1
|
Salama A, Elsherbiny N, Hetta HF, Safwat MA, Atif HM, Fathalla D, Almanzalawi WS, Almowallad S, Soliman GM. Curcumin-loaded gold nanoparticles with enhanced antibacterial efficacy and wound healing properties in diabetic rats. Int J Pharm 2024; 666:124761. [PMID: 39332460 DOI: 10.1016/j.ijpharm.2024.124761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Diabetic wounds pose a significant global health challenge. Although curcumin exhibits promising wound healing and antibacterial properties, its clinical potential is limited by low aqueous solubility, and poor tissue penetration. This study aimed to address these challenges and enhance the wound healing efficacy of curcumin by loading it onto gold nanoparticles (AuNPs). The properties of the AuNPs, including particle size, polydispersity index (PDI), zeta potential, percent drug entrapment efficiency (%EE) and UV-Vis spectra were significantly influenced by the curcumin/gold chloride molar ratio used in the synthesis of AuNPs. The optimal formulation (F2) exhibited the smallest particle size (41.77 ± 6.8 nm), reasonable PDI (0.59 ± 0.17), high %EE (94.43 ± 0.25 %), a moderate zeta potential (-8.44 ± 1.69 mV), and a well-defined surface Plasmon resonance peak at 526 nm. Formulation F2 was incorporated into Pluronic® F127 gel to facilitate its application to the skin. Both curcumin AuNPs solution and gel showed sustained drug release and higher skin permeation parameters compared with the free drug solution. AuNPs significantly enhanced curcumin's antibacterial efficacy by lowering the minimum inhibitory concentrations and enhancing antibacterial biofilm activity against various Gram-positive and Gram-negative bacterial strains. In a diabetic wound rat model, AuNPs-loaded curcumin exhibited superior wound healing attributes compared to the free drug. Specifically, it demonstrated improved wound healing percentage, reduced wound oxidative stress, increased wound collagen deposition, heightened anti-inflammatory effects, and enhanced angiogenesis. These findings underscore the potential of AuNPs as efficacious delivery systems of curcumin for improved wound healing applications.
Collapse
Affiliation(s)
- Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Helal F Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed A Safwat
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Huda M Atif
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt
| | - Dina Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Wejdan S Almanzalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Sanaa Almowallad
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ghareb M Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
| |
Collapse
|
2
|
Fu Z, Zou J, Zhong J, Zhan J, Zhang L, Xie X, Zhang L, Li W, He R. Curcumin-Loaded Nanocomposite Hydrogel Dressings for Promoting Infected Wound Healing and Tissue Regeneration. Int J Nanomedicine 2024; 19:10479-10496. [PMID: 39439502 PMCID: PMC11495204 DOI: 10.2147/ijn.s479330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Background The skin regulates body processes. When damaged, it is prone to breeding bacteria, causing inflammation and impeding wound healing. There is an urgent need for new dressings that can combat bacteria to aid in infectious wound repair. Methods In this study, a curcumin-loaded nanocomposite hydrogel dressing (GelMA/AHA-Gel@Cur) with antibacterial properties and strong toughness was synthesized, designed to combine the modified gelatin-based hydrogel (GelMA/AHA) with curcumin-coated gelatin (Gel@Cur) nanoparticles to promote the healing of bacterial infection wounds. Under UV irradiation, methylacrylylated gelatin (GelMA) and aldehyaluronic acid (AHA) formed a composite network hydrogel through radical polymerization and Schiff base reaction. Meanwhile, the residual aldehyde group on the molecular chain of AHA securely locked Gel@Cur nanoparticles in the hydrogel network through Schiff base reaction. Results The addition of Gel@Cur nanoparticles not only enhanced the hydrogel's mechanical strength but also facilitated a sustained, gradual release of curcumin, endowing the composite hydrogel with robust antimicrobial capabilities. In an animal model of infected wounds, the composite hydrogel significantly improved wound closure, healing, and vascularization compared to the control group. Hemocompatibility tests confirmed the hydrogel's safety, with a hemolysis ratio of just 0.45%. Histological evaluation following treatment with the composite hydrogel showed improved tissue architecture, increased collagen deposition, and regeneration of dermal gland structures. Conclusion The GelMA/AHA-Gel@Cur composite hydrogel exhibits excellent mechanical properties, potent antimicrobial activity, and controlled drug release, along with superior cell and hemocompatibility. These characteristics make it a promising material for infected wound repair and a potential candidate for clinical skin regeneration applications.
Collapse
Affiliation(s)
- Zhengzheng Fu
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Jingwen Zou
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Jing Zhong
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Jipang Zhan
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Lian Zhang
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Xiaoru Xie
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Lai Zhang
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
- Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, 510006, People’s Republic of China
| | - Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong, Guangzhou Sport University, Guangzhou, Guangdong Province, 510500, People’s Republic of China
| | - Renliang He
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| |
Collapse
|
3
|
Hayat A, Shah I, Jabbar A, Ullah S, Shah MR, Shafique M, Balouch A, Gul F. Design and Development of a Self-nanoemulsifying Drug Delivery System for Co-delivery of Curcumin and Naringin for Improved Wound Healing Activity in an Animal Model. PLANTA MEDICA 2024; 90:959-970. [PMID: 39079700 DOI: 10.1055/a-2376-6380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The present study endeavored to design and develop a self-nanoemulsifying drug delivery system to improve the solubility and dermatological absorption of curcumin and naringin. Curcumin and naringin-loaded self-nanoemulsifying drug delivery system formulations were developed using aqueous phase titration. Phase diagrams were used to pinpoint the self-nanoemulsifying drug delivery system zones. Tween 80 and Labrasol (surfactants), Transcutol (cosurfactant), and cinnamon oil were chosen from a large pool of surfactants, cosurfactants, and oils based on their solubility and greatest nano-emulsion region. Fourier transform infrared spectroscopy, zeta sizer, and atomic force microscopy were used to characterize the optimized formulations and test for dilution and thermodynamic stability. The optimized curcumin-naringin-self-nanoemulsifying drug delivery system demonstrated the following characteristics: polydispersity index (0.412 ± 0.03), % transmittance (97%), particle size (212.5 ± 05 nm), zeta potential (- 25.7 ± 1.80 mV) and having a smooth and spherical droplet shape, as shown by atomic force microscopy. The ability of their combined formulation to cure wounds was tested in comparison to pure curcumin suspension, empty self-nanoemulsifying drug delivery system, and standard fusidic acid. Upon topical administration, the optimized curcumin-naringin-self-nanoemulsifying drug delivery system demonstrated significant wound healing activity in comparison with a pure curcumin suspension, empty self-nanoemulsifying drug delivery system, and standard fusidic acid. Based upon this result, we assume that skin penetration was increased by using the optimized curcumin-naringin-self-nanoemulsifying drug delivery system with enhanced solubility.
Collapse
Affiliation(s)
- Ajmal Hayat
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Ismail Shah
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Jabbar
- International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| | - Shafi Ullah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Superior University, Lahore, Pakistan
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| | - Muhammad Shafique
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Aziz Balouch
- International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| | - Farah Gul
- Pharmacology Section MBC, PCSIR Laboratories Complex, Peshawar, Pakistan
| |
Collapse
|
4
|
Rananaware P, Bauri S, Keri R, Mishra M, Brahmkhatri V. Polymeric curcumin nanospheres for lysozyme aggregation inhibition, antibacterial, and wound healing applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46625-46640. [PMID: 37688693 DOI: 10.1007/s11356-023-29160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/31/2023] [Indexed: 09/11/2023]
Abstract
The present study reports highly stable polymeric nanoparticles comprising curcumin and polyvinylpyrrolidone, and then conjugated with gold nanoparticles, resulting in C-PVP and C-PVP-Au, respectively. The synthesized conjugates C-PVP and C-PVP-Au were investigated for amyloid aggregation inhibition activity, antimicrobial activity, and wound healing applications. The anti-amyloidogenic capacity of nanoconjugates were studied for model protein, hen egg-white lysozyme (HEWL). The ThT binding assay, fibril size measurement, and electron microscopy results revealed that conjugates suppress fibrillogenesis in HEWL. The highest amyloid inhibition activity obtained against C-PVP and C-PVP-Au was 31 μg.mL-1 and 30 μg.mL-1, respectively. The dissociation activity for amyloid aggregation was observed against Q-PVP and Q-PVP-Au at 29 μg.mL-1 and 27 μg.mL-1, respectively. The antibacterial studies show significant efficacy against Escherichia coli (E. coli) in the presence of C-PVP and C-PVP-Au. The substantial antibacterial potential of C-PVP@PVA and C-PVP-Au@PVA membranes shows promising wound healing applications. The PVA membranes with nanoparticles promote the antibacterial activity and wound healing activity in the Drosophila model. C-PVP-Au@PVA membrane healed the wound faster than the C-PVP@PVA, and it can be used for better results in wound healing. Thus, C-PVP-Au and C-PVP have higher bioavailability and stability and can act as multifunctional therapeutic agents for amyloid-related diseases and as wound healing agents. Graphical abstract C-PVP, and C-PVP-Au conjugates for inhibition of HEWL aggregation, antibacterial and wound healing activity.
Collapse
Affiliation(s)
- Pranita Rananaware
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Samir Bauri
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Odisha, Rourkela, 769008, India
| | - Rangappa Keri
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Odisha, Rourkela, 769008, India
| | - Varsha Brahmkhatri
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
5
|
Torabi S, Hassanzadeh-Tabrizi SA. Effective antibacterial agents in modern wound dressings: a review. BIOFOULING 2024; 40:305-332. [PMID: 38836473 DOI: 10.1080/08927014.2024.2358913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
Wound infections are a significant concern in healthcare, leading to long healing times. Traditional approaches for managing wound infections rely heavily on systemic antibiotics, which are associated with the emergence of antibiotic-resistant bacteria. Therefore, the development of alternative antibacterial materials for wound care has gained considerable attention. In today's world, new generations of wound dressing are commonly used to heal wounds. These new dressings keep the wound and the area around it moist to improve wound healing. However, this moist environment can also foster an environment that is favorable for the growth of bacteria. Excessive antibiotic use poses a significant threat to human health and causes bacterial resistance, so new-generation wound dressings must be designed and developed to reduce the risk of infection. Wound dressings using antimicrobial compounds minimize wound bacterial colonization, making them the best way to avoid open wound infection. We aim to provide readers with a comprehensive understanding of the latest advancements in antibacterial materials for wound management.
Collapse
Affiliation(s)
- Sadaf Torabi
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Sayed Ali Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
6
|
Huang T, Zeng Y, Li C, Zhou Z, Liu Y, Xu J, Wang L, Yu DG, Wang K. Preparation and Investigation of Cellulose Acetate/Gelatin Janus Nanofiber Wound Dressings Loaded with Zinc Oxide or Curcumin for Enhanced Antimicrobial Activity. MEMBRANES 2024; 14:95. [PMID: 38786930 PMCID: PMC11123119 DOI: 10.3390/membranes14050095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The skin, as the largest organ, serves as a protective barrier against external stimuli. However, when the skin is injured, wound healing becomes a complex process influenced by physiological conditions, bacterial infections, and inflammation. To improve the process of wound healing, a variety of wound dressings with antibacterial qualities have been created. Electrospun nanofibers have gained significant attention in wound dressing research due to their large specific surface area and unique structure. One interesting method for creating Janus-structured nanofibers is side-by-side electrospinning. This work used side-by-side electrospinning to make cellulose acetate/gelatin Janus nanofibers. Curcumin and zinc oxide nanoparticles were added to these nanofibers. We studied Janus nanofibers' physicochemical characteristics and abilities to regulate small-molecule medication release. Janus nanofibers coated with zinc oxide nanoparticles and curcumin were also tested for antibacterial activity. The Janus nanofibers with specified physicochemical characteristics were successfully fabricated. Nanofibers released small-molecule medicines in a controlled manner. Additionally, the Janus nanofibers loaded with curcumin exhibited excellent antibacterial capabilities. This research contributes to the development of advanced wound dressings for promoting wound healing and combating bacterial infections.
Collapse
Affiliation(s)
- Tianyue Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (T.H.); (Z.Z.); (Y.L.); (J.X.); (L.W.)
| | - YuE Zeng
- Department of Neurology, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Zhengqing Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (T.H.); (Z.Z.); (Y.L.); (J.X.); (L.W.)
| | - Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (T.H.); (Z.Z.); (Y.L.); (J.X.); (L.W.)
| | - Jie Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (T.H.); (Z.Z.); (Y.L.); (J.X.); (L.W.)
| | - Lean Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (T.H.); (Z.Z.); (Y.L.); (J.X.); (L.W.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (T.H.); (Z.Z.); (Y.L.); (J.X.); (L.W.)
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (T.H.); (Z.Z.); (Y.L.); (J.X.); (L.W.)
| |
Collapse
|
7
|
Ge W, Gao Y, He L, Jiang Z, Zeng Y, Yu Y, Xie X, Zhou F. Developing Chinese herbal-based functional biomaterials for tissue engineering. Heliyon 2024; 10:e27451. [PMID: 38496844 PMCID: PMC10944231 DOI: 10.1016/j.heliyon.2024.e27451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/10/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
The role of traditional Chinese medicine (TCM) in treating diseases is receiving increasing attention. Chinese herbal medicine is an important part of TCM with various applications and the active ingredients extracted from Chinese herbal medicines have physiological and pathological effects. Tissue engineering combines cell biology and materials science to construct tissues or organs in vitro or in vivo. TCM has been proposed by the World Health Organization as an effective treatment modality. In recent years, the potential use of TCM in tissue engineering has been demonstrated. In this review, the classification and efficacy of TCM active ingredients and delivery systems are discussed based on the TCM theory. We also summarized the current application status and broad prospects of Chinese herbal active ingredients in different specialized biomaterials in the field of tissue engineering. This review provides novel insights into the integration of TCM and modern Western medicine through the application of Chinese medicine in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Liming He
- Changsha Stomatological Hospital, Changsha, PR China
| | | | - Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yi Yu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Fang Zhou
- Xiangtan Maternal and Child Health Hospital, Xiangtan, PR China
| |
Collapse
|
8
|
de Araújo LP, Marchesin AR, Carpena LP, Gobbo LB, Ferreira NDS, de Almeida JFA, Ferraz CCR. Outcome of curcumin-based photodynamic therapy in endodontic microsurgery: A case report. Photodiagnosis Photodyn Ther 2024; 45:103994. [PMID: 38295923 DOI: 10.1016/j.pdpdt.2024.103994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
INTRODUCTION Persistent apical periodontitis after root canal treatment may require surgical retreatment when non-surgical options are ineffective or impractical due to anatomical challenges or iatrogenic errors. Endodontic microsurgery (EMS) is a precise technique that aims to overcome extraradicular biofilm and root morphology issues. Photodynamic therapy (PDT) is an emerging supplementary disinfection approach that utilizes a photosensitizer agent and light to eliminate microorganisms through oxidative reactions. REPORT A 60-year-old male with persistent apical periodontitis in a left maxillary first molar underwent non-surgical root canal retreatment followed by surgical reintervention due to anatomical complexities. During surgery, PDT was performed using a novel curcumin-based photosensitizer agent. After the procedure, the tooth was retrofilled with bioceramic cement, and photobiomodulation was applied to enhance tissue healing. One year post-surgery, the patient exhibited complete periradicular repair and remained asymptomatic. DISCUSSION EMS is considered a last resort to salvage an endodontically treated tooth and has shown moderate success rates. PDT has demonstrated promise in improving periapical healing and reducing microorganisms. In this case, curcumin, diluted with 2 % chlorhexidine gel, served as an effective photosensitizer agent with antimicrobial properties. Moreover, performing photobiomodulation aided in cell recovery and reduced postoperative discomfort. CONCLUSION The proposed EMS treatment protocol with PDT using curcumin yielded positive outcomes in this case report. Further randomized clinical trials are necessary to assess the efficacy of this approach in EMS. Additionally, further research on curcumin-based photosensitizer agents encapsulated in nanoparticles and enhanced antimicrobial agents is recommended to refine this treatment protocol for routine use.
Collapse
Affiliation(s)
- Lucas Peixoto de Araújo
- School of Dentistry, Catholic University of Pelotas (UCPEL), Pelotas, RS, Brazil; Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil.
| | - Analu Rodriguez Marchesin
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Lucas Pinto Carpena
- Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Leandro Bueno Gobbo
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Nadia de Souza Ferreira
- Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - José Flávio Affonso de Almeida
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Caio Cezar Randi Ferraz
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| |
Collapse
|
9
|
Li J, Sun Y, Li G, Cheng C, Sui X, Wu Q. The Extraction, Determination, and Bioactivity of Curcumenol: A Comprehensive Review. Molecules 2024; 29:656. [PMID: 38338400 PMCID: PMC10856406 DOI: 10.3390/molecules29030656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Curcuma wenyujin is a member of the Curcuma zedoaria (zedoary, Zingiberaceae) family, which has a long history in traditional Chinese medicine (TCM) due to its abundant biologically active constituents. Curcumenol, a component of Curcuma wenyujin, has several biological activities. At present, despite different pharmacological activities being reported, the clinical usage of curcumenol remains under investigation. To further determine the characteristics of curcumenol, the extraction, determination, and bioactivity of the compound are summarized in this review. Existing research has reported that curcumenol exerts different pharmacological effects in regard to a variety of diseases, including anti-inflammatory, anti-oxidant, anti-bactericidal, anti-diabetic, and anti-cancer activity, and also ameliorates osteoporosis. This review of curcumenol provides a theoretical basis for further research and clinical applications.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.L.)
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Yitian Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.L.)
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Guohua Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.L.)
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Chunsong Cheng
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Xinbing Sui
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.L.)
- Zhuhai M.U.S.T. Science and Technology Research Institute, Zhuhai 519031, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, China
| |
Collapse
|
10
|
Elhawary EA, Moussa AY, Singab ANB. Genus Curcuma: chemical and ethnopharmacological role in aging process. BMC Complement Med Ther 2024; 24:31. [PMID: 38212737 PMCID: PMC10782795 DOI: 10.1186/s12906-023-04317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
Aging or senescence is part of human life development with many effects on the physical, mental, and physiological aspects which may lead to age-related deterioration in many organs. Genus Curcuma family Zingieraceae represents one of the well-studied and medically important genera with more than eighty species. The genus is reported to contain different classes of biologically active compounds that are mainly presented in diphenylheptanoids, diphenylpentanoids, diphenylalkanoids, phenylpropene derivatives, alkaloids, flavonoids, chromones, terpenoids, phenolic acids and volatile constituents. Rhizomes and roots of such species are rich with main phytoconstituents viz. curcumin, demethoxycurcumin and bis-demethoxycurcumin. A wide variety of biological activities were demonstrated for different extracts and essential oils of genus Curcuma members including antioxidant, anti-inflammatory, cytotoxic and neuroprotective. Thus, making them as an excellent safe source for nutraceutical products and as a continuous promising area of research on lead compounds that may help in the slowing down of the aging process especially the neurologic and mental deterioration that are usually experienced upon aging. In this review different species of the genus Curcuma were summarized with their phytochemical and biological activities highlighting their role as antiaging agents. The data were collected from different search engines viz. Pubmed®, Google Scholar®, Scopus® and Web of Science® limiting the search to the period between 2003 up till now.
Collapse
Affiliation(s)
- Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
11
|
Fei H, Qian Y, Pan T, Wei Y, Hu Y. Curcumin alleviates hypertrophic scarring by inhibiting fibroblast activation and regulating tissue inflammation. J Cosmet Dermatol 2024; 23:227-235. [PMID: 37400988 DOI: 10.1111/jocd.15905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Hypertrophic scar (HS) that can lead to defects in appearance and function is often characterized by uncontrolled fibroblast proliferation and excessive inflammation. Curcumin has been shown to have anti-inflammatory and anti-oxidative effects and to play an anti-fibrotic role by interfering transforming growth factor-β1 (TGF-β1)/Smads signaling pathways. AIM To study the effect and mechanism of curcumin on HS from the perspective of fibroblast activity and inflammation regulation. METHODS Cell proliferation, migration and the expression of α-smooth muscle actin (α-SMA) of TGF-β1-induced human dermal fibroblasts (HDFs) treated by curcumin were evaluated using Cell Counting Kit-8 assay, 5-ethynyl-2'-deoxyuridine staining, Transwell assay, Western blotting and immunofluorescence, respectively. The expression of TGF-β1/Smad3 pathway-related molecules (TGF-β1, TGFβ-R1/2, p-Smad3, Smad4) was detected by Western blotting. In a rabbit ear model, hematoxylin and eosin and Masson's staining were conducted to assess scar elevation and collagen deposition, and immunohistochemistry was performed to detect the activation of fibroblasts and infiltration of inflammatory cells. RESULTS Curcumin inhibited proliferation, migration and α-SMA expression of HDFs in a dose-dependent manner. Curcumin (25 μm mol/L) did not regulate the expression of endogenous TGF-β1, but suppressed Smad3 phosphorylation and nuclear translocation, leading to lower α-SMA expression. Curcumin also reduced hypertrophic scarring of rabbit ear, accompanied by the inhibited TGF-β1/Smad3 pathway, inflammatory infiltration and M2 macrophage polarization. CONCLUSION Curcumin plays an anti-scar role through regulating fibroblast activation and tissue inflammation. Our findings provide scientific reference for the clinical use of curcumin in the treatment of HS.
Collapse
Affiliation(s)
- Huanhuan Fei
- Department of Pathology, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Huzhou, China
| | - Yao Qian
- Department of Plastic Surgery, Huzhou Central Hospital, Affiliated to Huzhou University, Huzhou, China
- Department of Plastic Surgery, Jiahui Medical Beauty Clinic Co.Ltd, Huzhou, China
| | - Tianyun Pan
- Department of Pathology, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Huzhou, China
| | - Ying Wei
- Department of Plastic Surgery, Huzhou Central Hospital, Affiliated to Huzhou University, Huzhou, China
| | - Yun Hu
- Department of Pathology, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Huzhou, China
| |
Collapse
|
12
|
Yang X, Cao W, Gu X, Zheng L, Wang Q, Li Y, Wei F, Ma T, Zhang L, Wang Q. Simvastatin nanocrystals-based dissolving microneedles for wound healing. Int J Pharm 2023; 647:123543. [PMID: 37879572 DOI: 10.1016/j.ijpharm.2023.123543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Currently, one of the main problems encountered in wound healing therapy is related to inefficient drug delivery. However, dissolving microneedles (DMNs) can be administered percutaneously to effectively deliver a drug to a deep wound area. Simvastatin (SIM) can promote wound healing, albeit its insolubility in water limits its application. Here, we designed a DMNs (SIM-NC@DMNs) drug delivery system loaded with SIM nanocrystals (SIM-NC) and evaluated its efficacy in wound healing. Based on our observations, the dissolution performance of insoluble SIM is significantly improved after the preparation of SIM-NC. For example, the saturation solubility of SIM-NC in deionized water and PBS increased by 150.57 times and 320.14 times, respectively. After the SIM-NC@DMNs are deeply inserted into the wound, the needle portion, which is composed of hyaluronic acid (HA), dissolves rapidly, and the SIM-NC loaded on the needle portion is efficiently released into the deep wound area for optimal therapeutic efficacy. The combination of NC and DMNs makes this system further effective for wound healing. Our cumulative work suggests that the newly developed SIM-NC@DMNs possess great potential in accelerating wound healing. By day 12 after treatment, the residual wound area in the Control group was 21.34 %, while the residual wound area in the SIM-NC@DMNs group was only 2.36 %. This result as well as provides certain evidence of its efficacy for wound healing therapy. The SIM-NC@DMNs drug delivery system may become an efficient treatment modality that promotes wound healing, with a promising potential in the field of wound healing research.
Collapse
Affiliation(s)
- Xuejing Yang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Wenyu Cao
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Xun Gu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Lijie Zheng
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Qiuyue Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Yingying Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Tao Ma
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui 233030, China
| | - Lu Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui 233030, China
| | - Qingqing Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui 233030, China.
| |
Collapse
|
13
|
Le TTN, Nguyen TKN, Nguyen VM, Dao TCM, Nguyen HBC, Dang CT, Le TBC, Nguyen TKL, Nguyen PTT, Dang LHN, Doan VM, Ho HN. Development and Characterization of a Hydrogel Containing Curcumin-Loaded Nanoemulsion for Enhanced In Vitro Antibacteria and In Vivo Wound Healing. Molecules 2023; 28:6433. [PMID: 37687262 PMCID: PMC10490385 DOI: 10.3390/molecules28176433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Curcumin (CUR) is a natural compound extracted from turmeric (Curcuma longa L.) used to cure acne, wound healing, etc. Its disadvantages, such as poor solubility and permeability, limit its efficacy. Nanoemulsion (NE)-based drug delivery systems have gained popularity due to their advantages. This study aimed to optimize a CUR-NE-based gel and evaluate its physicochemical and biological properties. A NE was prepared using the catastrophic phase inversion method and optimized using the Design Expert 12.0 software. The CUR-NE gel was characterized in terms of visual appearance, pH, drug release, antibacterial and wound healing effects. The optimal formulation contained CUR, Capryol 90 (oil), Labrasol:Cremophor RH40 (1:1) (surfactants), propylene glycol (co-surfactant), and water. The NE had a droplet size of 22.87 nm and a polydispersity index of 0.348. The obtained CUR-NE gel had a soft, smooth texture and a pH of 5.34 ± 0.05. The in vitro release of CUR from the NE-based gel was higher than that from a commercial gel with nanosized CUR (21.68 ± 1.25 µg/cm2, 13.62 ± 1.63 µg/cm2 after 10 h, respectively). The CUR-NE gel accelerated in vitro antibacterial and in vivo wound healing activities as compared to other CUR-loaded gels. The CUR-NE gel has potential for transdermal applications.
Collapse
Affiliation(s)
- Thi Thanh Ngoc Le
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (T.T.N.L.); (T.K.N.N.); (T.C.M.D.); (H.B.C.N.)
| | - Thi Kieu Nhi Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (T.T.N.L.); (T.K.N.N.); (T.C.M.D.); (H.B.C.N.)
| | - Van Minh Nguyen
- Faculty of Odonto-Stomatology, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam;
| | - Thi Cam Minh Dao
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (T.T.N.L.); (T.K.N.N.); (T.C.M.D.); (H.B.C.N.)
| | - Hoai Bao Chau Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (T.T.N.L.); (T.K.N.N.); (T.C.M.D.); (H.B.C.N.)
| | - Cong Thuan Dang
- Department of Histology, Embryology, Pathology, and Forensic, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (C.T.D.); (P.T.T.N.)
| | - Thi Bao Chi Le
- Department of Microbiology, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (T.B.C.L.); (T.K.L.N.)
| | - Thi Khanh Linh Nguyen
- Department of Microbiology, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (T.B.C.L.); (T.K.L.N.)
| | - Phuong Thao Tien Nguyen
- Department of Histology, Embryology, Pathology, and Forensic, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (C.T.D.); (P.T.T.N.)
| | - Le Hoang Nam Dang
- Department of Anatomy and Surgical Training, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam;
| | - Van Minh Doan
- Faculty of Traditional Medicine, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam;
| | - Hoang Nhan Ho
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (T.T.N.L.); (T.K.N.N.); (T.C.M.D.); (H.B.C.N.)
| |
Collapse
|
14
|
Ansari L, Mashayekhi-Sardoo H, Baradaran Rahimi V, Yahyazadeh R, Ghayour-Mobarhan M, Askari VR. Curcumin-based nanoformulations alleviate wounds and related disorders: A comprehensive review. Biofactors 2023; 49:736-781. [PMID: 36961254 DOI: 10.1002/biof.1945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
Despite numerous advantages, curcumin's (CUR) low solubility and low bioavailability limit its employment as a free drug. CUR-incorporated nanoformulation enhances the bioavailability and angiogenesis, collagen deposition, fibroblast proliferation, reepithelization, collagen synthesis, neovascularization, and granulation tissue formation in different wounds. Designing nanoformulations with controlled-release properties ensure the presence of CUR in the defective area during treatment. Different nanoformulations encompassing nanofibers, nanoparticles (NPs), nanospray, nanoemulsion, nanosuspension, nanoliposome, nanovesicle, and nanomicelle were described in the present study comprehensively. Moreover, for some other systems which contain nano-CUR or CUR nanoformulations, including some nanofibers, films, composites, scaffolds, gel, and hydrogels seems the CUR-loaded NPs incorporation has better control of the sustained release, and thereby, the presence of CUR until the final stages of wound healing is more possible. Incorporating CUR-loaded chitosan NPs into nanofiber increased the release time, while 80% of CUR was released during 240 h (10 days). Therefore, this system can guarantee the presence of CUR during the entire healing period. Furthermore, porous structures such as sponges, aerogels, some hydrogels, and scaffolds disclosed promising performance. These architectures with interconnected pores can mimic the native extracellular matrix, thereby facilitating attachment and infiltration of cells at the wound site, besides maintaining a free flow of nutrients and oxygen within the three-dimensional structure essential for rapid and proper wound healing, as well as enhancing mechanical strength.
Collapse
Affiliation(s)
- Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Yahyazadeh
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Miraj SS, Kurian SJ, Rodrigues GS, Saravu K, Rao M, Raychaudhuri SP, Downs BW, Bagchi D. Phytotherapy in Diabetic Foot Ulcers: A Promising Strategy for Effective Wound Healing. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:295-310. [PMID: 35512780 DOI: 10.1080/07315724.2022.2034069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Despite the advancement in wound care, the effective therapy of chronic diabetic ulcers continues to be a challenge. Wound healing is a highly controlled process, which involves a sequence of complex overlapping steps. This healing pathway comprises of hemostasis, inflammation, proliferative, and remodeling phases. Recent evidence suggests that phytomedicines can prevent or repair different kinds of destructive cellular damage, including chronic wounds. Several phytochemicals such as polyphenols, alkaloids, flavonoids, terpenoids, and glycosides have pleiotropic effects, including stimulation of fibroblast proliferation, the main step in wound healing. Besides, the mechanism involves induction of collagen synthesis, migration, and reepithelization and their antimicrobial, antioxidant, anti-inflammatory, and immunomodulatory actions. Similarly, the use of phytochemicals alone or as an adjuvant with standard therapy has demonstrated promising results in managing complications in the diabetic foot. For instance, the extract of Carica papaya has been shown antioxidant, antimicrobial, and anti-inflammatory, and immunomodulatory effects, which, together with proteolytic enzymatic activity, contributes to its wound healing property. It is generally believed that phytotherapy has no or minimal toxicity than synthetic therapeutic agents, favoring its use in diabetic foot ulcer management. The current review highlights the selected phytochemicals and their sources; and potential application in diabetic foot ulcer management.Key teaching points and nutritional relevanceCurrently, phytochemicals have been shown wide potential in disease. management including alleviating clinical manifestations, preventing degenerative disease, and curing illness.Increased evidence of phytochemical as anti-infective and anti-inflammatory suggests its role in the management of diabetic foot ulcer(DFU).Potential benefit along with minimal adverse effect favors its application as adjuvant therapy.Further research is needed to standardize its dose and formulation to enhance its clinical application in DFU management.
Collapse
Affiliation(s)
- Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shilia Jacob Kurian
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gabriel Sunil Rodrigues
- Department of Surgery, Kasturba Medical College and Hospital, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kavitha Saravu
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Infectious Diseases, Kasturba Medical College and Hospital, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
| | - Siba Prasad Raychaudhuri
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, California, USA
- VA Medical Centre, Sacramento, California, USA
| | | | - Debasis Bagchi
- Department of R&D, VNI Inc, Bonita Springs, Florida, USA
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, Texas, USA
- Department of Biology, Adelphi University, Garden City, New York, USA
| |
Collapse
|
16
|
Curcumin in Wound Healing-A Bibliometric Analysis. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010143. [PMID: 36676091 PMCID: PMC9866018 DOI: 10.3390/life13010143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Curcumin has been widely used to treat a variety of diseases and disorders since ancient times, most notably for the purpose of healing wounds. Despite the large number of available reviews on this topic, a bibliometric tool-based meta-analysis is missing in the literature. Scope and approach: To evaluate the influence and significance of the countries, journals, organizations and authors that have contributed the most to this topic, the popular bibliometric markers, including article count, citation count, and Hirsch index (H-index), are taken into account. Their collaborative networks and keyword co-occurrence along with the trend analysis are also sketched out using the VOSviewer software. To the best of our knowledge, this is the first bibliometric review on the topic and hence it is envisaged that it will attract researchers to explore future research dimensions in the related field. KEY FINDINGS AND CONCLUSIONS India provided the most articles, making up more than 27.49 percent of the entire corpus. The International Journal of Biological Macromolecules published the most articles (44), and it also received the most citations (2012). The Journal of Ethnopharmacology (28 articles) and Current Pharmaceutical Design (20 articles) were the next most prolific journals with 1231 and 812 citations, respectively. The results indicate a significant increase in both research and publications on the wound-healing properties of curcumin. Recent studies have concentrated on creating novel medicine-delivery systems that use nano-curcumin to boost the effect of the curcumin molecule in therapeutic targeting. It has also been observed that genetic engineering and biotechnology have recently been employed to address the commercial implications of curcumin.
Collapse
|
17
|
Kumari A, Raina N, Wahi A, Goh KW, Sharma P, Nagpal R, Jain A, Ming LC, Gupta M. Wound-Healing Effects of Curcumin and Its Nanoformulations: A Comprehensive Review. Pharmaceutics 2022; 14:2288. [PMID: 36365107 PMCID: PMC9698633 DOI: 10.3390/pharmaceutics14112288] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 08/13/2023] Open
Abstract
Wound healing is an intricate process of tissue repair or remodeling that occurs in response to injury. Plants and plant-derived bioactive constituents are well explored in the treatment of various types of wounds. Curcumin is a natural polyphenolic substance that has been used since ancient times in Ayurveda for its healing properties, as it reduces inflammation and acts on several healing stages. Several research studies for curcumin delivery at the wound site reported the effectiveness of curcumin in eradicating reactive oxygen species and its ability to enhance the deposition of collagen, granulation tissue formation, and finally, expedite wound contraction. Curcumin has been widely investigated for its wound healing potential but its lower solubility and rapid metabolism, in addition to its shorter plasma half-life, have limited its applications in wound healing. As nanotechnology has proven to be an effective technique to accelerate wound healing by stimulating appropriate mobility through various healing phases, curcumin-loaded nanocarriers are used for targeted delivery at the wound sites. This review highlights the potential of curcumin and its nanoformulations, such as liposomes, nanoparticles, and nano-emulsions, etc. in wound healing. This paper emphasizes the numerous biomedical applications of curcumin which collectively prepare a base for its antibiofilm and wound-healing action.
Collapse
Affiliation(s)
- Amrita Kumari
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Neha Raina
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Abhishek Wahi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Pratibha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Riya Nagpal
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Atul Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Madhu Gupta
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| |
Collapse
|
18
|
Wang L, Zhu S, Zou C, Kou H, Xu M, Li J. Preparation and evaluation of the anti-cancer properties of RGD-modified curcumin-loaded chitosan/perfluorohexane nanocapsules in vitro. Heliyon 2022; 8:e09931. [PMID: 35865990 PMCID: PMC9294197 DOI: 10.1016/j.heliyon.2022.e09931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/31/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Curcumin (Cur) encapsulation in nanocapsules (NCs) could improve its availability and therapeutic antitumor efficacy. Cur-loaded chitosan/perfluorohexane (CS/PFH) nanocapsules (CS/PFH-Cur-NCs) were thus synthesized via a nanoemulsion process. To further enhance the selective tumor targeting ability of Cur-loaded NCs, a novel CS/PFH-Cur-NCs with conjugation of Arg-Gly-Asp (RGD) peptide (RGD-CS/PFH-Cur-NCs) were prepared in this study. The properties of these NCs were then explored through in vitro release experiments and confocal laser scanning microscopy-based analyses of the ability of these NCs to target MDA-MB-231 breast cancer cells. In addition, an MTT assay-based approach was used to compare the relative cytotoxic impact of CS/PFH-Cur-NCs and RGD-CS/PFH-Cur-NCs on these breast cancer cells. It was found that both CS/PFH-Cur-NCs and RGD-CS/PFH-Cur-NCs were smooth, relatively uniform, spheroid particles, with the latter being 531.20 ± 68.97 nm in size. These RGD-CS/PFH-Cur-NCs can be ideal for contrast imaging studies, and were better able to target breast cancer cells in comparison to CS/PFH-Cur-NCs. In addition, RGD-CS/PFH-Cur-NCs were observed to induce cytotoxic MDA-MB-231 cell death more swiftly in comparison to CS/PFH-Cur-NCs. These findings suggest that NC encapsulation and RGD surface modification can remarkably improve the anti-tumor efficacy of Cur. These novel NCs may thus manifest a significant potential value in the realm of image-guided cancer therapy, underscoring an important direction for future research.
Collapse
Affiliation(s)
- Liang Wang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, China.,Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shixia Zhu
- Department of Ultrasound, Wenzhou Seventh People's Hospital, Wenzhou 325005, China
| | - Chunpeng Zou
- Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hongju Kou
- Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Maosheng Xu
- Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
19
|
Hussain Y, Alam W, Ullah H, Dacrema M, Daglia M, Khan H, Arciola CR. Antimicrobial Potential of Curcumin: Therapeutic Potential and Challenges to Clinical Applications. Antibiotics (Basel) 2022; 11:antibiotics11030322. [PMID: 35326785 PMCID: PMC8944843 DOI: 10.3390/antibiotics11030322] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Curcumin is a bioactive compound that is extracted from Curcuma longa and that is known for its antimicrobial properties. Curcuminoids are the main constituents of curcumin that exhibit antioxidant properties. It has a broad spectrum of antibacterial actions against a wide range of bacteria, even those resistant to antibiotics. Curcumin has been shown to be effective against the microorganisms that are responsible for surgical infections and implant-related bone infections, primarily Staphylococcus aureus and Escherichia coli. The efficacy of curcumin against Helicobacter pylori and Mycobacterium tuberculosis, alone or in combination with other classic antibiotics, is one of its most promising antibacterial effects. Curcumin is known to have antifungal action against numerous fungi that are responsible for a variety of infections, including dermatophytosis. Candidemia and candidiasis caused by Candida species have also been reported to be treated using curcumin. Life-threatening diseases and infections caused by viruses can be counteracted by curcumin, recognizing its antiviral potential. In combination therapy with other phytochemicals, curcumin shows synergistic effects, and this approach appears to be suitable for the eradication of antibiotic-resistant microbes and promising for achieving co-loaded antimicrobial pro-regenerative coatings for orthopedic implant biomaterials. Poor water solubility, low bioavailability, and rapid degradation are the main disadvantages of curcumin. The use of nanotechnologies for the delivery of curcumin could increase the prospects for its clinical application, mainly in orthopedics and other surgical scenarios. Curcumin-loaded nanoparticles revealed antimicrobial properties against S. aureus in periprosthetic joint infections.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China;
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.)
| | - Marco Dacrema
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (M.D.); (H.K.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: (M.D.); (H.K.)
| | - Carla Renata Arciola
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40136 Bologna, Italy
| |
Collapse
|
20
|
Lai WF. Design of Polymeric Films for Antioxidant Active Food Packaging. Int J Mol Sci 2021; 23:12. [PMID: 35008439 PMCID: PMC8744826 DOI: 10.3390/ijms23010012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Antioxidant active food packaging can extend the shelf life of foods by retarding the rate of oxidation reactions of food components. Although significant advances in the design and development of polymeric packaging films loaded with antioxidants have been achieved over the last several decades, few of these films have successfully been translated from the laboratory to commercial applications. This article presents a snapshot of the latest advances in the design and applications of polymeric films for antioxidant active food packaging. It is hoped that this article will offer insights into the optimisation of the performance of polymeric films for food packaging purposes and will facilitate the translation of those polymeric films from the laboratory to commercial applications in the food industry.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China;
- Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| |
Collapse
|
21
|
Algahtani MS, Ahmad MZ, Nourein IH, Albarqi HA, Alyami HS, Alyami MH, Alqahtani AA, Alasiri A, Algahtani TS, Mohammed AA, Ahmad J. Preparation and Characterization of Curcumin Nanoemulgel Utilizing Ultrasonication Technique for Wound Healing: In Vitro, Ex Vivo, and In Vivo Evaluation. Gels 2021; 7:gels7040213. [PMID: 34842698 PMCID: PMC8628781 DOI: 10.3390/gels7040213] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogels being a drug delivery system has great significance particularly for topical application in cutaneous open wound. Its specific physicochemical properties such as non-adhesiveness, moisture retention, exudate absorption, and gas permeability make them ideal as a drug delivery vehicle for wound healing application. Further, curcumin (a natural bioactive) was selected as a therapeutic agent to incorporate into the hydrogel system to design and develop nanogel pharmaceutical products for wound healing. Although, curcumin possesses remarkable anti-inflammatory, antioxidant, and anti-infective activity along with hastening the healing process by acting over the different stages of the wound healing process, but its poor biopharmaceutical (low aqueous solubility and skin penetrability) attributes hamper their therapeutic efficacy for skin applications. The current investigation aimed to develop the curcumin-loaded nanogel system and evaluated to check the improvement in the therapeutic efficacy of curcumin through a nanomedicine-based approach for wound healing activity in Wistar rats. The curcumin was enclosed inside the nanoemulsion system prepared through a high-energy ultrasonic emulsification technique at a minimum concentration of surfactant required to nanoemulsify the curcumin-loaded oil system (Labrafac PG) having droplet size 56.25 ± 0.69 nm with polydispersity index 0.05 ± 0.01 and negatively surface charge with zeta potential −20.26 ± 0.65 mV. It was observed that the impact of Smix (surfactant/co-surfactant mixture) ratio on droplet size of generated nanoemulsion is more pronounced at lower Smix concentration (25%) compared to the higher Smix concentration (30%). The optimized curcumin-loaded nanoemulsion was incorporated into a 0.5% Carbopol® 940 hydrogel system for topical application. The developed curcumin nanoemulgel exhibited thixotropic rheological behavior and a significant (p < 0.05) increase in skin penetrability characteristics compared to curcumin dispersed in conventional hydrogel system. The in vivo wound healing efficacy study and histological examination of healed tissue specimen further signify the role of the nanomedicine-based approach to improve the biopharmaceutical attributes of curcumin.
Collapse
Affiliation(s)
- Mohammed S. Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Ihab Hamed Nourein
- Department of Clinical Laboratory (Histopathology and Cytology), College of Applied Medical Sciences, Najran University, Najran 11001, Saudi Arabia;
| | - Hassan A. Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Hamad S. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Mohammad H. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Abdulsalam A. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Ali Alasiri
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Thamer S. Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
- Correspondence: ; Tel.: +966-17542-8744
| |
Collapse
|
22
|
Naomi R, Bahari H, Yazid MD, Embong H, Othman F. Zebrafish as a Model System to Study the Mechanism of Cutaneous Wound Healing and Drug Discovery: Advantages and Challenges. Pharmaceuticals (Basel) 2021; 14:1058. [PMID: 34681282 PMCID: PMC8539578 DOI: 10.3390/ph14101058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
In humans, cutaneous wounds may heal without scars during embryogenesis. However, in the adult phase, the similar wound may undergo a few events such as homeostasis, blood clotting, inflammation, vascularization, and the formation of granulation tissue, which may leave a scar at the injury site. In consideration of this, research evolves daily to improve the healing mechanism in which the wound may heal without scarring. In regard to this, zebrafish (Danio rerio) serves as an ideal model to study the underlying signaling mechanism of wound healing. This is an important factor in determining a relevant drug formulation for wound healing. This review scrutinizes the biology of zebrafish and how this favors the cutaneous wound healing relevant to the in vivo evidence. This review aimed to provide the current insights on drug discovery for cutaneous wound healing based on the zebrafish model. The advantages and challenges in utilizing the zebrafish model for cutaneous wound healing are discussed in this review. This review is expected to provide an idea to formulate an appropriate drug for cutaneous wound healing relevant to the underlying signaling mechanism. Therefore, this narrative review recapitulates current evidence from in vivo studies on the cutaneous wound healing mechanism, which favours the discovery of new drugs. This article concludes with the need for zebrafish as an investigation model for biomedical research in the future to ensure that drug repositions are well suited for human skin.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Fezah Othman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|