1
|
Muralidharan J, Romain C, Chung L, Alcaraz P, Martínez-Noguera FJ, Keophiphath M, Lelouvier B, Ancel P, Gaborit B, Cases J. Effect of Sinetrol ® Xpur on metabolic health and adiposity by interactions with gut microbiota: a randomized, open label, dose-response clinical trial. Nutr Metab (Lond) 2024; 21:83. [PMID: 39415279 PMCID: PMC11484468 DOI: 10.1186/s12986-024-00851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Sinetrol® Xpur is a polyphenolic ingredient rich in citrus flavonoids that has shown weight loss effects in previous studies. The dose dependent nature, gut microbial actions of this product has not been explored previously, thus presented in this study. METHODS In this open label study, we evaluated the effect of Sinetrol® Xpur supplementation on healthy but overweight/obese adults (20-50 yrs) for 16 weeks. Participants (n = 20) were randomly allocated to a high dose group (HD, 1800 mg/day) or low dose group (LD, 900 mg/day) of the product for 16 weeks. Fat composition, gut microbial composition, were evaluated using MRI and 16S rDNA sequencing respectively at week 1 and 16. RESULTS We observed HDL, HbA1C, LDL and leptin improved significantly over 16 weeks, irrespective of the dosage. There was a trend for decrease in visceral adipose tissue (VAT), BMI over time and body weight displayed a trend for dose dependent decrease. Eubacterium xylanophilum, Ruminococcacea UCG-004 genus which increased in HD and LD respectively were negatively associated to VAT. Both doses increased butyrate producers such as Eubacterium ruminantium and Ruminococcaceae NK4A214 genus. CONCLUSIONS Overall chronic supplementation of Sinetrol® Xpur, irrespective of their dose improved HDL, HbA1c, LDL and leptin and tended to decrease visceral adipose tissue via changes in gut microbiota. Trial registration number NCT03823196.
Collapse
Affiliation(s)
| | - Cindy Romain
- Fytexia, ZAE via Europa-3 rue d'Athènes, 34350, Vendres, France
| | - Linda Chung
- Research Center for High Performance Sport-UCAM Universidad Católica de Murcia, Murcia, Spain
| | - Pedro Alcaraz
- Research Center for High Performance Sport-UCAM Universidad Católica de Murcia, Murcia, Spain
| | | | - Mayoura Keophiphath
- DIVA Expertise, Centre Pierre Potier, 1 place Pierre Potier, 31100, Toulouse, France
| | | | - Patricia Ancel
- INSERM, INRA, C2VN, Aix Marseille Univ, Marseille, France
| | | | - Julien Cases
- Fytexia, ZAE via Europa-3 rue d'Athènes, 34350, Vendres, France.
| |
Collapse
|
2
|
Aslan MN, Sukan-Karaçağıl B, Acar-Tek N. Roles of citrus fruits on energy expenditure, body weight management, and metabolic biomarkers: a comprehensive review. Nutr Rev 2024; 82:1292-1307. [PMID: 37702528 PMCID: PMC11317776 DOI: 10.1093/nutrit/nuad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Citrus fruits are widely consumed for their nutritional and health benefits. They belong to the Rutaceae and have many varieties, such as sweet orange (Citrus sinensis), which is the most popular. Citrus fruits are rich in water (>80%), dietary fiber, and vitamins. They also contain bioactive components, which may modulate energy metabolism and lipid oxidation through various mechanisms. These mechanisms include stimulating β3-adrenergic receptors, increasing mitochondrial biogenesis and thermogenesis, activating AMP kinase and peroxisome proliferator-activated receptor-gamma coactivator-1α pathways, inhibiting lipogenesis and lipid accumulation, and inducing browning of white adipose tissue. This review summarizes the mechanisms and outcomes of citrus fruits and their metabolites on energy metabolism and body weight in different experimental models. The literature was searched for in vitro and in vivo animal and human studies that investigated the effects of citrus consumption on energy expenditure, thermogenesis, adipogenesis, and lipid accumulation. Citrus fruits and their metabolites have shown promising effects on energy metabolism and lipid oxidation in in vitro and in vivo animal studies. However, the evidence from human studies is limited and inconsistent. Possible reasons for the discrepancy are briefly discussed, and knowledge gaps and research needs are identified for future studies. Citrus fruits may have beneficial effects on energy metabolism and body weight, but more rigorous and well-designed human trials are needed to confirm their efficacy and safety.
Collapse
Affiliation(s)
- Merve Nur Aslan
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Bolu Abant Izzet Baysal University, Bolu, Turkey
- Department of Nutrition and Dietetics, Institute of Health Sciences, Gazi University, Ankara, Turkey
| | - Betül Sukan-Karaçağıl
- Department of Nutrition and Dietetics, Institute of Health Sciences, Gazi University, Ankara, Turkey
| | - Nilüfer Acar-Tek
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
D'Amore T, Chaari M, Falco G, De Gregorio G, Zaraî Jaouadi N, Ali DS, Sarkar T, Smaoui S. When sustainability meets health and innovation: The case of Citrus by-products for cancer chemoprevention and applications in functional foods. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 58:103163. [DOI: 10.1016/j.bcab.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
|
4
|
Pasdaran A, Hamedi A, Shiehzadeh S, Hamedi A. A review of citrus plants as functional foods and dietary supplements for human health, with an emphasis on meta-analyses, clinical trials, and their chemical composition. Clin Nutr ESPEN 2023; 54:311-336. [PMID: 36963879 DOI: 10.1016/j.clnesp.2023.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Fruits, flowers, leaves, essential oils, hydrosols, and juices of citrus spp. Are utilized to prepare various forms of food products. Along with their nutritional values, in the health industry, different parts of the plants of the citrus genus have been used as supplements or remedies to prevent or control diseases. This review focused on reported meta-analyses and clinical trials on the health benefits of citrus plants as functional foods. Also, chemical compounds of various citrus species were reviewed. The following information sources were used for data collection: Google Scholar, the Web of Science, Scopus, and PubMed. Various keywords, including "citrus AND chemical compounds," "citrus AND phytochemicals," "citrus species," "citrus AND meta-analysis," "nutritional and therapeutical values of citrus spp.," "clinical trials AND citrus," "clinical trials AND Rutaceae," "health benefits of citrus spp.," "citrus edible or non-edible applications," and scientific names of the citrus plants were utilized to collect data for the review. The scientific name and common name of all twenty-eight citrus species, along with any of the above keywords, were also searched in the mentioned databases. Scientific papers and data sources were sought to review and discuss the citrus plant's nutritional and therapeutic importance. Several meta-analyses and clinical trials have reported beneficial effects of citrus spices on a variety of cancer risks, cardiovascular risk factors, neurologic disorders, urinary tract conditions, and gastrointestinal tract conditions. They have shown anxiolytic, antimicrobial, and pain-alleviating effects. Some of them can be helpful in managing obesity and cardiovascular risk factors.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sara Shiehzadeh
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Matsuzaki K, Ohizumi Y. Beneficial Effects of Citrus-Derived Polymethoxylated Flavones for Central Nervous System Disorders. Nutrients 2021; 13:E145. [PMID: 33406641 PMCID: PMC7824236 DOI: 10.3390/nu13010145] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
The number of patients with central nervous system disorders is increasing. Despite diligent laboratory and clinical research over the past 30 years, most pharmacologic options for the prevention and long-term treatment of central nervous system disorders and neurodegenerative disorders have been unsuccessful. Therefore, the development of drugs and/or functional foods to prevent the onset of neurodegenerative disorders is highly expected. Several reports have shown that polymethoxylated flavones (PMFs) derived from citrus fruit, such as nobiletin, tangeretin, and 3,3',4',5,6,7,8-heptamethoxyflavone, are promising molecules for the prevention of neurodegenerative and neurological disorders. In various animal models, PMFs have been shown to have a neuroprotective effect and improve cognitive dysfunction with regard to neurological disorders by exerting favorable effects against their pathological features, including oxidative stress, neuroinflammation, neurodegeneration, and synaptic dysfunction as well as its related mechanisms. In this review, we describe the profitable and ameliorating effects of citrus-derived PMFs on cognitive impairment and neural dysfunction in various rat and murine models or in several models of central nervous system disorders and identify their mechanisms of action.
Collapse
Affiliation(s)
- Kentaro Matsuzaki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, 6-149-1 Kunimigaoka, Aoba-ku, Sendai 989-3201, Japan
| |
Collapse
|