1
|
Chakraborty S, Anand S, Bhandari RK. Medaka liver developed Human NAFLD-NASH transcriptional signatures in response to ancestral bisphenol A exposure. RESEARCH SQUARE 2024:rs.3.rs-4585175. [PMID: 39070641 PMCID: PMC11275980 DOI: 10.21203/rs.3.rs-4585175/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The progression of fatty liver disease to non-alcoholic steatohepatitis (NASH) is a leading cause of death in humans. Lifestyles and environmental chemical exposures can increase the susceptibility of humans to NASH. In humans, the presence of bisphenol A (BPA) in urine is associated with fatty liver disease, but whether ancestral BPA exposure leads to the activation of human NAFLD-NASH-associated genes in the unexposed descendants is unclear. In this study, using medaka fish as an animal model for human NAFLD, we investigated the transcriptional signatures of human NAFLD-NASH and their associated roles in the pathogenesis of the liver of fish that were not directly exposed, but their ancestors were exposed to BPA during embryonic and perinatal development three generations prior. Comparison of bulk RNA-Seq data of the liver in BPA lineage male and female medaka with publicly available human NAFLD-NASH patient data revealed transgenerational alterations in the transcriptional signature of human NAFLD-NASH in medaka liver. Twenty percent of differentially expressed genes (DEGs) were upregulated in both human NAFLD patients and medaka. Specifically in females, among the total shared DEGs in the liver of BPA lineage fish and NAFLD patient groups, 27.69% were downregulated, and 20% were upregulated. Of all DEGs, 52.31% of DEGs were found in ancestral BPA-lineage females, suggesting that NAFLD in females shared the majority of human NAFLD gene networks. Pathway analysis revealed beta-oxidation, lipoprotein metabolism, and HDL/LDL-mediated transport processes linked to downregulated DEGs in BPA lineage males and females. In contrast, the expression of genes encoding lipogenesis-related proteins was significantly elevated in the liver of BPA lineage females only. BPA lineage females exhibiting activation of myc, atf4, xbp1, stat4, and cancerous pathways, as well as inactivation of igf1, suggest their possible association with an advanced NAFLD phenotype. The present results suggest that gene networks involved in the progression of human NAFLD and the transgenerational NAFLD in medaka are conserved and that medaka can be an excellent animal model to understand the development and progression of liver disease and environmental influences in the liver.
Collapse
|
2
|
Liu SS, Yu T, Qiao YF, Gu SX, Chai XL. Research on Hepatocyte Regulation of PCSK9-LDLR and Its Related Drug Targets. Chin J Integr Med 2024; 30:664-672. [PMID: 36913119 DOI: 10.1007/s11655-023-3545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 03/14/2023]
Abstract
The prevalence of hyperlipidemia has increased significantly due to genetic, dietary, nutritional and pharmacological factors, and has become one of the most common pathological conditions in humans. Hyperlipidemia can lead to a range of diseases such as atherosclerosis, stroke, coronary heart disease, myocardial infarction, diabetes, and kidney failure, etc. High circulating low-density lipoprotein cholesterol (LDL-C) is one of the causes of hyperlipidemia. LDL-C in the blood binds to LDL receptor (LDLR) and regulates cholesterol homeostasis through endocytosis. In contrast, proprotein convertase subtilisin/kexin type 9 (PCSK9) mediates LDLR degradation via the intracellular and extracellular pathways, leading to hyperlipidemia. Targeting PCSK9-synthesizing transcription factors and downstream molecules are important for development of new lipid-lowering drugs. Clinical trials regarding PCSK9 inhibitors have demonstrated a reduction in atherosclerotic cardiovascular disease events. The purpose of this review was to explore the target and mechanism of intracellular and extracellular pathways in degradation of LDLR and related drugs by PCSK9 in order to open up a new pathway for the development of new lipid-lowering drugs.
Collapse
Affiliation(s)
- Su-Su Liu
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China
| | - Tong Yu
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China
| | - Yan-Fang Qiao
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China
| | - Shu-Xiao Gu
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China
| | - Xin-Lou Chai
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China.
| |
Collapse
|
3
|
Chakraborty S, Anand S, Bhandari RK. Sex-specific expression of the human NAFLD-NASH transcriptional signatures in the liver of medaka with a history of ancestral bisphenol A exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.19.594843. [PMID: 38826193 PMCID: PMC11142124 DOI: 10.1101/2024.05.19.594843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The progression of fatty liver disease to non-alcoholic steatohepatitis (NASH) is a leading cause of death in humans. Lifestyles and environmental chemical exposures can increase the susceptibility of humans to NASH. In humans, the presence of bisphenol A (BPA) in urine is associated with fatty liver disease, but whether ancestral BPA exposure leads to the activation of human NAFLD-NASH-associated genes in the unexposed descendants is unclear. In this study, using medaka fish as an animal model for human NAFLD, we investigated the transcriptional signatures of human NAFLD-NASH and their associated roles in the pathogenesis of the liver of fish who were not directly exposed but their ancestors were exposed to BPA during embryonic and perinatal development three generations prior. Comparison of bulk RNA-Seq data of the liver in BPA lineage male and female medaka with publicly available human NAFLD-NASH patient data revealed transgenerational alterations in the transcriptional signature of human NAFLD-NASH in medaka liver. Twenty percent of differentially expressed genes (DEGs) were upregulated in both human NAFLD patients and medaka. Specifically in females, among the total shared DEGs in the liver of BPA lineage fish and NAFLD patient groups, 27.69% DEGs were downregulated and 20% DEGs were upregulated. Off all DEGs, 52.31% DEGs were found in ancestral BPA-lineage females, suggesting that NAFLD in females shared majority of human NAFLD gene networks. Pathway analysis revealed beta-oxidation, lipoprotein metabolism, and HDL/LDL-mediated transport processes linked to downregulated DEGs in BPA lineage males and females. In contrast, the expression of genes encoding lipogenesis-related proteins was significantly elevated in the liver of BPA lineage females only. BPA lineage females exhibiting activation of myc, atf4, xbp1, stat4, and cancerous pathways, as well as inactivation of igf1, suggest their possible association with an advanced NAFLD phenotype. The present results suggest that gene networks involved in the progression of human NAFLD and the transgenerational NAFLD in medaka are conserved and that medaka can be an excellent animal model to understand the development and progression of liver disease and environmental influences in the liver.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, U.S.A
| | - Santosh Anand
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, U.S.A
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, U.S.A
| |
Collapse
|
4
|
Fu C, Xu J, Chen SL, Chen CB, Liang JJ, Liu Z, Huang C, Wu Z, Ng TK, Zhang M, Liu Q. Profile of Lipoprotein Subclasses in Chinese Primary Open-Angle Glaucoma Patients. Int J Mol Sci 2024; 25:4544. [PMID: 38674129 PMCID: PMC11050298 DOI: 10.3390/ijms25084544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
To investigate the plasma lipoprotein subclasses in patients with primary open-angle glaucoma (POAG), a total of 20 Chinese POAG patients on intraocular pressure (IOP)-lowering treatment and 20 age-matched control subjects were recruited. Based on the levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), the study subjects were divided into elevated- and normal-level subgroups. The plasma lipoprotein, lipoprotein subclasses, and oxidized LDL (oxLDL) levels were quantitatively measured. The discrimination potential of the lipoproteins was evaluated using the area under the receiver operating characteristic curve (AUC), and their correlation with clinical parameters was also evaluated. Compared to the control subjects with elevated TC and/or LDL-C levels, the levels of TC, LDL-C, non-high-density lipoprotein cholesterol (non-HDL), LDL subclass LDL3 and small dense LDL (sdLDL), and oxLDL were significantly higher in POAG patients with elevated TC and/or LDL-C levels. No differences in any lipoproteins or the subclasses were found between the POAG patients and control subjects with normal TC and LDL-C levels. Moderate-to-good performance of TC, LDL-C, non-HDL, LDL3, sdLDL, and oxLDL was found in discriminating between the POAG patients and control subjects with elevated TC and/or LDL-C levels (AUC: 0.710-0.950). Significant negative correlations between LDL3 and sdLDL with retinal nerve fiber layer (RNFL) thickness in the superior quadrant and between LDL3 and average RNFL thickness were observed in POAG patients with elevated TC and/or LDL-C levels. This study revealed a significant elevation of plasma lipoproteins, especially the LDL subclasses, in POAG patients with elevated TC and/or LDL-C levels, providing insights on monitoring specific lipoproteins in POAG patients with elevated TC and/or LDL-C.
Collapse
Affiliation(s)
- Changzhen Fu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Jianming Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Shao-Lang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Chong-Bo Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Zibo Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Chukai Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Zhenggen Wu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| |
Collapse
|
5
|
Yan M, Zhao Y, Man S, Dai Y, Ma L, Gao W. Diosgenin as a substitute for cholesterol alleviates NAFLD by affecting CYP7A1 and NPC1L1-related pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155299. [PMID: 38301301 DOI: 10.1016/j.phymed.2023.155299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) rapidly becomes the leading cause of end-stage liver disease or liver transplantation. Nowadays, there has no approved drug for NAFLD treatment. Diosgenin as the structural analogue of cholesterol attenuates hypercholesterolemia by inhibiting cholesterol metabolism, which is an important pathogenesis in NAFLD progression. However, there has been no few report concerning its effects on NAFLD so far. METHODS Using a high-fat diet & 10% fructose-feeding mice, we evaluated the anti-NAFLD effects of diosgenin. Transcriptome sequencing, LC/MS analysis, molecular docking simulation, molecular dynamics simulations and Luci fluorescent reporter gene analysis were used to evaluate pathways related to cholesterol metabolism. RESULTS Diosgenin treatment ameliorated hepatic dysfunction and inhibited NAFLD formation including lipid accumulation, inflammation aggregation and fibrosis formation through regulating cholesterol metabolism. For the first time, diosgenin was structurally similar to cholesterol, down-regulated expression of CYP7A1 and regulated cholesterol metabolism in the liver (p < 0.01) and further affecting bile acids like CDCA, CA and TCA in the liver and feces. Besides, diosgenin decreased expression of NPC1L1 and suppressed cholesterol transport (p < 0.05). Molecular docking and molecular dynamics further proved that diosgenin was more strongly bound to CYP7A1. Luci fluorescent reporter gene analysis revealed that diosgenin concentration-dependently inhibited the enzymes activity of CYP7A1. CONCLUSION Our findings demonstrated that diosgenin was identified as a specific regulator of cholesterol metabolism, which pave way for the design of novel clinical therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Yixin Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Yujie Dai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| |
Collapse
|
6
|
Shen T, Li Y, Liu T, Lian Y, Kong L. Association between Mycoplasma pneumoniae infection, high‑density lipoprotein metabolism and cardiovascular health (Review). Biomed Rep 2024; 20:39. [PMID: 38357242 PMCID: PMC10865299 DOI: 10.3892/br.2024.1729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
The association between Mycoplasma pneumoniae (M. pneumoniae) infection, high-density lipoprotein metabolism and cardiovascular disease is an emerging research area. The present review summarizes the basic characteristics of M. pneumoniae infection and its association with high-density lipoprotein and cardiovascular health. M. pneumoniae primarily invades the respiratory tract and damages the cardiovascular system through various mechanisms including adhesion, invasion, secretion of metabolites, production of autoantibodies and stimulation of cytokine production. Additionally, the present review highlights the potential role of high-density lipoprotein for the development of prevention and intervention of M. pneumoniae infection and cardiovascular disease, and provides suggestions for future research directions and clinical practice. It is urgent to explore the specific mechanisms underlying the association between M. pneumoniae infection, high-density lipoprotein metabolism, and cardiovascular disease and analyze the roles of the immune system and inflammatory response.
Collapse
Affiliation(s)
- Tao Shen
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Yanfang Li
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Tingting Liu
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Yunzhi Lian
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Luke Kong
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| |
Collapse
|
7
|
Guo X, Zhou Q, Jin J, Lan F, Wen C, Li J, Yang N, Sun C. Hepatic steatosis is associated with dysregulated cholesterol metabolism and altered protein acetylation dynamics in chickens. J Anim Sci Biotechnol 2023; 14:108. [PMID: 37568219 PMCID: PMC10422840 DOI: 10.1186/s40104-023-00910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/28/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Hepatic steatosis is a prevalent manifestation of fatty liver, that has detrimental effect on the health and productivity of laying hens, resulting in economic losses to the poultry industry. Here, we aimed to systematically investigate the genetic regulatory mechanisms of hepatic steatosis in laying hens. METHODS Ninety individuals with the most prominent characteristics were selected from 686 laying hens according to the accumulation of lipid droplets in the liver, and were graded into three groups, including the control, mild hepatic steatosis and severe hepatic steatosis groups. A combination of transcriptome, proteome, acetylome and lipidome analyses, along with bioinformatics analysis were used to screen the key biological processes, modifications and lipids associated with hepatic steatosis. RESULTS The rationality of the hepatic steatosis grouping was verified through liver biochemical assays and RNA-seq. Hepatic steatosis was characterized by increased lipid deposition and multiple metabolic abnormalities. Integration of proteome and acetylome revealed that differentially expressed proteins (DEPs) interacted with differentially acetylated proteins (DAPs) and were involved in maintaining the metabolic balance in the liver. Acetylation alterations mainly occurred in the progression from mild to severe hepatic steatosis, i.e., the enzymes in the fatty acid oxidation and bile acid synthesis pathways were significantly less acetylated in severe hepatic steatosis group than that in mild group (P < 0.05). Lipidomics detected a variety of sphingolipids (SPs) and glycerophospholipids (GPs) were negatively correlated with hepatic steatosis (r ≤ -0.5, P < 0.05). Furthermore, the severity of hepatic steatosis was associated with a decrease in cholesterol and bile acid synthesis and an increase in exogenous cholesterol transport. CONCLUSIONS In addition to acquiring a global and thorough picture of hepatic steatosis in laying hens, we were able to reveal the role of acetylation in hepatic steatosis and depict the changes in hepatic cholesterol metabolism. The findings provides a wealth of information to facilitate a deeper understanding of the pathophysiology of fatty liver and contributes to the development of therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoli Guo
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Qianqian Zhou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Jiaming Jin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Fangren Lan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Chaoliang Wen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
8
|
Puddu A, Montecucco F, Maggi D. Caveolin-1 and Atherosclerosis: Regulation of LDLs Fate in Endothelial Cells. Int J Mol Sci 2023; 24:ijms24108869. [PMID: 37240214 DOI: 10.3390/ijms24108869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Caveolae are 50-100 nm cell surface plasma membrane invaginations observed in terminally differentiated cells. They are characterized by the presence of the protein marker caveolin-1. Caveolae and caveolin-1 are involved in regulating several signal transduction pathways and processes. It is well recognized that they have a central role as regulators of atherosclerosis. Caveolin-1 and caveolae are present in most of the cells involved in the development of atherosclerosis, including endothelial cells, macrophages, and smooth muscle cells, with evidence of either pro- or anti-atherogenic functions depending on the cell type examined. Here, we focused on the role of caveolin-1 in the regulation of the LDLs' fate in endothelial cells.
Collapse
Affiliation(s)
- Alessandra Puddu
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Davide Maggi
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| |
Collapse
|
9
|
The interaction between polyphyllin I and SQLE protein induces hepatotoxicity through SREBP-2/HMGCR/SQLE/LSS pathway. J Pharm Anal 2023; 13:39-54. [PMID: 36820075 PMCID: PMC9937801 DOI: 10.1016/j.jpha.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022] Open
Abstract
Polyphyllin I (PPI) and polyphyllin II (PII) are the main active substances in the Paris polyphylla. However, liver toxicity of these compounds has impeded their clinical application and the potential hepatotoxicity mechanisms remain to be elucidated. In this work, we found that PPI and PII exposure could induce significant hepatotoxicity in human liver cell line L-02 and zebrafish in a dose-dependent manner. The results of the proteomic analysis in L-02 cells and transcriptome in zebrafish indicated that the hepatotoxicity of PPI and PII was associated with the cholesterol biosynthetic pathway disorders, which were alleviated by the cholesterol biosynthesis inhibitor lovastatin. Additionally, 3-hydroxy-3-methy-lglutaryl CoA reductase (HMGCR) and squalene epoxidase (SQLE), the two rate-limiting enzymes in the cholesterol synthesis, selected as the potential targets, were confirmed by the molecular docking, the overexpression, and knockdown of HMGCR or SQLE with siRNA. Finally, the pull-down and surface plasmon resonance technology revealed that PPI could directly bind with SQLE but not with HMGCR. Collectively, these data demonstrated that PPI-induced hepatotoxicity resulted from the direct binding with SQLE protein and impaired the sterol-regulatory element binding protein 2/HMGCR/SQLE/lanosterol synthase pathways, thus disturbing the cholesterol biosynthesis pathway. The findings of this research can contribute to a better understanding of the key role of SQLE as a potential target in drug-induced hepatotoxicity and provide a therapeutic strategy for the prevention of drug toxic effects with similar structures in the future.
Collapse
|
10
|
Li J, Xiong T, Wang T, Wang M, Wang C, Yang F, Wang X, Tan Z, Sun W. Baicalein targets CD36 to prevent foam cell formation by suppressing the excessive uptake of oxLDL and accelerating ABCA1-mediated cholesterol efflux in oxLDL-induced THP-1 macrophages. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
11
|
Amentoflavone-Enriched Selaginella rossii Warb. Suppresses Body Weight and Hyperglycemia by Inhibiting Intestinal Lipid Absorption in Mice Fed a High-Fat Diet. Life (Basel) 2022; 12:life12040472. [PMID: 35454963 PMCID: PMC9024644 DOI: 10.3390/life12040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Many Selaginellaceae species are used as traditional medicines in Asia. This study is the first to investigate the anti-obesity and anti-diabetic effects of Selaginella rossii (SR) in high-fat diet (HFD)–fed C57BL/6J mice. Seven-day oral administration of ethanol extract (100 mg/kg/day) or ethyl acetate (EtOAc) extract (50 mg/kg/day) from SR improved oral fat tolerance by inhibiting intestinal lipid absorption; 10-week long-term administration of the EtOAc extract markedly reduced HFD-induced body weight gain and hyperglycemia by reducing adipocyte hypertrophy, glucose levels, HbA1c, and plasma insulin levels. Treatment with SR extracts reduced the expression of intestinal lipid absorption-related genes, including Cd36, fatty acid-binding protein 6, ATP-binding cassette subfamily G member 8, NPC1 like intracellular cholesterol transporter 1, and ATP-binding cassette subfamily A member 1. In addition, the EtOAc extract increased the expression of protein absorption–related solute carrier family genes, including Slc15a1, Slc8a2, and Slc6a9. SR extracts reduced HFD-induced hepatic steatosis by suppressing fatty acid transport to hepatocytes and hepatic lipid accumulation. Furthermore, amentoflavone (AMF), the primary compound in SR extracts, reduced intestinal lipid absorption by inhibiting fatty acid transport in HFD-fed mice. AMF-enriched SR extracts effectively protected against HFD-induced body weight gain and hyperglycemia by inhibiting intestinal lipid absorption.
Collapse
|
12
|
Target Deconvolution of Fenofibrate in Nonalcoholic Fatty Liver Disease Using Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2021:3654660. [PMID: 34988225 PMCID: PMC8720586 DOI: 10.1155/2021/3654660] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 01/30/2023]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of liver damage, affecting ~25% of the global population. NAFLD comprises a spectrum of liver pathologies, from hepatic steatosis to nonalcoholic steatohepatitis (NASH), and may progress to liver fibrosis and cirrhosis. The presence of NAFLD correlates with metabolic disorders such as hyperlipidemia, obesity, blood hypertension, cardiovascular, and insulin resistance. Fenofibrate is an agonist drug for peroxisome proliferator-activated receptor alpha (PPARα), used principally for treatment of hyperlipidemia. However, fenofibrate has recently been investigated in clinical trials for treatment of other metabolic disorders such as diabetes, cardiovascular disease, and NAFLD. The evidence to date indicates that fenofibrate could improve NAFLD. While PPARα is considered to be the main target of fenofibrate, fenofibrate may exert its effect through impact on other genes and pathways thereby alleviating, and possibly reversing, NAFLD. In this study, using bioinformatics tools and gene-drug, gene-diseases databases, we sought to explore possible targets, interactions, and pathways involved in fenofibrate and NAFLD. Methods We first determined significant protein interactions with fenofibrate in the STITCH database with high confidence (0.7). Next, we investigated the identified proteins on curated targets in two databases, including the DisGeNET and DISEASES databases, to determine their association with NAFLD. We finally constructed a Venn diagram for these two collections (curated genes-NAFLD and fenofibrate-STITCH) to uncover possible primary targets of fenofibrate. Then, Gene Ontology (GO) and KEGG were analyzed to detect the significantly involved targets in molecular function, biological process, cellular component, and biological pathways. A P value < 0.01 was considered the cut-off criterion. We also estimated the specificity of targets with NAFLD by investigating them in disease-gene associations (STRING) and EnrichR (DisGeNET). Finally, we verified our findings in the scientific literature. Results We constructed two collections, one with 80 protein-drug interactions and the other with 95 genes associated with NAFLD. Using the Venn diagram, we identified 11 significant targets including LEP, SIRT1, ADIPOQ, PPARA, SREBF1, LDLR, GSTP1, VLDLR, SCARB1, MMP1, and APOC3 and then evaluated their biological pathways. Based on Gene Ontology, most of the targets are involved in lipid metabolism, and KEGG enrichment pathways showed the PPAR signaling pathway, AMPK signaling pathway, and NAFLD as the most significant pathways. The interrogation of those targets on authentic disease databases showed they were more specific to both steatosis and steatohepatitis liver injury than to any other diseases in these databases. Finally, we identified three significant genes, APOC3, PPARA, and SREBF1, that showed robust drug interaction with fenofibrate. Conclusion Fenofibrate may exert its effect directly or indirectly, via modulation of several key targets and pathways, in the treatment of NAFLD.
Collapse
|