1
|
Feng YL, Xu XR, Zhu QM, Chang J, Zhang HL, Wang N, Sun JB, Liu J, Zhang J, Sun CP. Aucklandiae radix targeted PKM2 to alleviate ulcerative colitis: Insights from the photocrosslinking target fishing technique. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155973. [PMID: 39241384 DOI: 10.1016/j.phymed.2024.155973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic and relapsing disease marked by chronic tissue inflammation that alters the integrity and function of the gut, seriously impacting patient health and quality of life. Aucklandiae Radix (AR), known as Mu Xiang in Chinese, is a traditional Chinese medicine documented in Chinese Pharmacopoeia with effects of strengthening the intestine and stopping diarrhea. However, the potential of AR in treating intestinal inflammation and its underlying mechanism have yet to be further elucidated. PURPOSE The objective of this study was to explore the protective effect and the potential mechanism attributable to AR for treating ulcerative colitis (UC). STUDY DESIGN AND METHODS A murine model of UC was constructed using dextran sulfate sodium (DSS) to examine the therapeutic potential of AR in alleviating inflammation and modulating the immune response. Advanced techniques such as photocrosslinking target fishing technique, click chemistry, Western blot analysis, real-time quantitative PCR, flow cytometry, immunofluorescence, and immunohistochemistry were employed to unveil the therapeutic mechanism of AR for treating IBD. RESULTS AR decreased disease activity index (DAI) score to alleviate the course of IBD through ameliorating intestinal barrier function in DSS-induced mice. Furthermore, AR suppressed NF-κB and NLRP3 pathways to reduce the release of pro-inflammatory factors interleukin-6 and 1β (IL-6 and IL-1β) and tumor necrosis factor α (TNF-α), allowing to alleviate the inflammatory response. Flow cytometry revealed that AR could reduce the accumulation of intestinal macrophages and neutrophils, maintaining intestinal immune balance by regulating the ratio of Treg to Th17 cells. It was worth noting that pyruvate kinase isozyme type M2 (PKM2) served as a potential target of AR using the photocrosslinking target fishing technology, which was further supported by cellular thermal shift assay (CETSA), drug affinity target stability (DARTS), and PKM2 knockdown experiments. CONCLUSION AR targeted PKM2 to inhibit NF-κB and NLRP3 pathways, thereby modulating the inflammatory response and immunity to alleviate DSS-induced UC. These findings suggested the potential of AR in the treatment of UC and AR as a candidate for developing PKM2 regulators.
Collapse
Affiliation(s)
- Yan-Li Feng
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xin-Rong Xu
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qi-Meng Zhu
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jing Chang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hui-Lin Zhang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Na Wang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jian-Bo Sun
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China.
| | - Juan Zhang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Cheng-Peng Sun
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
2
|
Li Y, Wang X, Zhao L, Pan B, Xu X, Zhu D. Dehydrocostus Lactone Ameliorates LPS-Induced Acute Lung Injury by Inhibiting PFKFB3-Mediated Glycolysis. J Cell Biochem 2024; 125:e30639. [PMID: 39148265 DOI: 10.1002/jcb.30639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
Acute lung injury (ALI) is a destructive respiratory disease characterized by alveolar structural destruction and excessive inflammation responses. Aerobic glycolysis of macrophages plays a crucial role in the pathophysiology of ALI. Previous studies have shown that the expression of the key rate-limiting enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in inflammatory cells is significantly increased, which promotes an increase in the rate of glycolysis in inflammatory cells. However, little is known about the biological functions of PFKFB3 in macrophage inflammation and ALI. In this study, we identified that PFKFB3 is markedly increased in lipopolysaccharide (LPS)-induced ALI mice and macrophages. Knockdown of pfkfb3 attenuated LPS-induced glycolytic flux, decreased the release of pro-inflammatory cytokines, and inactivated NF-κB signaling pathway in macrophages. Subsequently, we found that dehydrocostus lactone (DL), a natural sesquiterpene lactone, significantly decreased both the mRNA and protein levels of PFKFB3. Furthermore, it reduced the release of inflammatory cytokines and inactivated NF-κB pathways in vitro. Accordingly, DL alleviated LPS-induced pulmonary edema and reduced the infiltration of inflammatory cells in mouse lung tissue. In summary, our study reveals the vital role of PFKFB3 in LPS-induced inflammation and discovers a novel molecular mechanism underlying DL's protective effects on ALI.
Collapse
Affiliation(s)
- Yue Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xinrui Wang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Lirong Zhao
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Boyu Pan
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Xiao Xu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongrong Zhu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
3
|
Wang XR, Zhang JT, Guo XH, Li MH, Jing WG, Cheng XL, Wei F. Digital identification of Aucklandiae radix, Vladimiriae radix, and Inulae radix based on multivariate algorithms and UHPLC-QTOF-MS analysis. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39072803 DOI: 10.1002/pca.3421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION The identification of Aucklandiae Radix (AR), Vladimiriae Radix (VR), and Inulae Radix (IR) based on traits and microscopic features is susceptible to the state of samples and the subjective awareness of personnel, and the identification based on a few or single chemical compositions is a cumbersome and time-consuming procedure and fails to rationally and effectively utilize the information of unknown components and is not specificity enough. OBJECTIVES This study aimed to improve the identification efficiency, strengthen supervision, and realize digital identification of three Chinese medicines. Ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) combined with multivariate algorithms was used to explore the digital identification of AR, VR, and IR. MATERIALS AND METHODS UHPLC-QTOF-MS was used to analyze AR, VR, and IR. The MS data combined with multivariate algorithms such as partial least squares discrimination analysis (PLS-DA) and artificial neural networks (ANNs) was used to filter important variables and data modeling. Finally, the optimal model was selected for the digital identification of three herbs. RESULTS The results showed that three herbs can be distinguished on the whole level, and through feature screening, 591 characteristic variables combined with multivariate algorithms to construct data models. The ANN model was the best with accuracy = 0.983, precision = 0.984, and external verification showed the reliability and practicability of ANN model. CONCLUSION ANN model combined with MS data is of great significance for tdigital identification of AR, VR, and IR. It is an important reference for developing the digital identification of traditional Chinese medicines at the individual level based on UHPLC-QTOF-MS and multivariate algorithms.
Collapse
Affiliation(s)
- Xian Rui Wang
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jia Ting Zhang
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Xiao Han Guo
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Ming Hua Li
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Wen Guang Jing
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Xian Long Cheng
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Feng Wei
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
4
|
Wang X, Meng F, Mao J. Progress of natural sesquiterpenoids in the treatment of hepatocellular carcinoma. Front Oncol 2024; 14:1445222. [PMID: 39081717 PMCID: PMC11286475 DOI: 10.3389/fonc.2024.1445222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma is one of the common malignant tumors of digestive tract, which seriously threatens the life of patients due to its high incidence rate, strong invasion, metastasis, and prognosis. At present, the main methods for preventing and treating HCC include medication, surgery, and intervention, but patients frequently encounter with specific adverse reactions or side effects. Many Traditional Chinese medicine can improve liver function, reduce liver cancer recurrence and have unique advantages in the treatment of HCC because of their acting mode of multi-target, multi-pathway, multi-component, and multi-level. Sesquiterpenoids, a class of natural products which are widely present in nature and exhibit good anti-tumor activity, and many of them possess good potential for the treatment of HCC. This article reviewed the anti-tumor activities, natural resources, pharmacological mechanism of natural sesquiterpenoids against HCC, providing the theoretical basis for the prevention and treatment of HCC and a comprehensive understanding of their potential for development of new clinical drugs.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jingxin Mao
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Wei C, Wu L, Wu Y, Xu C, Hu H, Wang Z. Selection and evaluation of quality markers (Q-markers) of vladimiriae radix extract for cholestatic liver injury based on spectrum-effect relationship, pharmacokinetics, and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118151. [PMID: 38588988 DOI: 10.1016/j.jep.2024.118151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a representative local medicinal herb produced in China, Vladimiriae Radix (VR) has been proven to exert hepatoprotective and choleretic effects, with particular therapeutic efficacy in cholestatic liver injury (CLI), as demonstrated by the VR extract (VRE). However, the quality markers (Q-markers) of VRE for the treatment of CLI remain unclear. AIM OF THE STUDY A new strategy based on the core element of "efficacy" was proposed, using a combination of spectrum-effect relationship, pharmacokinetics, and molecular docking methods to select and confirm Q-markers of VRE. MATERIAL AND METHODS First, the HPLC fingerprinting of 10 batches of VRE was studied, and the in vivo pharmacological index of anti-CLI in rats was determined. The spectrum-effect relationship was utilized as a screening method to identify the Q-markers of VRE. Secondly, Q-markers were used as VRE pharmacokinetic markers to measure their concentrations in normal and CLI rat plasma, and to analyze their disposition. Finally, molecular docking was utilized to predict the potential interaction between the identified Q-markers and crucial targets of CLI. RESULTS The fingerprints of 10 batches of VRE was established. The in vivo pharmacological evaluation of rats showed that VRE had a significant therapeutic effect on CLI. The spectrum-effect correlation analysis showed that costunolide (COS) and dehydrocostus lactone (DEH) were the Q-markers of VRE anti-CLI. The pharmacokinetic results showed that AUC(0-t), Cmax, CLZ/F, and VZ/F of COS and DEH in CLI rats had significant differences (P < 0.01). They were effectively absorbed into the blood plasma of CLI rats, ensuring ideal bioavailability, and confirming their role as Q-markers. Molecular docking results showed that COS, DEH had good affinity with key targets (FXR, CAR, PXR, MAPK, TGR5, NRF2) for CLI treatment (Binding energy < -4.52 kcal mol-1), further verifying the correctness of Q-marker selection. CONCLUSIONS In this study, through the combination of experimental and theoretical approaches from the aspects of pharmacodynamic expression, in vivo process rules, and interaction force prediction, the therapeutic effect of VRE and Q-markers (COS、DEH) were elucidated. Furthermore, a new idea based on the principle of "efficacy" was successfully proposed for screening and evaluating Q-markers.
Collapse
Affiliation(s)
- Chunlei Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Lingjiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yuyi Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Chunyi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
6
|
Li SY, Xu DQ, Chen YY, Fu RJ, Tang YP. Several major herb pairs containing Coptidis rhizoma: a review of key traditional uses, constituents and compatibility effects. Front Pharmacol 2024; 15:1399460. [PMID: 38983920 PMCID: PMC11231094 DOI: 10.3389/fphar.2024.1399460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Herb compatibility is the soul of traditional Chinese Medicine prescriptions. Coptidis rhizoma (CR) (Coptis chinensis Franch., Coptis deltoidea C.Y.Cheng et Hsiao, or Coptis teeta Wall.; family Ranunculaceae), is a well-known herb. The bitter and cold nature of CR can irritate the spleen and stomach, and certain ingredients in CR may trigger allergic reactions. Herb combinations can help alleviate the side effects caused by CR. Through data analysis and literature research, there are many herbs combined with CR have a high frequency, but only a few are currently used as formulae in clinical practice. The results showed that these six herb pairs are usually widely studied or used as prescriptions in the clinic. This paper describes the six herb pairs from the key traditional uses, changes in bioactive constituents, and compatibility effects, especially with Euodiae fructus (family Rutaceae), Scutellariae radix (family Lamiaceae), Magnoliae Officinalis cortex (family Magnoliaceae), Glycyrrhizae radix et rhizoma (family Fabaceae), Ginseng radix et rhizoma (family Araliaceae), and Aucklandiae radix (family Asteraceae), and found that herbs are more effective when used in combination. Therefore, it is feasible to establish some methods to study herb pairs comprehensively from different perspectives. This paper aims to provide the latest and most comprehensive information on the six herb pairs and summarize the pattern of CR compatibility effects. It aims to attract more attention, and further experimental studies will be conducted to investigate and evaluate the effects of herb pairs containing CR. These data can also provide valuable references for researchers and also provide more possibilities for future applications in clinical practice and new drug development.
Collapse
Affiliation(s)
- Shi-Yu Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Wuxi Institute of Integrated Chinese and Western Medicine, and Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| |
Collapse
|
7
|
Sun M, Zhan H, Long X, Alsayed AM, Wang Z, Meng F, Wang G, Mao J, Liao Z, Chen M. Dehydrocostus lactone alleviates irinotecan-induced intestinal mucositis by blocking TLR4/MD2 complex formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155371. [PMID: 38518649 DOI: 10.1016/j.phymed.2024.155371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Irinotecan (CPT-11) is used as chemotherapeutic drug for treatment of colorectal cancer. However, without satisfactory treatments, its gastrointestinal toxicities such as diarrhea and intestinal inflammation severely restrained its clinical application. Roots of Aucklandia lappa Decne. are used as traditional Chinese medicine to relieve gastrointestinal dysfunction and dehydrocostus lactone (DHL) is one of its main active components. Nevertheless, the efficacy and mechanism of DHL against intestinal mucositis remains unclear. PURPOSE The present study aimed to investigate the protective effects of DHL on CPT-11-induced intestinal mucositis and its underlying mechanisms. METHODS The protective effect of DHL was investigated in CPT-11-induced mice and lipopolysaccharide (LPS)+CPT-11 induced THP-1 macrophages. Body weight, diarrhea score, survival rate, colon length, and histopathological changes in mice colon and jejunum were analyzed to evaluate the protective effect of DHL in vivo. And DHL on reducing inflammatory response and regulating TLR4/NF-κB/NLRP3 pathway in vivo and in vitro were explored. Moreover, DHL on the interaction between TLR4 and MD2 was investigated. And silencing TLR4 targeted by siRNA was performed to validate the mechanisms of DHL on regulating the inflammation. RESULTS DHL prevented CPT-11-induced intestinal damage, represented by reducing weight loss, diarrhea score, mortality rate and the shortening of the colon. Histological analysis confirmed that DHL prevented intestinal epithelial injury and improved the intestinal barrier function in CPT-11 induced mice. Besides, DHL significantly downregulated the level of inflammatory cytokines by inhibiting TLR4/NF-κB/NLRP3 signaling pathway in CPT-11-induced mice and LPS+CPT-11-induced THP-1 macrophages. In addition, DHL blocked TLR4/MD2 complex formation. Molecular docking combined with SIP and DARTS assay showed that DHL could bind to TLR4/MD2 and occludes the hydrophobic pocket of MD2. Furthermore, Silencing TLR4 abrogated the effect of DHL on LPS+CPT-11 induced inflammatory response in THP-1 macrophages. Additionally, DHL ameliorate the CPT-11-induced intestinal mucositis without affecting the anti-tumor efficacy of CPT-11 in the tumor xenograft mice. CONCLUSION This study found that DHL exhibited the anti-inflammatory effects in CPT-11-induced intestinal mucositis by inhibiting the formation of TLR4/MD2 complex and then regulation of NF-κB/NLRP3 signaling pathway. DHL is potentially served as a novel strategy of combined medication with CPT-11.
Collapse
Affiliation(s)
- Miaomiao Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Honghong Zhan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoliang Long
- School of Life Sciences, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, TAAHC-SWU Medicinal Plant Joint R&D Centre, Southwest University, Chongqing 400715, China
| | - Ali M Alsayed
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhe Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Fancheng Meng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Guowei Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jingxin Mao
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Zhihua Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Min Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.
| |
Collapse
|
8
|
Ahn CR, Ha IJ, Kim JE, Ahn KS, Park J, Baek SH. Inhibiting AGS Cancer Cell Proliferation through the Combined Application of Aucklandiae Radix and Hyperthermia: Investigating the Roles of Heat Shock Proteins and Reactive Oxygen Species. Antioxidants (Basel) 2024; 13:564. [PMID: 38790669 PMCID: PMC11118127 DOI: 10.3390/antiox13050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer is a major global health concern. To address this, the combination of traditional medicine and newly appreciated therapeutic modalities has been gaining considerable attention. This study explores the combined effects of Aucklandiae Radix (AR) and 43 °C hyperthermia (HT) on human gastric adenocarcinoma (AGS) cell proliferation and apoptosis. We investigated the synergistic effects of AR and HT on cell viability, apoptosis, cell cycle progression, and reactive oxygen species (ROS)-dependent mechanisms. Our findings suggest that the combined treatment led to a notable decrease in AGS cell viability and increased apoptosis. Furthermore, cell cycle arrest at the G2/M phase contributed to the inhibition of cancer cell proliferation. Notably, the roles of heat shock proteins (HSPs) were highlighted, particularly in the context of ROS regulation and the induction of apoptosis. Overexpression of HSPs was observed in cells subjected to HT, whereas their levels were markedly reduced following AR treatment. The suppression of HSPs and the subsequent increase in ROS levels appeared to contribute to the activation of apoptosis, suggesting a potential role for HSPs in the combined therapy's anti-cancer mechanisms. These findings provide valuable insights into the potential of integrating AR and HT in cancer and HSPs.
Collapse
Affiliation(s)
- Chae Ryeong Ahn
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jai-Eun Kim
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Soeul 02447, Republic of Korea
| | - Jinbong Park
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Soeul 02447, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| |
Collapse
|
9
|
Kim E, Chang S, Nam J, Park N, Min SY. The synergistic effect of herbal medicine and probiotics in pediatric functional constipation: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e36899. [PMID: 38363914 PMCID: PMC10869098 DOI: 10.1097/md.0000000000036899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/18/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Pediatric functional constipation (PFC) is a prevalent and persistent gastrointestinal disorder, that requires various treatments, including alternative approaches. This review assessed the synergistic efficacy of herbal medicine (HM) and probiotics for PFC. METHODS We conducted a comprehensive search of 11 databases, including English, Chinese, and Korean databases, until June 29, 2023. The inclusion criteria were randomized clinical trials (RCTs) comparing the intervention of HM with probiotics to that of the same probiotics. Statistical analyses included calculation of the mean difference (MD), standardized MD, risk ratio (RR) with a 95% confidence interval (CI), and assessment of risk of bias using Review Manager Version 5.4 software. The Grading of Recommendations Assessment, Development, and Evaluation rating system was used to evaluate evidence quality. Potential publication bias was assessed using funnel plots, Egger test, the fail-safe N test, and Duval and Tweedie trim and fill method. RESULTS A total of 22 RCTs involving 2228 patients were included in the meta-analysis. The HM and probiotics group exhibited superior outcomes compared to the probiotics alone group in various parameters: total effective rate (RR: 1.24, 95% CI: 1.19-1.29, P < .001), Bristol fecal Score (MD: 0.80, 95% CI: 0.71-0.89, P < .001), gastrointestinal peptide hormone (motilin) (MD: 35.37, 95% CI: 24.64-64.10, P < .001), inflammation indicator (nitrous oxide) (MD: -12.45, 95% CI: -15.12 to -9.77, P < .001), minimal sensitive volume of the rectum (MD: -8.7, 95% CI: -10.91 to -6.49, P < .001), and recurrence rate (RR: 0.30, 95% CI: 0.21-0.43, P < .001). CONCLUSION The combination of HM and probiotics may exhibit a synergistic effect on PFC. Nevertheless, it is imperative to undertake rigorously planned RCTs to comprehensively evaluate the synergistic efficacy of HM and probiotics.
Collapse
Affiliation(s)
- Eunjin Kim
- Department of Pediatrics of Korean Medicine, Korean Medicine Hospital, Dongguk University Bundang Medical Center, Gyeonggi-do, Republic of Korea
| | - Seokjoo Chang
- Department of Pediatrics of Korean Medicine, Graduate School of Dongguk University, Seoul, Republic of Korea
| | - Jisoo Nam
- Sewoon Korean Medicine Clinic, Seoul, Republic of Korea
| | - Nanjoo Park
- Gyeonggi-do Research Institute of Health and Environment, Suwon, Republic of Korea
| | - Sang Yeon Min
- Department of Pediatrics of Korean Medicine, Graduate School of Dongguk University, Seoul, Republic of Korea
- Department of Pediatrics of Korean Medicine, Korean Medicine Hospital, Dongguk University Ilsan Medical Center, Gyeonggi-do, Republic of Korea
| |
Collapse
|
10
|
Li L, Wang X, Ma R, Hou M. An integrating strategy for systematic profiling of Chinese patent drug's chemicalome and associated metabolome: Huanghou antidiarrhea dropping pills as a case study. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:124029. [PMID: 38310833 DOI: 10.1016/j.jchromb.2024.124029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/06/2024]
Abstract
Huanghou antidiarrhea dropping pills (HADP) is an efficient Chinese patent drug that is clinically used to treat diarrhea. However, its functional materials remain unclear due to the characteristics of traditional Chinese medicine, which is a multi-component and multi-target complex system. In this study, we investigated the intrinsic chemical components and combined with in vivo metabolism to reveal the functional material basis of HADP. Spectral behavior (accurate molecular weight and secondary fragmentation) and chromatographic behavior (retention time) were key criterions that throughout the whole research of components identification, prototypes screening, and tissue distribution. Mass defect filter (MDF), characteristic product ion filter (PIF), and neutral loss filter (NLF) were other three criterions for metabolites searching. Consequently, a total of 102 components in HADP, including alkaloids, lignans, lactones, gingerols, and alkaloid complexes were identified or tentatively characterized. About 39 metabolites that related to 37 prototypes were calculated and matched in bio-samples. Among them, 14 prototypes and 18 metabolites were detected distribution in colon, liver, heart, spleen, lung or kidney. This study provides a systematic investigation into the metabolism of HADP and offers effective analytical strategies for the characterization of compounds and metabolites in Chinese patent drugs.
Collapse
Affiliation(s)
- Li Li
- Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210000, China; The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Xuguang Wang
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Ruiting Ma
- The Academy of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210097, China; The Inner Mongolia Mental Health Center, Hohhot 010010, China.
| | - Mingxing Hou
- Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210000, China; The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China.
| |
Collapse
|
11
|
Xiu R, Jia J, Zhang Q, Liu F, Jia Y, Zhang Y, Song B, Liu X, Chen J, Huang D, Zhang F, Ma J, Li H, Zhang X, Geng Y. Three sesquiterpene lactones suppress lung adenocarcinoma by blocking TMEM16A-mediated Ca 2+-activated Cl - channels. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:521-531. [PMID: 37884284 PMCID: PMC10613571 DOI: 10.4196/kjpp.2023.27.6.521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 10/28/2023]
Abstract
Transmembrane protein TMEM16A, which encodes calcium-activated chloride channel has been implicated in tumorigenesis. Overexpression of TMEM16A is associated with poor prognosis and low overall survival in multiple cancers including lung adenocarcinoma, making it a promising biomarker and therapeutic target. In this study, three structure-related sesquiterpene lactones (mecheliolide, costunolide and dehydrocostus lactone) were extracted from the traditional Chinese medicine Aucklandiae Radix and identified as novel TMEM16A inhibitors with comparable inhibitory effects. Their effects on the proliferation and migration of lung adenocarcinoma cells were examined. Whole-cell patch clamp experiments showed that these sesquiterpene lactones potently inhibited recombinant TMEM16A currents in a concentration-dependent manner. The half-maximal concentration (IC50) values for three tested sesquiterpene lactones were 29.9 ± 1.1 μM, 19.7 ± 0.4 μM, and 24.5 ± 2.1 μM, while the maximal effect (Emax) values were 100.0% ± 2.8%, 85.8% ± 0.9%, and 88.3% ± 4.6%, respectively. These sesquiterpene lactones also significantly inhibited the endogenous TMEM16A currents and proliferation, and migration of LA795 lung cancer cells. These results demonstrate that mecheliolide, costunolide and dehydrocostus lactone are novel TMEM16A inhibitors and potential candidates for lung adenocarcinoma therapy.
Collapse
Affiliation(s)
- Ruilian Xiu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang 050091, China
| | - Jie Jia
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang 050091, China
| | - Qing Zhang
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Fengjiao Liu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang 050091, China
| | - Yaxin Jia
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang 050091, China
| | - Yuanyuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang 050091, China
| | - Beibei Song
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xiaodan Liu
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jingwei Chen
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Dongyang Huang
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Fan Zhang
- Hebei Higher Education Applied Technology Research Center of TCM Development and Industrialization, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Juanjuan Ma
- Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang 050091, China
| | - Honglin Li
- Department of Pharmacy, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang 050000, China
| | - Xuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Higher Education Applied Technology Research Center of TCM Development and Industrialization, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yunyun Geng
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang 050091, China
| |
Collapse
|
12
|
Zhou C, Chen J, Liu K, Maharajan K, Zhang Y, Hou L, Li J, Mi M, Xia Q. Isoalantolactone protects against ethanol-induced gastric ulcer via alleviating inflammation through regulation of PI3K-Akt signaling pathway and Th17 cell differentiation. Biomed Pharmacother 2023; 160:114315. [PMID: 36716661 DOI: 10.1016/j.biopha.2023.114315] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023] Open
Abstract
Gastric ulcer (GU) is one of the most prevalent digestive system diseases in humans, and it has been linked to inflammation. Previous studies have demonstrated the anti-inflammatory potential of isoalantolactone (IAL), a sesquiterpene lactone isolated from Radix Inulae. However, the pharmacological effects of IAL on GU and its mechanism of action are still unclear. Hence, the present study is aimed to investigate the anti-inflammatory potential of IAL on GU. Firstly, we assessed the effect of IAL on ethanol-induced injury of human gastric epithelial cells and the levels of inflammatory cytokines in cell culture supernatants. Then, the anti-inflammatory effects of IAL were confirmed in vivo using zebrafish inflammation models. Furthermore, the mechanism of IAL against GU was preliminarily discussed through network pharmacology and molecular docking studies. Quantitative real-time PCR assays were also used to confirm the mechanism of IAL action. ALB, EGFR, SRC, HSP90AA1, and CASP3 were found for the first time as the key targets of the IAL anti-GU. PI3K-Akt signaling pathway and Th17 cell differentiation were identified to play a crucial role in the anti-GU effects of IAL. In conclusion, we found that IAL has anti-inflammatory effects both in vitro and in vivo, and showed potential protective effects against ethanol-induced GU.
Collapse
Affiliation(s)
- Chaoyi Zhou
- School of Pharmacy, Hebei University, Baoding 071002, China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jing Chen
- Tibetan traditional medicine college, Lhasa 850000, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Kannan Maharajan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Linhua Hou
- School of Pharmacy, Hebei University, Baoding 071002, China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jianheng Li
- School of Pharmacy, Hebei University, Baoding 071002, China.
| | - Ma Mi
- Tibetan traditional medicine college, Lhasa 850000, China.
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| |
Collapse
|
13
|
Han JS, Kim JG, Linh Le TP, Cho YB, Lee D, Hong JT, Lee MK, Hwang BY. Targeted isolation of sesquiterpene lactone dimers from Aucklandia lappa guided by LC-HRMS/MS-based molecular networking. PHYTOCHEMISTRY 2023; 206:113557. [PMID: 36496006 DOI: 10.1016/j.phytochem.2022.113557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
An LC-HRMS/MS-based molecular networking strategy was applied to investigate the potential sesquiterpene dimers of Aucklandia lappa, leading to the isolation of three undescribed guaiane-guaiane dimers and one guaiane-eudesmane dimer together with six known sesquiterpenes. The structures were determined by analyzing their 1D, 2D NMR, and HRESIMS data as well as ECD calculations. The biogenetic pathway of the sesquiterpene dimers was postulated to involve the Diels-Alder cycloaddition as the key step. All compounds exhibited their inhibitory effects on LPS-induced nitric oxide production in RAW 264.7 macrophages with IC50 values ranging from 0.3 to 25.1 μM.
Collapse
Affiliation(s)
- Jae Sang Han
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Jun Gu Kim
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Thi Phuong Linh Le
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Yong Beom Cho
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea.
| |
Collapse
|
14
|
Zhang M, Li H, Zhang L, Li J, Wang X, Luo L, Zhang J, Liu D. Formulation of Aucklandiae Radix Extract-Loaded Nanoemulsions and Its Characterization and Evaluations In Vitro and In Vivo. Appl Biochem Biotechnol 2022; 195:3156-3179. [PMID: 36564675 DOI: 10.1007/s12010-022-04232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/25/2022]
Abstract
This study aimed to screen, design, and evaluate an optimal nanoemulsion formulation for Aucklandiae Radix extraction (ARE). A simple lattice design (SLD) method was used to determine the preparation process of Aucklandiae Radix extract-nanoemulsions (ARE-NEs). After optimization, the average particle size of ARE-NEs was 14.1 ± 1.1 nm, polydispersity index was 0.2376, and pH was 6.92. In vitro penetration tests verified that the permeability ratios of costunolide (CE), dehydrocostus lactone (DE), and ARE-NEs were approximately 6.33 times and 8.20 times higher, respectively, than those of the control group. The results of the pharmacokinetic study indicated that after topical administration, the content of the index components of ARE-NEs increased in vivo, with a longer release time and higher bioavailability in vivo than in vitro. The index components were CE and DE, respectively. In addition, a skin irritation test was conducted on normal and skin-damaged rabbits, aided by HE staining and scanning electron microscopy, to reveal the transdermal mechanism of ARE-NEs and proved that NEs are safe for topical application. ARE-NEs energetically developed the properties of skin and penetration through the transdermal route, which were secure when applied via the transdermal delivery system .
Collapse
Affiliation(s)
- Meng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd, Tianjin, 300380, People's Republic of China
| | - Huimin Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Li Zhang
- Department of Pharmacy, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, People's Republic of China
| | - Jingyang Li
- Department of Pharmacy, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, People's Republic of China
| | - Xinrui Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd, Tianjin, 300380, People's Republic of China
| | - Lifei Luo
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd, Tianjin, 300380, People's Republic of China
| | - Jingze Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd, Tianjin, 300380, People's Republic of China
| | - Dailin Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China. .,Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd, Tianjin, 300380, People's Republic of China.
| |
Collapse
|
15
|
Bai D, Li X, Wang S, Zhang T, Wei Y, Wang Q, Dong W, Song J, Gao P, Li Y, Wang S, Dai L. Advances in extraction methods, chemical constituents, pharmacological activities, molecular targets and toxicology of volatile oil from Acorus calamus var. angustatus Besser. Front Pharmacol 2022; 13:1004529. [PMID: 36545308 PMCID: PMC9761896 DOI: 10.3389/fphar.2022.1004529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022] Open
Abstract
Acorus calamus var. angustatus Besser (ATT) is a traditional herb with a long medicinal history. The volatile oil of ATT (VOA) does possess many pharmacological activities. It can restore the vitality of the brain, nervous system and myocardial cells. It is used to treat various central system, cardiovascular and cerebrovascular diseases. It also showed antibacterial and antioxidant activity. Many studies have explored the benefits of VOA scientifically. This paper reviews the extraction methods, chemical components, pharmacological activities and toxicology of VOA. The molecular mechanism of VOA was elucidated. This paper will serve as a comprehensive resource for further carrying the VOA on improving its medicinal value and clinical use.
Collapse
Affiliation(s)
- Daoming Bai
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyu Li
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengguang Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyi Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumin Wei
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingquan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weichao Dong
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Song
- Shandong Yuze Pharmaceutical Industry Technology Research Institute Co., Ltd, Dezhou, China
| | - Peng Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| |
Collapse
|
16
|
Chen Y, Miao Z, Sheng X, Li X, Ma J, Xu X, Li H, Kang A. Sesquiterpene lactones-rich fraction from Aucklandia lappa Decne. alleviates dextran sulfate sodium induced ulcerative colitis through co-regulating MAPK and Nrf2/Hmox-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115401. [PMID: 35623504 DOI: 10.1016/j.jep.2022.115401] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aucklandia lappa Decne. (ALDE) is the general name for Asteraceae plants Yunmuxiang, which has traditionally been proven to have the efficacy in relieving depression by regulating qi, alleviating cold by warming, attenuating pain in stomach and relieving diarrhea in intestines. Therefore, ALDE is always recommended as an herbal remedy for gastrointestinal dysfunction. AIM OF THE STUDY The purpose of this study was to explore the therapeutic potential and mechanism of action of the sesquiterpene lactone-rich fraction (SLRF) of ALDE extracts in vivo and in vitro. MATERIALS AND METHODS An aqueous extract (AE) and SLRF of ALDE were prepared and the contents of the main components were quantified by high performance liquid chromatography (HPLC). The therapeutic effects of the extracts were evaluated in C57BL/6 mice with dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). Body weight, disease activity index (DAI), and colon length were recorded, and histopathological changes in the colon were characterized using hematoxylin and eosin (H&E) staining. The in vitro anti-inflammatory activity and possible mechanisms of the two main sesquiterpene lactones in ALDE (costunolide and dehydrocostus lactone) were studied by quantitative proteomic analysis. Finally, based on bioinformatic analysis, we used polymerase chain reaction (PCR), immunofluorescence, and western blot experiments to verify the anti-inflammatory mechanism of the extracts in C57BL/6 mice. RESULTS The SLRF of ALDE significantly improved the pathological symptoms and inflammatory pathology of UC, whereas the AE had a weak protective effect. In RAW264.7 cells stimulated with lipopolysaccharide (LPS), costunolide and dehydrocostus lactone significantly reduced the mRNA levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, suggesting that these two sesquiterpene lactones had strong anti-inflammatory activity. Quantitative proteomics results indicated that the anti-inflammatory mechanism of these lactones was associated with the NF-κB/MAPK and Nrf2-Hmox-1 pathways. These results were further validated in SLRF-treated mice. CONCLUSION This study confirmed that the SLRF of ALDE exerted protective activity against UC by regulating the Nrf2-Hmox-1, NF-κB, and MAPK pathways.
Collapse
Affiliation(s)
- Yan Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| | - Zhiwei Miao
- Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China.
| | - Xianjie Sheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| | - Xinru Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| | - Jiayi Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| | - Xiaomei Xu
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - Hui Li
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - An Kang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
17
|
Yuan Y, Hu Q, Liu L, Xie F, Yang L, Li Y, Zhang C, Chen H, Tang J, Shen X. Dehydrocostus Lactone Suppresses Dextran Sulfate Sodium-Induced Colitis by Targeting the IKKα/β-NF-κB and Keap1-Nrf2 Signalling Pathways. Front Pharmacol 2022; 13:817596. [PMID: 35321327 PMCID: PMC8936814 DOI: 10.3389/fphar.2022.817596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
Dehydrocostus lactone (DCL) is a major sesquiterpene lactone isolated from Aucklandia lappa Decne, a traditional Chinese herbal medicine that used to treat gastrointestinal diseases. This study aimed to examine the therapeutic effects of DCL on dextran sulfate sodium (DSS)-induced colitis with a focus on identifying the molecular mechanisms involved in DCL-mediated anti-inflammatory activity in macrophages. First, oral administration of DCL (5–15 mg/kg) not only ameliorated symptoms of colitis and colonic barrier injury, but also inhibited the expression of proinflammatory cytokines and myeloperoxidase in colon tissues in DSS-challenged mice. Furthermore, DCL also exhibited significant anti-inflammatory activity in LPS/IFNγ-stimulated RAW264.7 macrophages. Importantly, DCL significantly suppressed the phosphorylation and degradation of IκBα and subsequent NF-κB nuclear translocation, and enhanced the nuclear accumulation of Nrf2 in LPS/IFNγ-treated RAW264.7 cells. Mechanistically, DCL could directly interact with IKKα/β and Keap1, thereby leading to the inhibition of NF-κB signalling and the activation of Nrf2 pathway. Furthermore, DCL-mediated actions were abolished by dithiothreitol, suggesting a thiol-mediated covalent linkage between DCL and IKKα/β or Keap1. These findings demonstrated that DCL ameliorates colitis by targeting NF-κB and Nrf2 signalling, suggesting that DCL may be a promising candidate in the clinical treatment of colitis.
Collapse
Affiliation(s)
- Yun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyao Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongqing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaofei Shen,
| |
Collapse
|