PDAs inhibited the function of A. baumannii efflux pump, (AdeABC), but did not increase the permeability of its outer membrane. Moreover, RT-qPCR data revealed that TC and EG down-regulated the expression of majority of the genes associated with β-lactam antibiotic resistance, especially blaP and adeABC (P < 0.05). The results suggest that TC and EG could potentially be used along with β-lactam antibiotics for controlling MDR A. baumannii infections; however, their clinical significance needs to be determined using in vivo studies.
Collapse
Affiliation(s)
- Deepti P Karumathil
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Meera Surendran Nair
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - James Gaffney
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Anup Kollanoor-Johny
- Department of Animal Science, University of Minnesota, Saint Paul, MN, United States
| | | |
Collapse
|